Por favor, use este identificador para citar o enlazar este ítem:
http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/8907
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | García Delgado, Cesar Sebastián. | - |
dc.date.accessioned | 2024-07-02T15:52:49Z | - |
dc.date.available | 2022-09-01 | - |
dc.date.available | 2024-07-02T15:52:49Z | - |
dc.date.issued | 2022 | - |
dc.identifier.citation | García Delgado, C. S. (2022). Estudio computacional de la interacción del péptido amiloide de los islotes pancreáticos (hiapp) con membranas hidroperoxidadas [Trabajo de Grado Pregrado, Universidad de Pamplona]. Repositorio Hulago Universidad de Pamplona. http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/8907 | es_CO |
dc.identifier.uri | http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/8907 | - |
dc.description | POPC (1-palmitoil-2-oleoil-sn-glicero-3-fosfocolina) es el fosfolípido más abundante en las células β del páncreas. Este lípido presenta una monoinsaturación en una de sus cadenas alifáticas, haciéndolo susceptible a la adición de un grupo hidroperóxido (R-OOH) a causa de la peroxidación lipídica ocasionada por el estrés oxidativo celular. Esta oxidación tiene varios efectos sobre las propiedades fisicoquímicas de la membrana alterando su composición y complejidad. Las células β tienen la función de secretar insulina y junto con ella la amilina, también conocida como el polipéptido amiloide de los islotes de Langerhans Humanos (hIAPP), principal componente de los depósitos amiloides encontrados en el páncreas de pacientes con diabetes tipo 2 (T2D). Hay evidencias que relacionan la oxidación lipídica con la formación de estructuras β-amiloides o estructuras oligoméricas intermediarias en hIAPP. Se cree que esto es debido a que los nuevos grupos de carga producto de la oxidación lipídica, mejorarían la interacción del péptido con la membrana. Mediante simulaciones por Dinámica Molecular (MD) se ha analizado la interacción de hIAPP con bicapas de fosfatidilcolina neutras e hidroperoxidadas (POPC y POPCOOH, respectivamente), usando el paquete de simulación Gromacs. Inicialmente se crearon dos modelos de bicapa monolipídicas para POPC y POPCOOH, analizando sus propiedades fisicoquímicas: área por lípidio, espesor, densidad y solvatación. Estabilizadas las bicapas, se agregó a hIAPP en la zona acuosa de la caja de simulación en cercanías a la superficie de la bicapa, evaluando la interacción péptido-bicapa durante 500 ns de simulación. Se analizaron las energías de interacción péptido-bicapa, la distancia del péptido al centro de bicapa, la formación de puentes de hidrógeno, además de la influencia de la bicapa en el contenido de estructura secundaria de hIAPP. Los resultados obtenidos indican que la hidroperoxidación lipídica aumenta el área por lípido, incrementando su solvatación, al tiempo que disminuye el grosor de la bicapa. Además, se favorece la interacción de hIAPP con los lípidos hidroperoxidados, debido a que el grupo R-OOH en la cadena alifática se ubica en la interfase apolar/polar de la bicapa. Así, la interacción primaria de hIAPP se observó inicialmente a través de su región N-terminal, favorecida por las interacciones electrostáticas. Con el paso del tiempo de simulación, el núcleo amiloidogénico (de características hidrofóbicas) ve favorecida sus interacciones de Van der Waals con la bicapa, al tiempo que aumenta su contenido de hélices-α. | es_CO |
dc.description.abstract | El autor no proporciona la información sobre este ítem. | es_CO |
dc.format.extent | 63 | es_CO |
dc.format.mimetype | application/pdf | es_CO |
dc.language.iso | es | es_CO |
dc.publisher | Universidad de Pamplona - Facultad de Ciencias Básicas. | es_CO |
dc.subject | Dinámica Molecular. | es_CO |
dc.subject | hIAPP. | es_CO |
dc.subject | Interacción péptido bicapa. | es_CO |
dc.subject | Peroxidación lipídica. | es_CO |
dc.subject | POPC. | es_CO |
dc.title | Estudio computacional de la interacción del péptido amiloide de los islotes pancreáticos (hiapp) con membranas hidroperoxidadas. | es_CO |
dc.type | http://purl.org/coar/resource_type/c_7a1f | es_CO |
dc.date.accepted | 2022-06-01 | - |
dc.relation.references | Abraham, M. J., & Gready, J. E. (2011). Optimization of parameters for molecular dy-namics simulation using smooth particle-mesh Ewald in GROMACS 4.5. Journal of Computational Chemistry, 32(9), 2031–2040. https://doi.org/10.1002/jcc.21773 | es_CO |
dc.relation.references | Aschner, P. (2010). Epidemiología de la diabetes en Colombia. Avances en Diabetología, 26(2), 95–100. https://doi.org/10.1016/s1134-3230(10)62005-4 | es_CO |
dc.relation.references | Baez, L. (2013). Simulación por dinámica molecular de fosfolípidos usando GROMACS. Universidad de Sonora. http://148.225.114.121/bitstream/unison/1723/1/baezcastilloleo-nardol.pdf | es_CO |
dc.relation.references | Baler, K., Martin, O. A., Carignano, M. A., Ameer, G. A., Vila, J. A., & Szleifer, I. (2014). Electrostatic Unfolding and Interactions of Albumin Driven by pH Changes: A Molecular Dynamics Study. The Journal of Physical Chemistry B, 118(4), 921–930. https://doi.org/10.1021/jp409936v | es_CO |
dc.relation.references | Barengo, N. C., Tamayo, D. C., Tono, T., & Tuomilehto, J. (2017). A Colombian diabetes risk score for detecting undiagnosed diabetes and impaired glucose regulation. Primary Care Diabetes, 11(1), 86–93. https://doi.org/10.1016/j.pcd.2016.09.004 | es_CO |
dc.relation.references | Berendsen, H. J. C., Postma, J. P. M., van Gunsteren, W. F., DiNola, A., & Haak, J. R. (1984). Molecular dynamics with coupling to an external bath. The Journal of Chemical Physics, 81(8), 3684–3690. https://doi.org/10.1063/1.448118 | es_CO |
dc.relation.references | Berman, H., Kleywegt, G., Nakamura, H., & Markley, J. (2013). How Community Has Shaped the Protein Data Bank. Structure, 21(9), 1485–1491. https://doi.org/10.1016/j.str.2013.07.010 | es_CO |
dc.relation.references | Bhattacharya, M., Jain, N., & Mukhopadhyay, S. (2011). Insights into the Mechanism of Aggregation and Fibril Formation from Bovine Serum Albumin. The Journal of Physical Chemistry B, 115(14), 4195–4205. https://doi.org/10.1021/jp111528c | es_CO |
dc.relation.references | Braun, E., Gilmer, J., Mayes, H. B., Mobley, D. L., Monroe, J. I., Prasad, S., & Zuckerman, D. M. (2019). Best Practices for Foundations in Molecular Simulations [Article v1.0]. Living Journal of Computational Molecular Science, 1(1). https://doi.org/10.33011/livecoms.1.1.5957 | es_CO |
dc.relation.references | Brender, J. R., Lee, E. L., Cavitt, M. A., Gafni, A., Steel, D. G., & Ramamoorthy, A. (2008). Amyloid Fiber Formation and Membrane Disruption are Separate Processes Localized in Two Distinct Regions of IAPP, the Type-2-Diabetes-Related Peptide. Journal of the American Chemical Society, 130(20), 6424–6429. https://doi.org/10.1021/ja710484d | es_CO |
dc.relation.references | Buchanan, L. E., Dunkelberger, E. B., Tran, H. Q., Cheng, P. N., Chiu, C. C., Cao, P., Raleigh, D. P., de Pablo, J. J., Nowick, J. S., & Zanni, M. T. (2013). Mechanism of IAPP amyloid fibril formation involves an intermediate with a transient β-sheet. Proceedings of the National Academy of Sciences, 110(48), 19285–19290. https://doi.org/10.1073/pnas.1314481110 | es_CO |
dc.relation.references | Bueren-Calabuig, J. (2014). Dinámica Molecular. En F. Abascal., F. Abascal., J. Aguirre., E. Andrés-León., D. Bajic., D. Baú., J. A. Bueren-Calabuig., Á. Cortés-Cabrera., I. Dotu., J. M. Fernández., H. G. D. Santos., B. García-Jiménez., R. Guantes., I. 51 Irisarri., N. Jiménez-Lozano., J. Klett, R. Méndez., A. Morreale., A. Pascual-García., A. Perona., A. Sebastian., M. Stich, S. Tarazona., I. Yruela y R. Zardoya. S. Álvaro., & A. Pascual-Garcı́a (Eds.), Bioinformática con Ñ (1.aed., Vol. 1, pp. 425–442). CreateSpace. https://www.researchgate.net/publication/304827617_Bioinformatica_con_N | es_CO |
dc.relation.references | Irisarri., N. Jiménez-Lozano., J. Klett, R. Méndez., A. Morreale., A. Pascual-García., A. Perona., A. Sebastian., M. Stich, S. Tarazona., I. Yruela y R. Zardoya. S. Álvaro., & A. Pascual-Garcı́a (Eds.), Bioinformática con Ñ (1.aed., Vol. 1, pp. 425–442). CreateSpace. https://www.researchgate.net/publication/304827617_Bioinformatica_con_N | es_CO |
dc.relation.references | Caillon, L., Lequin, O., & Khemtémourian, L. (2013). Evaluation of membrane models and their composition for islet amyloid polypeptide-membrane aggregation. Biochimica et Biophysica Acta (BBA) – Biomembranes, 1828(9), 2091–2098. https://doi.org/10.1016/j.bbamem.2013.05.014 | es_CO |
dc.relation.references | Chiti, F., & Dobson, C. M. (2006). Protein Misfolding, Functional Amyloid, and Human Disease. Annual Review of Biochemistry, 75(1), 333–366. https://doi.org/10.1146/annurev.biochem.75.101304.123901 | es_CO |
dc.relation.references | De Rosa, R., Spinozzi, F., & Itri, R. (2018). Hydroperoxide and carboxyl groups preferential location in oxidized biomembranes experimentally determined by small angle X-ray scattering: Implications in membrane structure. Biochimica et Biophysica Acta (BBA) – Biomembranes, 1860(11), 2299–2307. https://doi.org/10.1016/j.bbamem.2018.05.011 | es_CO |
dc.relation.references | Engel, M. F., Yigittop, H., Elgersma, R. C., Rijkers, D. T., Liskamp, R. M., de Kruijff, B., Höppener, J. W., & Antoinette Killian, J. (2006). Islet Amyloid Polypeptide Inserts into Phospholipid Monolayers as Monomer. Journal of Molecular Biology, 356(3), 783–789. https://doi.org/10.1016/j.jmb.2005.12.020 | es_CO |
dc.relation.references | Espinosa, Y., Barrera, D., Carlevaro, M., & Llanos, E. (2022). Structural Properties of Human Islet Amyloid Polypeptide and its Interaction with Lipid Oxidized Bilayers. [Manuscrito enviado para publicación] | es_CO |
dc.relation.references | Esposito, L., Pedone, C., & Vitagliano, L. (2006). Molecular dynamics analyses of cross-β-spine steric zipper models: β-Sheet twisting and aggregation. Proceedings of the National Academy of Sciences, 103(31), 11533–11538. https://doi.org/10.1073/pnas.0602345103 | es_CO |
dc.relation.references | Estadísticas Vitales de Colombia. (2013). DANE. Estadísticas Vitales. https://www.dane.gov.co/index.php/poblacion-y-demografia/nacimientos-y-defunciones/118-demograficas/estadisticas-vitales/2877-defunciones-no-fetales | es_CO |
dc.relation.references | Freifelder, D. (1979). Técnicas de bioquímica y biología molecular (1.a ed.). Editorial Reverté. https://books.google.com.co/books?id=iW0yHGmE-JwC&printsec=frontcover&hl=es&redir_esc=y#v=onepage&q&f=false | es_CO |
dc.relation.references | Gaviria, A., Ruiz, F., Ospina, M., Montaño, J., & Rivillas, J. (2013). Guía Metodológica Observatorio de Salud Cardiovascular, Diabetes y Enfermedad Crónica Renal OCADER Colombia. Ministerio de Salud y Protección Social. https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/VS/ED/GCFI/OERCAV_001%2022.10.2013%20v1.pdf | es_CO |
dc.relation.references | Gorbenko, G. P., & Kinnunen, P. K. (2006). The role of lipid–protein interactions in amyloid-type protein fibril formation. Chemistry and Physics of Lipids, 141(1–2), 72–82. https://doi.org/10.1016/j.chemphyslip.2006.02.006 | es_CO |
dc.relation.references | Green, J., Kreplak, L., Goldsbury, C., Li Blatter, X., Stolz, M., Cooper, G., Seelig, A., Kistler, J., & Aebi, U. (2004). Atomic Force Microscopy Reveals Defects Within Mica Supported Lipid Bilayers Induced by the Amyloidogenic Human Amylin Peptide. Journal of Molecular Biology, 342(3), 877–887. https://doi.org/10.1016/j.jmb.2004.07.052 | es_CO |
dc.relation.references | Gromacs. (2020). GROMACS 2020 documentation. https://manual.gromacs.org/. https://manual.gromacs.org/documentation/2020/reference-manual/introduction.html#computational-chemistry-and-molecular-modeling | es_CO |
dc.relation.references | Guo, C., Côté, S., Mousseau, N., & Wei, G. (2015). Distinct Helix Propensities and Membrane Interactions of Human and Rat IAPP1–19 Monomers in Anionic Lipid Bilayers. The Journal of Physical Chemistry B, 119(8), 3366–3376. https://doi.org/10.1021/jp5111357 | es_CO |
dc.relation.references | Guo, Y., Baulin, V. A., & Thalmann, F. (2016). Peroxidised phospholipid bilayers: insight from coarse-grained molecular dynamics simulations. Soft Matter, 12(1), 263–271. https://doi.org/10.1039/c5sm01350j | es_CO |
dc.relation.references | Hess, B., Bekker, H., Berendsen, H. J. C., & Fraaije, J. G. E. M. (1997). LINCS: A linear constraint solver for molecular simulations. Journal of Computational Chemistry, 18(12), 1463–1472. https://doi.org/10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H | es_CO |
dc.relation.references | Heyl, D. L., Osborne, J. M., Pamarthy, S., Samisetti, S., Gray, A. W., Jayaprakash, A., Konda, S., Brown, D. J., Miller, S. R., Eizadkhah, R., & Milletti, M. C. (2010). Liposome Damage and Modeling of Fragments of Human Islet Amyloid Polypeptide (IAPP) Support a Two-Step Model of Membrane Destruction. International Journal of Peptide Research and Therapeutics, 16(1), 43–54. https://doi.org/10.1007/s10989-010-9202-3 | es_CO |
dc.relation.references | Holm, N. K., Jespersen, S. K., Thomassen, L. V., Wolff, T. Y., Sehgal, P., Thomsen, L. A., Christiansen, G., Andersen, C. B., Knudsen, A. D., & Otzen, D. E. (2007). Aggregation and fibrillation of bovine serum albumin. Biochimica et Biophysica Acta 54 (BBA) - Proteins and Proteomics, 1774(9), 1128–1138. https://doi.org/10.1016/j.bbapap.2007.06.008 | es_CO |
dc.relation.references | Höppener, J. W., Ahrén, B., & Lips, C. J. (2000). Islet Amyloid and Type 2 Diabetes Mellitus. New England Journal of Medicine, 343(6), 411–419. https://doi.org/10.1056/nejm200008103430607 | es_CO |
dc.relation.references | Huang, J., & MacKerell, A. D. (2013). CHARMM36 all-atom additive protein force field: Validation based on comparison to NMR data. Journal of Computational Chemistry, 34(25), 2135–2145. https://doi.org/10.1002/jcc.23354 | es_CO |
dc.relation.references | Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: Visual molecular dynamics. Journal of Molecular Graphics, 14(1), 33–38. https://doi.org/10.1016/0263-7855(96)00018-5 | es_CO |
dc.relation.references | Informe mundial sobre la diabetes. (2016). OMS. https://apps.who.int/iris/bitstream/handle/10665/254649/9789243565255-spa.pdf | es_CO |
dc.relation.references | Isea, R. (2015). The Present-Day Meaning Of The Word Bioinformatics. Global Journal of Advanced Research, 2(1), 70–73. http://gjar.org/publishpaper/vol2issue1/d75r28.pdf | es_CO |
dc.relation.references | Itri, R., Junqueira, H. C., Mertins, O., & Baptista, M. S. (2014). Membrane changes under oxidative stress: the impact of oxidized lipids. Biophysical Reviews, 6(1), 47–61. https://doi.org/10.1007/s12551-013-0128-9 | es_CO |
dc.relation.references | Jain, S., & Udgaonkar, J. B. (2008). Evidence for Stepwise Formation of Amyloid Fibrils by the Mouse Prion Protein. Journal of Molecular Biology, 382(5), 1228–1241. https://doi.org/10.1016/j.jmb.2008.07.052 | es_CO |
dc.relation.references | Jayasinghe, S. A., & Langen, R. (2005). Lipid Membranes Modulate the Structure of Islet Amyloid Polypeptide. Biochemistry, 44(36), 12113–12119. https://doi.org/10.1021/bi050840w | es_CO |
dc.relation.references | Jia, Y., Qian, Z., Zhang, Y., & Wei, G. (2013). Adsorption and Orientation of Human Islet Amyloid Polypeptide (hIAPP) Monomer at Anionic Lipid Bilayers: Implications for Membrane-Mediated Aggregation. International Journal of Molecular Sciences, 14(3), 6241–6258. https://doi.org/10.3390/ijms14036241 | es_CO |
dc.relation.references | Jo, S., Kim, T., & Im, W. (2007). Automated Builder and Database of Protein/Membrane Complexes for Molecular Dynamics Simulations. PLoS ONE, 2(9), e880. https://doi.org/10.1371/journal.pone.0000880 | es_CO |
dc.relation.references | Jo, S., Kim, T., Iyer, V. G., & Im, W. (2008). CHARMM-GUI: A web-based graphical user interface for CHARMM. Journal of Computational Chemistry, 29(11), 1859–1865. https://doi.org/10.1002/jcc.20945 | es_CO |
dc.relation.references | Jójárt, B., & Martinek, T. A. (2007). Performance of the general amber force field in modeling aqueous POPC membrane bilayers. Journal of Computational Chemistry, 28(12), 2051–2058. https://doi.org/10.1002/jcc.20748 | es_CO |
dc.relation.references | Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., & Klein, M. L. (1983). Comparison of simple potential functions for simulating liquid water. The Journal of Chemical Physics, 79(2), 926–935. https://doi.org/10.1063/1.445869 | es_CO |
dc.relation.references | Junqueira, H., Schroder, A. P., Thalmann, F., Klymchenko, A., Mély, Y., Baptista, M. S., & Marques, C. M. (2021). Molecular organization in hydroperoxidized POPC bilayers. Biochimica et Biophysica Acta (BBA) – Biomembranes, 1863(10), 183659. https://doi.org/10.1016/j.bbamem.2021.183659 | es_CO |
dc.relation.references | Jurkiewicz, P., Olżyńska, A., Cwiklik, L., Conte, E., Jungwirth, P., Megli, F. M., & Hof, M. (2012). Biophysics of lipid bilayers containing oxidatively modified phospholipids: Insights from fluorescence and EPR experiments and from MD simulations. Biochimica et Biophysica Acta (BBA) – Biomembranes, 1818(10), 2388–2402. https://doi.org/10.1016/j.bbamem.2012.05.020 | es_CO |
dc.relation.references | K.J. Kinnunen, P. (2009). Amyloid Formation on Lipid Membrane Surfaces. The Open Biology Journal, 2(1), 163–175. https://doi.org/10.2174/1874196700902010163 | es_CO |
dc.relation.references | Kabsch, W., & Sander, C. (1983). Dictionary of protein secondary structure: Pattern recognition of hydrogen-bonded and geometrical features. Biopolymers, 22(12), 2577–2637. https://doi.org/10.1002/bip.360221211 | es_CO |
dc.relation.references | Kegulian, N. C., Sankhagowit, S., Apostolidou, M., Jayasinghe, S. A., Malmstadt, N., Butler, P. C., & Langen, R. (2015). Membrane Curvature-sensing and Curvature-inducing Activity of Islet Amyloid Polypeptide and Its Implications for Membrane Disruption. Journal of Biological Chemistry, 290(43), 25782–25793. https://doi.org/10.1074/jbc.m115.659797 | es_CO |
dc.relation.references | Khemtémourian, L., Antoinette Killian, J., Höppener, J. W. M., & Engel, M. F. M. (2008). Recent Insights in Islet Amyloid Polypeptide-Induced Membrane Disruption and Its Role inβ-Cell Death in Type 2 Diabetes Mellitus. Experimental Diabetes Research, 2008, 1–9. https://doi.org/10.1155/2008/421287 | es_CO |
dc.relation.references | Kinnunen, P. K. J., Domanov, Y. A., Mattila, J. P., & Varis, T. (2015). Formation of lipid/peptide tubules by IAPP and temporin B on supported lipidmembranes. Soft Matter, 11(47), 9188–9200. https://doi.org/10.1039/b925228b | es_CO |
dc.relation.references | Kohnke, B., Kutzner, C., & Grubmüller, H. (2020). A GPU-Accelerated Fast Multipole Method for GROMACS: Performance and Accuracy. Journal of Chemical Theory and Computation, 16(11), 6938–6949. https://doi.org/10.1021/acs.jctc.0c00744 | es_CO |
dc.relation.references | Kotler, S. A., Walsh, P., Brender, J. R., & Ramamoorthy, A. (2014). Differences between amyloid-β aggregation in solution and on the membrane: insights into elucidation of the mechanistic details of Alzheimer’s disease. Chem. Soc. Rev., 43(19), 6692–6700. https://doi.org/10.1039/c3cs60431d | es_CO |
dc.relation.references | Kučerka, N., Tristram-Nagle, S., & Nagle, J. F. (2006). Structure of Fully Hydrated Fluid Phase Lipid Bilayers with Monounsaturated Chains. Journal of Membrane Biology, 208(3), 193–202. https://doi.org/10.1007/s00232-005-7006-8 | es_CO |
dc.relation.references | Lemkul, J. (2019). From Proteins to Perturbed Hamiltonians: A Suite of Tutorials for the GROMACS-2018 Molecular Simulation Package [Article v1.0]. Living Journal of Computational Molecular Science, 1(1). https://doi.org/10.33011/livecoms.1.1.5068 | es_CO |
dc.relation.references | Li, Y., Wang, X., Ren, L., Cao, X., Ji, C., Xia, F., & Zhang, J. Z. H. (2018). Electrostatic Polarization Effect on Cooperative Aggregation of Full Length Human Islet Amyloid. Journal of Chemical Information and Modeling, 58(8), 1587–1595. https://doi.org/10.1021/acs.jcim.8b00215 | es_CO |
dc.relation.references | Liu, N., Duan, M., & Yang, M. (2017). Structural Properties of Human IAPP Dimer in Membrane Environment Studied by All-Atom Molecular Dynamics Simulations. Scientific Reports, 7(1). https://doi.org/10.1038/s41598-017-08504-x | es_CO |
dc.relation.references | Martínez, L., Andrade, R., Birgin, E. G., & Martínez, J. M. (2009). PACKMOL: A package for building initial configurations for molecular dynamics simulations. Journal of Computational Chemistry, 30(13), 2157–2164. https://doi.org/10.1002/jcc.21224 | es_CO |
dc.relation.references | Mathers, C. D., & Loncar, D. (2006). Projections of Global Mortality and Burden of Disease from 2002 to 2030. PLoS Medicine, 3(11), e442. https://doi.org/10.1371/journal.pmed.0030442 | es_CO |
dc.relation.references | Min, A. Y., Yoo, J. M., Sok, D. E., & Kim, M. R. (2020). Mulberry Fruit Prevents Diabetes and Diabetic Dementia by Regulation of Blood Glucose through Upregulation of Antioxidative Activities and CREB/BDNF Pathway in Alloxan-Induced Diabetic Mice. Oxidative Medicine and Cellular Longevity, 2020, 1–13. https://doi.org/10.1155/2020/1298691 | es_CO |
dc.relation.references | Nanga, R. P. R., Brender, J. R., Vivekanandan, S., & Ramamoorthy, A. (2011). Structure and membrane orientation of IAPP in its natively amidated form at physiological pH in a membrane environment. Biochimica et Biophysica Acta (BBA) – Biomembranes, 1808(10), 2337–2342. https://doi.org/10.1016/j.bbamem.2011.06.012 | es_CO |
dc.relation.references | Nanga, R. P. R., Brender, J. R., Xu, J., Hartman, K., Subramanian, V., & Ramamoorthy, A. (2009). Three-Dimensional Structure and Orientation of Rat Islet Amyloid Polypeptide Protein in a Membrane Environment by Solution NMR Spectroscopy. Journal of the American Chemical Society, 131(23), 8252–8261. https://doi.org/10.1021/ja9010095 | es_CO |
dc.relation.references | Nelson, R., Sawaya, M. R., Balbirnie, M., Madsen, A., Riekel, C., Grothe, R., & Eisenberg, D. (2005). Structure of the cross-β spine of amyloid-like fibrils. Nature, 435(7043), 773–778. https://doi.org/10.1038/nature03680 | es_CO |
dc.relation.references | O’Brien, T. D., Westermark, P., & Johnson, K. H. (1991). Islet Amyloid Polypeptide and Insulin Secretion From Isolated Perfused Pancreas of Fed, Fasted, Glucose-Treated, and 59 Dexamethasone-Treated Rats. Diabetes, 40(12), 1701–1706. https://doi.org/10.2337/diab.40.12.1701 | es_CO |
dc.relation.references | Pedersen, J. S., Andersen, C. B., & Otzen, D. E. (2010). Amyloid structure - one but not the same: the many levels of fibrillar polymorphism. FEBS Journal, 277(22), 4591–4601. https://doi.org/10.1111/j.1742-4658.2010.07888.x | es_CO |
dc.relation.references | Qian, Z., Jia, Y., & Wei, G. (2016). Binding Orientations and Lipid Interactions of Human Amylin at Zwitterionic and Anionic Lipid Bilayers. Journal of Diabetes Research, 2016, 1–13. https://doi.org/10.1155/2016/1749196 | es_CO |
dc.relation.references | Reddy, A. S., Wang, L., Singh, S., Ling, Y. L., Buchanan, L., Zanni, M. T., Skinner, J. L., & de Pablo, J. J. (2010). Stable and Metastable States of Human Amylin in Solution. Biophysical Journal, 99(7), 2208–2216. https://doi.org/10.1016/j.bpj.2010.07.014 | es_CO |
dc.relation.references | Riske, K. A., Sudbrack, T. P., Archilha, N. L., Uchoa, A. F., Schroder, A. P., Marques, C. M., Baptista, M. S., & Itri, R. (2009). Giant Vesicles under Oxidative Stress Induced by a Membrane-Anchored Photosensitizer. Biophysical Journal, 97(5), 1362–1370. https://doi.org/10.1016/j.bpj.2009.06.023 | es_CO |
dc.relation.references | Roberts, A. N., Leighton, B., Todd, J. A., Cockburn, D., Schofield, P. N., Sutton, R., Holt, S., Boyd, Y., Day, A. J., & Foot, E. A. (1989). Molecular and functional characterization of amylin, a peptide associated with type 2 diabetes mellitus. Proceedings of the National Academy of Sciences, 86(24), 9662–9666. https://doi.org/10.1073/pnas.86.24.9662 | es_CO |
dc.relation.references | Rodriguez, D. C., Tripsianes, K., Buday, K., Franko, A., Göbl, C., Hartlmüller, C., Sarkar, R., Aichler, M., Mettenleiter, G., Schulz, M., Böddrich, A., Erck, C., Martens, H., Walch, A. K., Madl, T., Wanker, E. E., Conrad, M., de Angelis, M. H., & Reif, B. (2017). 60 The redox environment triggers conformational changes and aggregation of hIAPP in Type II Diabetes. Scientific Reports, 7(1). https://doi.org/10.1038/srep44041 | es_CO |
dc.relation.references | Scanavachi, G., Coutinho, A., Fedorov, A. A., Prieto, M., Melo, A. M., & Itri, R. (2021). Lipid Hydroperoxide Compromises the Membrane Structure Organization and Softens Bending Rigidity. Langmuir, 37(33), 9952–9963. https://doi.org/10.1021/acs.langmuir.1c00830 | es_CO |
dc.relation.references | Sciacca, M. F. M., Brender, J. R., Lee, D. K., & Ramamoorthy, A. (2012). Phosphatidylethanolamine Enhances Amyloid Fiber-Dependent Membrane Fragmentation. Biochemistry, 51(39), 7676–7684. https://doi.org/10.1021/bi3009888 | es_CO |
dc.relation.references | Sciacca, M., Kotler, S., Brender, J., Chen, J., Lee, D. K., & Ramamoorthy, A. (2012). Two-Step Mechanism of Membrane Disruption by Aβ through Membrane Fragmentation and Pore Formation. Biophysical Journal, 103(4), 702–710. https://doi.org/10.1016/j.bpj.2012.06.045 | es_CO |
dc.relation.references | Seeliger, J., Weise, K., Opitz, N., & Winter, R. (2012). The Effect of Aβ on IAPP Aggregation in the Presence of an Isolated β-Cell Membrane. Journal of Molecular Biology, 421(2–3), 348–363. https://doi.org/10.1016/j.jmb.2012.01.048 | es_CO |
dc.relation.references | Sepúlveda, L. (2007). Estudio de dinámica molecular con solvente implícito de la influencia de la interfase de interacción entre los dominios de la proteína FtsZ en la estabilidad y plegamiento. Biblioteca digital de la universidad de chile. https://bibliotecadigital.uchile.cl/discovery/fulldisplay?vid=56UDC_INST:56UDC_INST&search_scope=MyInst_and_CI&docid=alma991005616009703936&lang=es&context=L | es_CO |
dc.relation.references | Siani, P., de Souza, R., Dias, L., Itri, R., & Khandelia, H. (2016). An overview of molecular dynamics simulations of oxidized lipid systems, with a comparison of ELBA and MARTINI force fields for coarse grained lipid simulations. Biochimica et Biophysica Acta (BBA) – Biomembranes, 1858(10), 2498–2511. https://doi.org/10.1016/j.bbamem.2016.03.031 | es_CO |
dc.relation.references | Smith, P. E. S., Brender, J. R., & Ramamoorthy, A. (2009). Induction of Negative Curvature as a Mechanism of Cell Toxicity by Amyloidogenic Peptides: The Case of Islet Amyloid Polypeptide. Journal of the American Chemical Society, 131(12), 4470–4478. https://doi.org/10.1021/ja809002a | es_CO |
dc.relation.references | Sparr, E., Engel, M. F., Sakharov, D. V., Sprong, M., Jacobs, J., de Kruijff, B., Höppener, J. W., & Antoinette Killian, J. (2004). Islet amyloid polypeptide-induced membrane leakage involves uptake of lipids by forming amyloid fibers. FEBS Letters, 577(1–2), 117–120. https://doi.org/10.1016/j.febslet.2004.09.075 | es_CO |
dc.relation.references | The Emerging Risk Factors Collaboration. (2010). Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies. The Lancet, 375(9733), 2215–2222. https://doi.org/10.1016/s0140-6736(10)60484-9 | es_CO |
dc.relation.references | Uversky, V. N., & Fink, A. L. (2004). Conformational constraints for amyloid fibrillation: the importance of being unfolded. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, 1698(2), 131–153. https://doi.org/10.1016/j.bbapap.2003.12.008 | es_CO |
dc.relation.references | Vaiana, S. M., Best, R. B., Yau, W. M., Eaton, W. A., & Hofrichter, J. (2009). Evidence for a Partially Structured State of the Amylin Monomer. Biophysical Journal, 97(11), 2948–2957. https://doi.org/10.1016/j.bpj.2009.08.041 | es_CO |
dc.relation.references | Van der Paal, J., Neyts, E. C., Verlackt, C. C. W., & Bogaerts, A. (2016). Effect of lipid peroxidation on membrane permeability of cancer and normal cells subjected to oxidative stress. Chemical Science, 7(1), 489–498. https://doi.org/10.1039/c5sc02311d | es_CO |
dc.relation.references | Van der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A. E., & Berendsen, H. J. C. (2005). GROMACS: Fast, flexible, and free. Journal of Computational Chemistry, 26(16), 1701–1718. https://doi.org/10.1002/jcc.20291 | es_CO |
dc.relation.references | Weber, G., Charitat, T., Baptista, M. S., Uchoa, A. F., Pavani, C., Junqueira, H. C., Guo, Y., Baulin, V. A., Itri, R., Marques, C. M., & Schroder, A. P. (2014). Lipid oxidation induces structural changes in biomimetic membranes. Soft Matter, 10(24), 4241. https://doi.org/10.1039/c3sm52740a | es_CO |
dc.relation.references | Wei, G., Mousseau, N., & Derreumaux, P. (2007). Computational Simulations of the Early Steps of Protein Aggregation. Prion, 1(1), 3–8. https://doi.org/10.4161/pri.1.1.3969 | es_CO |
dc.relation.references | Wei, Y., Wei, W., Cheng, J., Qingfen, Y., & Haifeng, C. (2013). Molecular dynamics simulations of amyloid fibrils: an in silico approach. Acta Biochimica et Biophysica Sinica, Volume 45, Pages 503–508,(Issue 6). https://doi.org/10.1093/abbs/gmt026 | es_CO |
dc.relation.references | Williams, T. L., Day, I. J., & Serpell, L. C. (2010). The Effect of Alzheimer’s Aβ Aggregation State on the Permeation of Biomimetic Lipid Vesicles. Langmuir, 26(22), 17260–17268. https://doi.org/10.1021/la101581g | es_CO |
dc.relation.references | Williamson, J. A., & Miranker, A. D. (2007). Direct detection of transient α-helical states in islet amyloid polypeptide. Protein Science, 16(1), 110–117. https://doi.org/10.1110/ps.062486907 | es_CO |
dc.relation.references | Wong-ekkabut, J., Xu, Z., Triampo, W., Tang, I. M., Peter Tieleman, D., & Monticelli, L. (2007). Effect of Lipid Peroxidation on the Properties of Lipid Bilayers: A Molecular Dynamics Study. Biophysical Journal, 93(12), 4225–4236. https://doi.org/10.1529/biophysj.107.112565 | es_CO |
dc.relation.references | Zhang, X., St. Clair, J. R., London, E., & Raleigh, D. P. (2017). Islet Amyloid Polypeptide Membrane Interactions: Effects of Membrane Composition. Biochemistry, 56(2), 376–390. https://doi.org/10.1021/acs.biochem.6b01016 | es_CO |
dc.relation.references | Zhang, Y., Luo, Y., Deng, Y., Mu, Y., & Wei, G. (2012). Lipid Interaction and Membrane Perturbation of Human Islet Amyloid Polypeptide Monomer and Dimer by Molecular Dynamics Simulations. PLoS ONE, 7(5), e38191. https://doi.org/10.1371/journal.pone.0038191 | es_CO |
dc.rights.accessrights | http://purl.org/coar/access_right/c_abf2 | es_CO |
dc.type.coarversion | http://purl.org/coar/resource_type/c_2df8fbb1 | es_CO |
Aparece en las colecciones: | Biología |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
García_2022_TG.pdf | García_2022_TG | 2,78 MB | Adobe PDF | Visualizar/Abrir |
Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.