• Repositorio Institucional Universidad de Pamplona
  • Trabajos de pregrado y especialización
  • Facultad de Ciencias Básicas
  • Biología
  • Por favor, use este identificador para citar o enlazar este ítem: http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/8907
    Registro completo de metadatos
    Campo DC Valor Lengua/Idioma
    dc.contributor.authorGarcía Delgado, Cesar Sebastián.-
    dc.date.accessioned2024-07-02T15:52:49Z-
    dc.date.available2022-09-01-
    dc.date.available2024-07-02T15:52:49Z-
    dc.date.issued2022-
    dc.identifier.citationGarcía Delgado, C. S. (2022). Estudio computacional de la interacción del péptido amiloide de los islotes pancreáticos (hiapp) con membranas hidroperoxidadas [Trabajo de Grado Pregrado, Universidad de Pamplona]. Repositorio Hulago Universidad de Pamplona. http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/8907es_CO
    dc.identifier.urihttp://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/8907-
    dc.descriptionPOPC (1-palmitoil-2-oleoil-sn-glicero-3-fosfocolina) es el fosfolípido más abundante en las células β del páncreas. Este lípido presenta una monoinsaturación en una de sus cadenas alifáticas, haciéndolo susceptible a la adición de un grupo hidroperóxido (R-OOH) a causa de la peroxidación lipídica ocasionada por el estrés oxidativo celular. Esta oxidación tiene varios efectos sobre las propiedades fisicoquímicas de la membrana alterando su composición y complejidad. Las células β tienen la función de secretar insulina y junto con ella la amilina, también conocida como el polipéptido amiloide de los islotes de Langerhans Humanos (hIAPP), principal componente de los depósitos amiloides encontrados en el páncreas de pacientes con diabetes tipo 2 (T2D). Hay evidencias que relacionan la oxidación lipídica con la formación de estructuras β-amiloides o estructuras oligoméricas intermediarias en hIAPP. Se cree que esto es debido a que los nuevos grupos de carga producto de la oxidación lipídica, mejorarían la interacción del péptido con la membrana. Mediante simulaciones por Dinámica Molecular (MD) se ha analizado la interacción de hIAPP con bicapas de fosfatidilcolina neutras e hidroperoxidadas (POPC y POPCOOH, respectivamente), usando el paquete de simulación Gromacs. Inicialmente se crearon dos modelos de bicapa monolipídicas para POPC y POPCOOH, analizando sus propiedades fisicoquímicas: área por lípidio, espesor, densidad y solvatación. Estabilizadas las bicapas, se agregó a hIAPP en la zona acuosa de la caja de simulación en cercanías a la superficie de la bicapa, evaluando la interacción péptido-bicapa durante 500 ns de simulación. Se analizaron las energías de interacción péptido-bicapa, la distancia del péptido al centro de bicapa, la formación de puentes de hidrógeno, además de la influencia de la bicapa en el contenido de estructura secundaria de hIAPP. Los resultados obtenidos indican que la hidroperoxidación lipídica aumenta el área por lípido, incrementando su solvatación, al tiempo que disminuye el grosor de la bicapa. Además, se favorece la interacción de hIAPP con los lípidos hidroperoxidados, debido a que el grupo R-OOH en la cadena alifática se ubica en la interfase apolar/polar de la bicapa. Así, la interacción primaria de hIAPP se observó inicialmente a través de su región N-terminal, favorecida por las interacciones electrostáticas. Con el paso del tiempo de simulación, el núcleo amiloidogénico (de características hidrofóbicas) ve favorecida sus interacciones de Van der Waals con la bicapa, al tiempo que aumenta su contenido de hélices-α.es_CO
    dc.description.abstractEl autor no proporciona la información sobre este ítem.es_CO
    dc.format.extent63es_CO
    dc.format.mimetypeapplication/pdfes_CO
    dc.language.isoeses_CO
    dc.publisherUniversidad de Pamplona - Facultad de Ciencias Básicas.es_CO
    dc.subjectDinámica Molecular.es_CO
    dc.subjecthIAPP.es_CO
    dc.subjectInteracción péptido bicapa.es_CO
    dc.subjectPeroxidación lipídica.es_CO
    dc.subjectPOPC.es_CO
    dc.titleEstudio computacional de la interacción del péptido amiloide de los islotes pancreáticos (hiapp) con membranas hidroperoxidadas.es_CO
    dc.typehttp://purl.org/coar/resource_type/c_7a1fes_CO
    dc.date.accepted2022-06-01-
    dc.relation.referencesAbraham, M. J., & Gready, J. E. (2011). Optimization of parameters for molecular dy-namics simulation using smooth particle-mesh Ewald in GROMACS 4.5. Journal of Computational Chemistry, 32(9), 2031–2040. https://doi.org/10.1002/jcc.21773es_CO
    dc.relation.referencesAschner, P. (2010). Epidemiología de la diabetes en Colombia. Avances en Diabetología, 26(2), 95–100. https://doi.org/10.1016/s1134-3230(10)62005-4es_CO
    dc.relation.referencesBaez, L. (2013). Simulación por dinámica molecular de fosfolípidos usando GROMACS. Universidad de Sonora. http://148.225.114.121/bitstream/unison/1723/1/baezcastilloleo-nardol.pdfes_CO
    dc.relation.referencesBaler, K., Martin, O. A., Carignano, M. A., Ameer, G. A., Vila, J. A., & Szleifer, I. (2014). Electrostatic Unfolding and Interactions of Albumin Driven by pH Changes: A Molecular Dynamics Study. The Journal of Physical Chemistry B, 118(4), 921–930. https://doi.org/10.1021/jp409936ves_CO
    dc.relation.referencesBarengo, N. C., Tamayo, D. C., Tono, T., & Tuomilehto, J. (2017). A Colombian diabetes risk score for detecting undiagnosed diabetes and impaired glucose regulation. Primary Care Diabetes, 11(1), 86–93. https://doi.org/10.1016/j.pcd.2016.09.004es_CO
    dc.relation.referencesBerendsen, H. J. C., Postma, J. P. M., van Gunsteren, W. F., DiNola, A., & Haak, J. R. (1984). Molecular dynamics with coupling to an external bath. The Journal of Chemical Physics, 81(8), 3684–3690. https://doi.org/10.1063/1.448118es_CO
    dc.relation.referencesBerman, H., Kleywegt, G., Nakamura, H., & Markley, J. (2013). How Community Has Shaped the Protein Data Bank. Structure, 21(9), 1485–1491. https://doi.org/10.1016/j.str.2013.07.010es_CO
    dc.relation.referencesBhattacharya, M., Jain, N., & Mukhopadhyay, S. (2011). Insights into the Mechanism of Aggregation and Fibril Formation from Bovine Serum Albumin. The Journal of Physical Chemistry B, 115(14), 4195–4205. https://doi.org/10.1021/jp111528ces_CO
    dc.relation.referencesBraun, E., Gilmer, J., Mayes, H. B., Mobley, D. L., Monroe, J. I., Prasad, S., & Zuckerman, D. M. (2019). Best Practices for Foundations in Molecular Simulations [Article v1.0]. Living Journal of Computational Molecular Science, 1(1). https://doi.org/10.33011/livecoms.1.1.5957es_CO
    dc.relation.referencesBrender, J. R., Lee, E. L., Cavitt, M. A., Gafni, A., Steel, D. G., & Ramamoorthy, A. (2008). Amyloid Fiber Formation and Membrane Disruption are Separate Processes Localized in Two Distinct Regions of IAPP, the Type-2-Diabetes-Related Peptide. Journal of the American Chemical Society, 130(20), 6424–6429. https://doi.org/10.1021/ja710484des_CO
    dc.relation.referencesBuchanan, L. E., Dunkelberger, E. B., Tran, H. Q., Cheng, P. N., Chiu, C. C., Cao, P., Raleigh, D. P., de Pablo, J. J., Nowick, J. S., & Zanni, M. T. (2013). Mechanism of IAPP amyloid fibril formation involves an intermediate with a transient β-sheet. Proceedings of the National Academy of Sciences, 110(48), 19285–19290. https://doi.org/10.1073/pnas.1314481110es_CO
    dc.relation.referencesBueren-Calabuig, J. (2014). Dinámica Molecular. En F. Abascal., F. Abascal., J. Aguirre., E. Andrés-León., D. Bajic., D. Baú., J. A. Bueren-Calabuig., Á. Cortés-Cabrera., I. Dotu., J. M. Fernández., H. G. D. Santos., B. García-Jiménez., R. Guantes., I. 51 Irisarri., N. Jiménez-Lozano., J. Klett, R. Méndez., A. Morreale., A. Pascual-García., A. Perona., A. Sebastian., M. Stich, S. Tarazona., I. Yruela y R. Zardoya. S. Álvaro., & A. Pascual-Garcı́a (Eds.), Bioinformática con Ñ (1.aed., Vol. 1, pp. 425–442). CreateSpace. https://www.researchgate.net/publication/304827617_Bioinformatica_con_Nes_CO
    dc.relation.referencesIrisarri., N. Jiménez-Lozano., J. Klett, R. Méndez., A. Morreale., A. Pascual-García., A. Perona., A. Sebastian., M. Stich, S. Tarazona., I. Yruela y R. Zardoya. S. Álvaro., & A. Pascual-Garcı́a (Eds.), Bioinformática con Ñ (1.aed., Vol. 1, pp. 425–442). CreateSpace. https://www.researchgate.net/publication/304827617_Bioinformatica_con_Nes_CO
    dc.relation.referencesCaillon, L., Lequin, O., & Khemtémourian, L. (2013). Evaluation of membrane models and their composition for islet amyloid polypeptide-membrane aggregation. Biochimica et Biophysica Acta (BBA) – Biomembranes, 1828(9), 2091–2098. https://doi.org/10.1016/j.bbamem.2013.05.014es_CO
    dc.relation.referencesChiti, F., & Dobson, C. M. (2006). Protein Misfolding, Functional Amyloid, and Human Disease. Annual Review of Biochemistry, 75(1), 333–366. https://doi.org/10.1146/annurev.biochem.75.101304.123901es_CO
    dc.relation.referencesDe Rosa, R., Spinozzi, F., & Itri, R. (2018). Hydroperoxide and carboxyl groups preferential location in oxidized biomembranes experimentally determined by small angle X-ray scattering: Implications in membrane structure. Biochimica et Biophysica Acta (BBA) – Biomembranes, 1860(11), 2299–2307. https://doi.org/10.1016/j.bbamem.2018.05.011es_CO
    dc.relation.referencesEngel, M. F., Yigittop, H., Elgersma, R. C., Rijkers, D. T., Liskamp, R. M., de Kruijff, B., Höppener, J. W., & Antoinette Killian, J. (2006). Islet Amyloid Polypeptide Inserts into Phospholipid Monolayers as Monomer. Journal of Molecular Biology, 356(3), 783–789. https://doi.org/10.1016/j.jmb.2005.12.020es_CO
    dc.relation.referencesEspinosa, Y., Barrera, D., Carlevaro, M., & Llanos, E. (2022). Structural Properties of Human Islet Amyloid Polypeptide and its Interaction with Lipid Oxidized Bilayers. [Manuscrito enviado para publicación]es_CO
    dc.relation.referencesEsposito, L., Pedone, C., & Vitagliano, L. (2006). Molecular dynamics analyses of cross-β-spine steric zipper models: β-Sheet twisting and aggregation. Proceedings of the National Academy of Sciences, 103(31), 11533–11538. https://doi.org/10.1073/pnas.0602345103es_CO
    dc.relation.referencesEstadísticas Vitales de Colombia. (2013). DANE. Estadísticas Vitales. https://www.dane.gov.co/index.php/poblacion-y-demografia/nacimientos-y-defunciones/118-demograficas/estadisticas-vitales/2877-defunciones-no-fetaleses_CO
    dc.relation.referencesFreifelder, D. (1979). Técnicas de bioquímica y biología molecular (1.a ed.). Editorial Reverté. https://books.google.com.co/books?id=iW0yHGmE-JwC&printsec=frontcover&hl=es&redir_esc=y#v=onepage&q&f=falsees_CO
    dc.relation.referencesGaviria, A., Ruiz, F., Ospina, M., Montaño, J., & Rivillas, J. (2013). Guía Metodológica Observatorio de Salud Cardiovascular, Diabetes y Enfermedad Crónica Renal OCADER Colombia. Ministerio de Salud y Protección Social. https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/VS/ED/GCFI/OERCAV_001%2022.10.2013%20v1.pdfes_CO
    dc.relation.referencesGorbenko, G. P., & Kinnunen, P. K. (2006). The role of lipid–protein interactions in amyloid-type protein fibril formation. Chemistry and Physics of Lipids, 141(1–2), 72–82. https://doi.org/10.1016/j.chemphyslip.2006.02.006es_CO
    dc.relation.referencesGreen, J., Kreplak, L., Goldsbury, C., Li Blatter, X., Stolz, M., Cooper, G., Seelig, A., Kistler, J., & Aebi, U. (2004). Atomic Force Microscopy Reveals Defects Within Mica Supported Lipid Bilayers Induced by the Amyloidogenic Human Amylin Peptide. Journal of Molecular Biology, 342(3), 877–887. https://doi.org/10.1016/j.jmb.2004.07.052es_CO
    dc.relation.referencesGromacs. (2020). GROMACS 2020 documentation. https://manual.gromacs.org/. https://manual.gromacs.org/documentation/2020/reference-manual/introduction.html#computational-chemistry-and-molecular-modelinges_CO
    dc.relation.referencesGuo, C., Côté, S., Mousseau, N., & Wei, G. (2015). Distinct Helix Propensities and Membrane Interactions of Human and Rat IAPP1–19 Monomers in Anionic Lipid Bilayers. The Journal of Physical Chemistry B, 119(8), 3366–3376. https://doi.org/10.1021/jp5111357es_CO
    dc.relation.referencesGuo, Y., Baulin, V. A., & Thalmann, F. (2016). Peroxidised phospholipid bilayers: insight from coarse-grained molecular dynamics simulations. Soft Matter, 12(1), 263–271. https://doi.org/10.1039/c5sm01350jes_CO
    dc.relation.referencesHess, B., Bekker, H., Berendsen, H. J. C., & Fraaije, J. G. E. M. (1997). LINCS: A linear constraint solver for molecular simulations. Journal of Computational Chemistry, 18(12), 1463–1472. https://doi.org/10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-Hes_CO
    dc.relation.referencesHeyl, D. L., Osborne, J. M., Pamarthy, S., Samisetti, S., Gray, A. W., Jayaprakash, A., Konda, S., Brown, D. J., Miller, S. R., Eizadkhah, R., & Milletti, M. C. (2010). Liposome Damage and Modeling of Fragments of Human Islet Amyloid Polypeptide (IAPP) Support a Two-Step Model of Membrane Destruction. International Journal of Peptide Research and Therapeutics, 16(1), 43–54. https://doi.org/10.1007/s10989-010-9202-3es_CO
    dc.relation.referencesHolm, N. K., Jespersen, S. K., Thomassen, L. V., Wolff, T. Y., Sehgal, P., Thomsen, L. A., Christiansen, G., Andersen, C. B., Knudsen, A. D., & Otzen, D. E. (2007). Aggregation and fibrillation of bovine serum albumin. Biochimica et Biophysica Acta 54 (BBA) - Proteins and Proteomics, 1774(9), 1128–1138. https://doi.org/10.1016/j.bbapap.2007.06.008es_CO
    dc.relation.referencesHöppener, J. W., Ahrén, B., & Lips, C. J. (2000). Islet Amyloid and Type 2 Diabetes Mellitus. New England Journal of Medicine, 343(6), 411–419. https://doi.org/10.1056/nejm200008103430607es_CO
    dc.relation.referencesHuang, J., & MacKerell, A. D. (2013). CHARMM36 all-atom additive protein force field: Validation based on comparison to NMR data. Journal of Computational Chemistry, 34(25), 2135–2145. https://doi.org/10.1002/jcc.23354es_CO
    dc.relation.referencesHumphrey, W., Dalke, A., & Schulten, K. (1996). VMD: Visual molecular dynamics. Journal of Molecular Graphics, 14(1), 33–38. https://doi.org/10.1016/0263-7855(96)00018-5es_CO
    dc.relation.referencesInforme mundial sobre la diabetes. (2016). OMS. https://apps.who.int/iris/bitstream/handle/10665/254649/9789243565255-spa.pdfes_CO
    dc.relation.referencesIsea, R. (2015). The Present-Day Meaning Of The Word Bioinformatics. Global Journal of Advanced Research, 2(1), 70–73. http://gjar.org/publishpaper/vol2issue1/d75r28.pdfes_CO
    dc.relation.referencesItri, R., Junqueira, H. C., Mertins, O., & Baptista, M. S. (2014). Membrane changes under oxidative stress: the impact of oxidized lipids. Biophysical Reviews, 6(1), 47–61. https://doi.org/10.1007/s12551-013-0128-9es_CO
    dc.relation.referencesJain, S., & Udgaonkar, J. B. (2008). Evidence for Stepwise Formation of Amyloid Fibrils by the Mouse Prion Protein. Journal of Molecular Biology, 382(5), 1228–1241. https://doi.org/10.1016/j.jmb.2008.07.052es_CO
    dc.relation.referencesJayasinghe, S. A., & Langen, R. (2005). Lipid Membranes Modulate the Structure of Islet Amyloid Polypeptide. Biochemistry, 44(36), 12113–12119. https://doi.org/10.1021/bi050840wes_CO
    dc.relation.referencesJia, Y., Qian, Z., Zhang, Y., & Wei, G. (2013). Adsorption and Orientation of Human Islet Amyloid Polypeptide (hIAPP) Monomer at Anionic Lipid Bilayers: Implications for Membrane-Mediated Aggregation. International Journal of Molecular Sciences, 14(3), 6241–6258. https://doi.org/10.3390/ijms14036241es_CO
    dc.relation.referencesJo, S., Kim, T., & Im, W. (2007). Automated Builder and Database of Protein/Membrane Complexes for Molecular Dynamics Simulations. PLoS ONE, 2(9), e880. https://doi.org/10.1371/journal.pone.0000880es_CO
    dc.relation.referencesJo, S., Kim, T., Iyer, V. G., & Im, W. (2008). CHARMM-GUI: A web-based graphical user interface for CHARMM. Journal of Computational Chemistry, 29(11), 1859–1865. https://doi.org/10.1002/jcc.20945es_CO
    dc.relation.referencesJójárt, B., & Martinek, T. A. (2007). Performance of the general amber force field in modeling aqueous POPC membrane bilayers. Journal of Computational Chemistry, 28(12), 2051–2058. https://doi.org/10.1002/jcc.20748es_CO
    dc.relation.referencesJorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., & Klein, M. L. (1983). Comparison of simple potential functions for simulating liquid water. The Journal of Chemical Physics, 79(2), 926–935. https://doi.org/10.1063/1.445869es_CO
    dc.relation.referencesJunqueira, H., Schroder, A. P., Thalmann, F., Klymchenko, A., Mély, Y., Baptista, M. S., & Marques, C. M. (2021). Molecular organization in hydroperoxidized POPC bilayers. Biochimica et Biophysica Acta (BBA) – Biomembranes, 1863(10), 183659. https://doi.org/10.1016/j.bbamem.2021.183659es_CO
    dc.relation.referencesJurkiewicz, P., Olżyńska, A., Cwiklik, L., Conte, E., Jungwirth, P., Megli, F. M., & Hof, M. (2012). Biophysics of lipid bilayers containing oxidatively modified phospholipids: Insights from fluorescence and EPR experiments and from MD simulations. Biochimica et Biophysica Acta (BBA) – Biomembranes, 1818(10), 2388–2402. https://doi.org/10.1016/j.bbamem.2012.05.020es_CO
    dc.relation.referencesK.J. Kinnunen, P. (2009). Amyloid Formation on Lipid Membrane Surfaces. The Open Biology Journal, 2(1), 163–175. https://doi.org/10.2174/1874196700902010163es_CO
    dc.relation.referencesKabsch, W., & Sander, C. (1983). Dictionary of protein secondary structure: Pattern recognition of hydrogen-bonded and geometrical features. Biopolymers, 22(12), 2577–2637. https://doi.org/10.1002/bip.360221211es_CO
    dc.relation.referencesKegulian, N. C., Sankhagowit, S., Apostolidou, M., Jayasinghe, S. A., Malmstadt, N., Butler, P. C., & Langen, R. (2015). Membrane Curvature-sensing and Curvature-inducing Activity of Islet Amyloid Polypeptide and Its Implications for Membrane Disruption. Journal of Biological Chemistry, 290(43), 25782–25793. https://doi.org/10.1074/jbc.m115.659797es_CO
    dc.relation.referencesKhemtémourian, L., Antoinette Killian, J., Höppener, J. W. M., & Engel, M. F. M. (2008). Recent Insights in Islet Amyloid Polypeptide-Induced Membrane Disruption and Its Role inβ-Cell Death in Type 2 Diabetes Mellitus. Experimental Diabetes Research, 2008, 1–9. https://doi.org/10.1155/2008/421287es_CO
    dc.relation.referencesKinnunen, P. K. J., Domanov, Y. A., Mattila, J. P., & Varis, T. (2015). Formation of lipid/peptide tubules by IAPP and temporin B on supported lipidmembranes. Soft Matter, 11(47), 9188–9200. https://doi.org/10.1039/b925228bes_CO
    dc.relation.referencesKohnke, B., Kutzner, C., & Grubmüller, H. (2020). A GPU-Accelerated Fast Multipole Method for GROMACS: Performance and Accuracy. Journal of Chemical Theory and Computation, 16(11), 6938–6949. https://doi.org/10.1021/acs.jctc.0c00744es_CO
    dc.relation.referencesKotler, S. A., Walsh, P., Brender, J. R., & Ramamoorthy, A. (2014). Differences between amyloid-β aggregation in solution and on the membrane: insights into elucidation of the mechanistic details of Alzheimer’s disease. Chem. Soc. Rev., 43(19), 6692–6700. https://doi.org/10.1039/c3cs60431des_CO
    dc.relation.referencesKučerka, N., Tristram-Nagle, S., & Nagle, J. F. (2006). Structure of Fully Hydrated Fluid Phase Lipid Bilayers with Monounsaturated Chains. Journal of Membrane Biology, 208(3), 193–202. https://doi.org/10.1007/s00232-005-7006-8es_CO
    dc.relation.referencesLemkul, J. (2019). From Proteins to Perturbed Hamiltonians: A Suite of Tutorials for the GROMACS-2018 Molecular Simulation Package [Article v1.0]. Living Journal of Computational Molecular Science, 1(1). https://doi.org/10.33011/livecoms.1.1.5068es_CO
    dc.relation.referencesLi, Y., Wang, X., Ren, L., Cao, X., Ji, C., Xia, F., & Zhang, J. Z. H. (2018). Electrostatic Polarization Effect on Cooperative Aggregation of Full Length Human Islet Amyloid. Journal of Chemical Information and Modeling, 58(8), 1587–1595. https://doi.org/10.1021/acs.jcim.8b00215es_CO
    dc.relation.referencesLiu, N., Duan, M., & Yang, M. (2017). Structural Properties of Human IAPP Dimer in Membrane Environment Studied by All-Atom Molecular Dynamics Simulations. Scientific Reports, 7(1). https://doi.org/10.1038/s41598-017-08504-xes_CO
    dc.relation.referencesMartínez, L., Andrade, R., Birgin, E. G., & Martínez, J. M. (2009). PACKMOL: A package for building initial configurations for molecular dynamics simulations. Journal of Computational Chemistry, 30(13), 2157–2164. https://doi.org/10.1002/jcc.21224es_CO
    dc.relation.referencesMathers, C. D., & Loncar, D. (2006). Projections of Global Mortality and Burden of Disease from 2002 to 2030. PLoS Medicine, 3(11), e442. https://doi.org/10.1371/journal.pmed.0030442es_CO
    dc.relation.referencesMin, A. Y., Yoo, J. M., Sok, D. E., & Kim, M. R. (2020). Mulberry Fruit Prevents Diabetes and Diabetic Dementia by Regulation of Blood Glucose through Upregulation of Antioxidative Activities and CREB/BDNF Pathway in Alloxan-Induced Diabetic Mice. Oxidative Medicine and Cellular Longevity, 2020, 1–13. https://doi.org/10.1155/2020/1298691es_CO
    dc.relation.referencesNanga, R. P. R., Brender, J. R., Vivekanandan, S., & Ramamoorthy, A. (2011). Structure and membrane orientation of IAPP in its natively amidated form at physiological pH in a membrane environment. Biochimica et Biophysica Acta (BBA) – Biomembranes, 1808(10), 2337–2342. https://doi.org/10.1016/j.bbamem.2011.06.012es_CO
    dc.relation.referencesNanga, R. P. R., Brender, J. R., Xu, J., Hartman, K., Subramanian, V., & Ramamoorthy, A. (2009). Three-Dimensional Structure and Orientation of Rat Islet Amyloid Polypeptide Protein in a Membrane Environment by Solution NMR Spectroscopy. Journal of the American Chemical Society, 131(23), 8252–8261. https://doi.org/10.1021/ja9010095es_CO
    dc.relation.referencesNelson, R., Sawaya, M. R., Balbirnie, M., Madsen, A., Riekel, C., Grothe, R., & Eisenberg, D. (2005). Structure of the cross-β spine of amyloid-like fibrils. Nature, 435(7043), 773–778. https://doi.org/10.1038/nature03680es_CO
    dc.relation.referencesO’Brien, T. D., Westermark, P., & Johnson, K. H. (1991). Islet Amyloid Polypeptide and Insulin Secretion From Isolated Perfused Pancreas of Fed, Fasted, Glucose-Treated, and 59 Dexamethasone-Treated Rats. Diabetes, 40(12), 1701–1706. https://doi.org/10.2337/diab.40.12.1701es_CO
    dc.relation.referencesPedersen, J. S., Andersen, C. B., & Otzen, D. E. (2010). Amyloid structure - one but not the same: the many levels of fibrillar polymorphism. FEBS Journal, 277(22), 4591–4601. https://doi.org/10.1111/j.1742-4658.2010.07888.xes_CO
    dc.relation.referencesQian, Z., Jia, Y., & Wei, G. (2016). Binding Orientations and Lipid Interactions of Human Amylin at Zwitterionic and Anionic Lipid Bilayers. Journal of Diabetes Research, 2016, 1–13. https://doi.org/10.1155/2016/1749196es_CO
    dc.relation.referencesReddy, A. S., Wang, L., Singh, S., Ling, Y. L., Buchanan, L., Zanni, M. T., Skinner, J. L., & de Pablo, J. J. (2010). Stable and Metastable States of Human Amylin in Solution. Biophysical Journal, 99(7), 2208–2216. https://doi.org/10.1016/j.bpj.2010.07.014es_CO
    dc.relation.referencesRiske, K. A., Sudbrack, T. P., Archilha, N. L., Uchoa, A. F., Schroder, A. P., Marques, C. M., Baptista, M. S., & Itri, R. (2009). Giant Vesicles under Oxidative Stress Induced by a Membrane-Anchored Photosensitizer. Biophysical Journal, 97(5), 1362–1370. https://doi.org/10.1016/j.bpj.2009.06.023es_CO
    dc.relation.referencesRoberts, A. N., Leighton, B., Todd, J. A., Cockburn, D., Schofield, P. N., Sutton, R., Holt, S., Boyd, Y., Day, A. J., & Foot, E. A. (1989). Molecular and functional characterization of amylin, a peptide associated with type 2 diabetes mellitus. Proceedings of the National Academy of Sciences, 86(24), 9662–9666. https://doi.org/10.1073/pnas.86.24.9662es_CO
    dc.relation.referencesRodriguez, D. C., Tripsianes, K., Buday, K., Franko, A., Göbl, C., Hartlmüller, C., Sarkar, R., Aichler, M., Mettenleiter, G., Schulz, M., Böddrich, A., Erck, C., Martens, H., Walch, A. K., Madl, T., Wanker, E. E., Conrad, M., de Angelis, M. H., & Reif, B. (2017). 60 The redox environment triggers conformational changes and aggregation of hIAPP in Type II Diabetes. Scientific Reports, 7(1). https://doi.org/10.1038/srep44041es_CO
    dc.relation.referencesScanavachi, G., Coutinho, A., Fedorov, A. A., Prieto, M., Melo, A. M., & Itri, R. (2021). Lipid Hydroperoxide Compromises the Membrane Structure Organization and Softens Bending Rigidity. Langmuir, 37(33), 9952–9963. https://doi.org/10.1021/acs.langmuir.1c00830es_CO
    dc.relation.referencesSciacca, M. F. M., Brender, J. R., Lee, D. K., & Ramamoorthy, A. (2012). Phosphatidylethanolamine Enhances Amyloid Fiber-Dependent Membrane Fragmentation. Biochemistry, 51(39), 7676–7684. https://doi.org/10.1021/bi3009888es_CO
    dc.relation.referencesSciacca, M., Kotler, S., Brender, J., Chen, J., Lee, D. K., & Ramamoorthy, A. (2012). Two-Step Mechanism of Membrane Disruption by Aβ through Membrane Fragmentation and Pore Formation. Biophysical Journal, 103(4), 702–710. https://doi.org/10.1016/j.bpj.2012.06.045es_CO
    dc.relation.referencesSeeliger, J., Weise, K., Opitz, N., & Winter, R. (2012). The Effect of Aβ on IAPP Aggregation in the Presence of an Isolated β-Cell Membrane. Journal of Molecular Biology, 421(2–3), 348–363. https://doi.org/10.1016/j.jmb.2012.01.048es_CO
    dc.relation.referencesSepúlveda, L. (2007). Estudio de dinámica molecular con solvente implícito de la influencia de la interfase de interacción entre los dominios de la proteína FtsZ en la estabilidad y plegamiento. Biblioteca digital de la universidad de chile. https://bibliotecadigital.uchile.cl/discovery/fulldisplay?vid=56UDC_INST:56UDC_INST&search_scope=MyInst_and_CI&docid=alma991005616009703936&lang=es&context=Les_CO
    dc.relation.referencesSiani, P., de Souza, R., Dias, L., Itri, R., & Khandelia, H. (2016). An overview of molecular dynamics simulations of oxidized lipid systems, with a comparison of ELBA and MARTINI force fields for coarse grained lipid simulations. Biochimica et Biophysica Acta (BBA) – Biomembranes, 1858(10), 2498–2511. https://doi.org/10.1016/j.bbamem.2016.03.031es_CO
    dc.relation.referencesSmith, P. E. S., Brender, J. R., & Ramamoorthy, A. (2009). Induction of Negative Curvature as a Mechanism of Cell Toxicity by Amyloidogenic Peptides: The Case of Islet Amyloid Polypeptide. Journal of the American Chemical Society, 131(12), 4470–4478. https://doi.org/10.1021/ja809002aes_CO
    dc.relation.referencesSparr, E., Engel, M. F., Sakharov, D. V., Sprong, M., Jacobs, J., de Kruijff, B., Höppener, J. W., & Antoinette Killian, J. (2004). Islet amyloid polypeptide-induced membrane leakage involves uptake of lipids by forming amyloid fibers. FEBS Letters, 577(1–2), 117–120. https://doi.org/10.1016/j.febslet.2004.09.075es_CO
    dc.relation.referencesThe Emerging Risk Factors Collaboration. (2010). Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies. The Lancet, 375(9733), 2215–2222. https://doi.org/10.1016/s0140-6736(10)60484-9es_CO
    dc.relation.referencesUversky, V. N., & Fink, A. L. (2004). Conformational constraints for amyloid fibrillation: the importance of being unfolded. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, 1698(2), 131–153. https://doi.org/10.1016/j.bbapap.2003.12.008es_CO
    dc.relation.referencesVaiana, S. M., Best, R. B., Yau, W. M., Eaton, W. A., & Hofrichter, J. (2009). Evidence for a Partially Structured State of the Amylin Monomer. Biophysical Journal, 97(11), 2948–2957. https://doi.org/10.1016/j.bpj.2009.08.041es_CO
    dc.relation.referencesVan der Paal, J., Neyts, E. C., Verlackt, C. C. W., & Bogaerts, A. (2016). Effect of lipid peroxidation on membrane permeability of cancer and normal cells subjected to oxidative stress. Chemical Science, 7(1), 489–498. https://doi.org/10.1039/c5sc02311des_CO
    dc.relation.referencesVan der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A. E., & Berendsen, H. J. C. (2005). GROMACS: Fast, flexible, and free. Journal of Computational Chemistry, 26(16), 1701–1718. https://doi.org/10.1002/jcc.20291es_CO
    dc.relation.referencesWeber, G., Charitat, T., Baptista, M. S., Uchoa, A. F., Pavani, C., Junqueira, H. C., Guo, Y., Baulin, V. A., Itri, R., Marques, C. M., & Schroder, A. P. (2014). Lipid oxidation induces structural changes in biomimetic membranes. Soft Matter, 10(24), 4241. https://doi.org/10.1039/c3sm52740aes_CO
    dc.relation.referencesWei, G., Mousseau, N., & Derreumaux, P. (2007). Computational Simulations of the Early Steps of Protein Aggregation. Prion, 1(1), 3–8. https://doi.org/10.4161/pri.1.1.3969es_CO
    dc.relation.referencesWei, Y., Wei, W., Cheng, J., Qingfen, Y., & Haifeng, C. (2013). Molecular dynamics simulations of amyloid fibrils: an in silico approach. Acta Biochimica et Biophysica Sinica, Volume 45, Pages 503–508,(Issue 6). https://doi.org/10.1093/abbs/gmt026es_CO
    dc.relation.referencesWilliams, T. L., Day, I. J., & Serpell, L. C. (2010). The Effect of Alzheimer’s Aβ Aggregation State on the Permeation of Biomimetic Lipid Vesicles. Langmuir, 26(22), 17260–17268. https://doi.org/10.1021/la101581ges_CO
    dc.relation.referencesWilliamson, J. A., & Miranker, A. D. (2007). Direct detection of transient α-helical states in islet amyloid polypeptide. Protein Science, 16(1), 110–117. https://doi.org/10.1110/ps.062486907es_CO
    dc.relation.referencesWong-ekkabut, J., Xu, Z., Triampo, W., Tang, I. M., Peter Tieleman, D., & Monticelli, L. (2007). Effect of Lipid Peroxidation on the Properties of Lipid Bilayers: A Molecular Dynamics Study. Biophysical Journal, 93(12), 4225–4236. https://doi.org/10.1529/biophysj.107.112565es_CO
    dc.relation.referencesZhang, X., St. Clair, J. R., London, E., & Raleigh, D. P. (2017). Islet Amyloid Polypeptide Membrane Interactions: Effects of Membrane Composition. Biochemistry, 56(2), 376–390. https://doi.org/10.1021/acs.biochem.6b01016es_CO
    dc.relation.referencesZhang, Y., Luo, Y., Deng, Y., Mu, Y., & Wei, G. (2012). Lipid Interaction and Membrane Perturbation of Human Islet Amyloid Polypeptide Monomer and Dimer by Molecular Dynamics Simulations. PLoS ONE, 7(5), e38191. https://doi.org/10.1371/journal.pone.0038191es_CO
    dc.rights.accessrightshttp://purl.org/coar/access_right/c_abf2es_CO
    dc.type.coarversionhttp://purl.org/coar/resource_type/c_2df8fbb1es_CO
    Aparece en las colecciones: Biología

    Ficheros en este ítem:
    Fichero Descripción Tamaño Formato  
    García_2022_TG.pdfGarcía_2022_TG2,78 MBAdobe PDFVisualizar/Abrir


    Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.