Por favor, use este identificador para citar o enlazar este ítem:
http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/5940
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | Garzón González, Harold Duvan. | - |
dc.date.accessioned | 2023-02-17T15:38:31Z | - |
dc.date.available | 2019-11-01 | - |
dc.date.available | 2023-02-17T15:38:31Z | - |
dc.date.issued | 2020 | - |
dc.identifier.citation | Garzón González, H. D. (2019). Efecto citotóxico del deoxinivalenol sobre células humanas y su presencia en el arroz cultivado en Cúcuta y el Zulia [Trabajo de Grado Pregrado, Universidad de Pamplona]. Repositorio Hulago Universidad de Pamplona. http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/5940 | es_CO |
dc.identifier.uri | http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/5940 | - |
dc.description | En la actualidad, la frecuente contaminación con deoxinivalenol (DON) en los granos de cereales y sus subproductos, se ha convertido en un problema importante en la industria alimentaria y en la salud pública a nivel mundial. Por ende, en el presente estudio, se estableció la presencia de hongos micotoxigénicos y de DON en el arroz cultivado en los municipios de Cúcuta y El Zulia. La incidencia de los hongos micotoxigénicos en el arroz cultivado se evaluó por medio de siembras en agar PDA y la presencia de DON con la técnica de cromatografía líquida de alta resolución (HPLC). Sumado a esto, se evaluó el efecto citotóxico de DON en la línea celular HepG2 y en células polimorfonucleares (PMN), mediante los parámetros de viabilidad celular (MTT), cambios morfológicos (Microscopía Electrónica de Transmisión) y tipo de muerte celular (Citometría de Flujo). Se evidenció la presencia de hongos micotoxigénicos del género Aspergillus spp., Penicillium spp. y Fusarium spp., siendo éste último el de mayor ocurrencia en las muestras de arroz cultivado en los municipios mencionados. Por el contrario, no se presentaron valores detectables de DON en las muestras de arroz. El efecto citotóxico de DON en las células HepG2, se presentó de manera dependiente de la concentración y tiempo de exposición, con una CI50 de 42,82 µM±1,2 y 29,6 µM±4,8 a 48 y 72 h., respectivamente. Se observaron cambios morfológicos en las células HepG2, como fragmentación del contenido celular y nuclear, formación de protuberacias en la membrana plasmática, cuerpos apoptóticos, así como alteraciones de la morfología celular y por tanto pérdida de los contactos célula a célula. Finalmente, se detectaron cambios bioquímicos como la externalización de las fosfatidilserina y la fragmentación del DNA por citometría de flujo en las células PMN, que determinaron la apoptosis en hasta el 52,74 % ±1,3 de la población celular. Los resultados sugieren que el arroz en cultivo presenta las condiciones óptimas para el crecimiento de hongos toxigénicos Como Fusarium spp., pero no para la producción del DON. Por otro lado, indican que la exposición al DON sobre las células HepG2 y PMN resulta en la muerte celular apoptótica. | es_CO |
dc.description.abstract | El autor no proporciona la información sobre este ítem. | es_CO |
dc.format.extent | 110 | es_CO |
dc.format.mimetype | application/pdf | es_CO |
dc.language.iso | es | es_CO |
dc.publisher | Universidad de Pamplona – Facultad de Ciencias Básicas. | es_CO |
dc.subject | Apoptosis. | es_CO |
dc.subject | Arroz cultivado. | es_CO |
dc.subject | Citotoxicidad. | es_CO |
dc.subject | Deoxinivalenol. | es_CO |
dc.subject | Fusarium spp. | es_CO |
dc.title | Efecto citotóxico del deoxinivalenol sobre células humanas y su presencia en el arroz cultivado en Cúcuta y el Zulia. | es_CO |
dc.type | http://purl.org/coar/resource_type/c_7a1f | es_CO |
dc.date.accepted | 2019-08-01 | - |
dc.relation.references | Abdus-Salaam, R., Atanda, O., Fanelli, F., Sulyok, M., Cozzi, G., Bavaro, S., et al. (2016). Fungal isolates and metabolites in locally processed rice from five agro-ecological zones of Nigeria. Food Additives and Contaminants: Part B, 9, 281–289. | es_CO |
dc.relation.references | Acuña, C., Díaz, G., y Espitia, M. (2005). Aflatoxiinas en maíz: reporte de caso en la Costa Atlantica colombiana. Rev. Med. Vet. Zoot., Vol. 52, p. 156 – 162. | es_CO |
dc.relation.references | Adejumo, T., y Adejoro, D. (2014). Incidence of aflatoxins, fumonisins, trichothecenes and ochratoxins in Nigerian foods and possible intervention strategies. Food Science and Quality Management, 31, 127–146. | es_CO |
dc.relation.references | Adeyeye, S. (2016). Fungal mycotoxins in foods: A review. Cogent Food & Agriculture, 2: 1213127. Adeyeye, Cogent Food & Agriculture (2016), 2: 1213127 http://dx.doi.org/10.1080/23311932.2016.1213127 | es_CO |
dc.relation.references | AFSSA (Agence française de s ecurit e sanitaire des aliments). (2006). Risk assessment for mycotoxins in human and animal food chains. Retrieved from https://www.anses.fr/fr/system/files/RCCP-Ra-MycotoxinesEN.pdf. | es_CO |
dc.relation.references | Ahmad, B., Ashiq, S., Hussain, A., Bashir, S. y Hussain, M. (2014). Evaluation of mycotoxins, mycobiota, and toxigenic fungi in selected medicinal plants of Khyber Pakhtunkhwa, Pakistan. fungal biology Vol. 118, p. 776-784. | es_CO |
dc.relation.references | Alassane-Kpembi, I., Kolf-Clauw, M., Gauthier, T., Abrami, R., Abiola, F.A., Oswald, I.P., (2013). New insights into mycotoxin mixtures: the toxicity of low doses of Type B trichothecenes on intestinal epithelial cells is synergistic. Toxicol. Appl. Pharmacol. 272, 191–198. | es_CO |
dc.relation.references | Alcaldía Municipal del Zulia. (2018). Nuestro municipio. Actualizado el 16 de mayo de 2018. Recuperado en internet de: http://www.elzulia- nortedesantander.gov.co/municipio/nuestro-municipio | es_CO |
dc.relation.references | Alexander, N., Proctor, R., McCormick, S. (2009). Genes, gene clusters, and biosynthesis of trichothecenes and fumonisins inFusarium. Toxin Reviews, Vol. 28(2-3), p. 198–215. | es_CO |
dc.relation.references | Almeida, M., Almeida, N., Carvalho, K., Gonçalves, G., Silva, C., Santos, E., Garcia, C., Vargas, E. (2012). Co-occurrence of aflatoxins B1, B2, G1 and G2, ochratoxin A, zearalenone, deoxynivalenol, and citreoviridin in rice in Brazil. Food Additives & Contaminants: Part A: Chemistry, Analysis, Control, Exposure & Risk Assessment. Vol. 29:4, p. 694-703. | es_CO |
dc.relation.references | Amagliani, L., O´regan, J., Kelly, A., y O´Mahony. J. (2017). Composition and protein profile analysis of rice protein ingredients. Journal of Food Composition and Analysis. Vol. 59; p. 18–26. | es_CO |
dc.relation.references | IDEAM. (S.f.). Carácterísticas climatológicas de ciudades principales y municipios turísticos. Resupero en internet de: http://www.ideam.gov.co/documents/21021/21789/1Sitios+turisticos2.pdf/cd4106e 9-d608-4c29-91cc-16bee9151ddd | es_CO |
dc.relation.references | INS. (2015). Evaluación de riesgo de carcinoma hepatocelular en poblacion colombiana por consumo de arepa de maíz contaminada con aflatoxina B1 (AFB1). Recuperado de internet: https://www.ins.gov.co/Direcciones/Vigilancia/Publicaciones%20ERIA%20y%20Pl aguicidas/ER%20AFB1.pdf | es_CO |
dc.relation.references | Iqbal, S., Nisar, S., Asi, M., Jinap, S. (2014). Natural incidence of aflatoxins, ochratoxin A and zearalenone in chicken meat and eggs. Food Control. Vol. 43, p. 98-103. | es_CO |
dc.relation.references | Islam, M.R., Roh, Y.S., Kim, J., Lim, C.W., Kim, B. (2013). Differential immune modulation by deoxynivalenol (vomitoxin) in mice. Toxicol. Lett. Vol. 221, p. 152-163. | es_CO |
dc.relation.references | Jaimes, N., Salmen, S., Colmenares, M., Burgos, A., Tamayo, L., Mendoza, V., Cantor, A. (2016). Efecto citotóxico de los compuestos de inclusión de paladio (II) en la beta- ciclodextrina. Biomédica. vol.36, n.4, p.603-611. | es_CO |
dc.relation.references | JECFA. (2011). Evaluation of certain contaminants in food. Seventy-second report of the Joint FAO/WHO Expert Committee on Food Additives. WHO Technical Report Series No 959. | es_CO |
dc.relation.references | Jedidi, I., soldevilla, C., Lahouar, A., Marín, P., González-Jaén, M., Said, S. (2018). Mycoflora isolation and molecular characterization of Aspergillus and Fusarium species in Tunisian cereals. Saudi Journal of Biological Sciences. Vol. 25, p. 868-874 | es_CO |
dc.relation.references | Juan, A., Berrada, H., Font, G., & Ruiz, M.-J. (2017). Evaluation of acute toxicity and genotoxicity of DON, 3-ADON and 15-ADON in HepG2 cells. Toxicology Letters, Vol. 280, S266. doi:10.1016/j.toxlet.2017.07.942 | es_CO |
dc.relation.references | Juan, A., Taroncher, M., Font, G., Ruiz, Marí.-José (2018)., Micronucleus induction and cell cycle alterations produced by deoxynivalenol and its acetylated derivatives in individual and combined exposure on HepG2 cells, Food and Chemical Toxicology Volume 118, August, Pages 719-725 | es_CO |
dc.relation.references | Kang, R., Li, R., Dai, P., Li, Z., Li, Y., Li, C. (2019). Deoxynivalenol induced apoptosis and inflammation of IPEC-J2 cells by promoting ROS production. Environmental Pollution. Vol. 251, p. 689-698. | es_CO |
dc.relation.references | Anfossi, L., Giovannoli, C., Baggiani, C. (2016). Mycotoxin detection. Current Opinion in Biotechnology. Vol. 37 p. 120–126. | es_CO |
dc.relation.references | Katika, M.R., Hendriksen, P.J., van Loveren, H., P A, A.C.M., (2015). Characterization of the modes of action of deoxynivalenol (DON) in the human Jurkat T-cell line. J. Immunotoxicol. Vol. 12, p 206–216. | es_CO |
dc.relation.references | Katika, M.R., Hendriksen, P.J.M., Shao, J., van Loveren, H., Peijnenburg, A., (2012). Transcriptome analysis of the human T lymphocyte cell line Jurkat and human peripheral blood mononuclear cells exposed to deoxynivalenol (DON): new mechanistic insights. Toxicol. Appl. Pharm. Vol. 264, p. 51–64. | es_CO |
dc.relation.references | Keller, N., Turner, G., y Bennett, J. (2005). Fungal secondary metabolism — from biochemistry to genomics. Nature Reviews Microbiology Vol. 3, p. 937–947. | es_CO |
dc.relation.references | Kharayat, B., y Singh, Y. (2018). Mycotoxins in Foods: Mycotoxicoses, Detection, and Management. Microbial Contamination and Food Degradation http://dx.doi.org/10.1016/B978-0-12-811515-2.00013-5 | es_CO |
dc.relation.references | Kim, H. S., and Lee, M. S. (2007). STAT1 as a key modulator of cell death. Cell. Signal. Vol. 19, p. 454–465. | es_CO |
dc.relation.references | Kimura, M., Tokai, T., Takahashi-Ando, N., Ohsato, S., Fujimura, M. (2007). Molecular and Genetic Studies ofFusariumTrichothecene Biosynthesis: Pathways, Genes, and Evolution. Bioscience, Biotechnology, and Biochemistry, 71(9), 2105–2123. | es_CO |
dc.relation.references | Knasmüller, S., Mersch-Sundermann, V., Kevekordes, S., Darroudi, F., Huber, W., Hoelzl, C., Bichler, J., Majer, B (2004). Use of human-derived liver cell lines for the detection of environmental and dietary genotoxicants; current state of knowledge. Toxicology. Vol.198(1-3) p. 315-28. | es_CO |
dc.relation.references | Kondratskyi, A., Kondratska, K., Skryma, R., & Prevarskaya, N. (2015). Ion channels in the regulation of apoptosis. Biochimica et Biophysica Acta (BBA) - Biomembranes, Vol. 1848(10), p. 2532–2546. | es_CO |
dc.relation.references | Königs, M., Lenczyk, M., Schwerdt, G., Holzinger, H., Gekle, N., Humpf, H.U. (2007). Cytotoxicity, metabolism and cellular uptake of the mycotoxin deoxynivalenol in human proximal tubule cells and lung fibroblasts in primary culture. Toxicology. Vol. 240, p. 48–59. | es_CO |
dc.relation.references | Königs, M., Schwerdt, Gekle N., Humpf, H.U. (2008). Effects of the mycotoxin deoxynivalenol on human primary hepatocytes. Mol. Nutr. Food Res. Vol. 52, p. 830– 839. | es_CO |
dc.relation.references | Arunachalam, C., y Doohan F. (2013). Trichothecene toxicity in eukaryotes: Cellular and molecular mechanisms in plants and animals Toxicology Letters, Vol. 217 P. 149– 158 | es_CO |
dc.relation.references | Kouadio, J.H., Dano, S.D., Moukha, S., Mobio, T.A., Creppy, E.E. (2007). Effects of combinations of Fusarium mycotoxins on the inhibition of macromolecular synthesis, malondialdehyde levels, DNA methylation and fragmentation, and viability in Caco- 2 cells. Toxicon Vol. 49, p. 306–317. | es_CO |
dc.relation.references | Kouadio, J.H., Mobio, T.A., Baudrimont, I., Moukha, S., Dano, S.D., Creppy, E.E. (2005). Comparative study of cytotoxicity and oxidative stress induced by deoxynivalenol, zearalenone or fumonisin B1 in human intestinal cell line Caco-2. Toxicology Vol. 213, p. 56–65. | es_CO |
dc.relation.references | Kovalsky, P., Kos, G., Nahrer, K., Schwab, C., Jenkins, T., Schatzmayr, G., Sulyok, M., Krska, R. (2016). Co-occurrence of regulated, masked and emerging mycotoxins andsecondary metabolites in finished feed and maize-an extensive survey. Toxins Vol. 8, 363. | es_CO |
dc.relation.references | Krajarng, A., Imoto, M., Tashiro, E., Fujimaki, T., Shinjo, S., Watanapokasin, R., (2015). Apoptosis 356 induction associated with the ER stress response through up-regulation of JNK in HeLa cells by 357 gambogic acid. BMC Comple. Alter. Med. Vol. 15, p. 26-34 | es_CO |
dc.relation.references | Kroemer, G., Galluzzi, L., Brenner, C. (2007). Mitochondrial membrane permeabilization in cell death. Physiol. Rev. Vol. 87 (1), p. 99–163. | es_CO |
dc.relation.references | Kupcsik, L. (2011). Estimation of Cell Number Based on Metabolic Activity: The MTT Reduction Assay. Mammalian Cell Viability, 13–19. doi:10.1007/978-1-61779-108- 6_3 | es_CO |
dc.relation.references | Kushiro, M. (2015). Historical review of researches on yellow rice and mycotoxigenic fungi adherent to rice in Japan. JSM Mycotoxins. Vol. 65, p. 19 – 23. | es_CO |
dc.relation.references | Laitila, A. (2015). Toxigenic fungi and mycotoxins in the barley-to-beer chain. Brewing Microbiology. http://dx.doi.org/10.1016/B978-1-78242-331-7.00006-X | es_CO |
dc.relation.references | Lapmak, K., Lumyong, S., Wangspa, R. and Sardsud, U. (2009). Diversity of filamentous fungi on brown rice from Pattalung Province, Thailand. Journal of Agricultural Technology Vol. 5 (1), p. 129-142. | es_CO |
dc.relation.references | Lei, Y., Guanghui, Z., Xi, W., Yingting, W., Xialu, L., Fangfang, Y., … Lammi, M. J. (2017). Cellular responses to T-2 toxin and/or deoxynivalenol that induce cartilage damage are not specific to chondrocytes. Scientific Reports, 7(1). doi:10.1038/s41598-017- 02568-5 | es_CO |
dc.relation.references | Ashiq, S., Hussain, M. y Ahmad, B. (2014). Natural occurrence of mycotoxins in medicinal plants: A review. Fungal Genet. Biol. Vol. 66, p. 1-10. | es_CO |
dc.relation.references | Leslie, J., y Summerell, B. (2006). The Fusarium Laboratory Manual. Blacwell. Iowa USA. 388 p. | es_CO |
dc.relation.references | Li, D., Ma, H., Ye, Y., Ji, C., Tang, X., Ouyang, D., Chen, J., Li, Y., Ma, Y. (2014a). Deoxynivalenol induces apoptosis in mouse thymic epithelial cells through mitochondria-mediated pathway. Environ. Toxicol. Pharmacol. Vol. 38, p. 163–171. | es_CO |
dc.relation.references | Li, D., Ye, Y., Lin, S., Deng, L., Fan, X., Zhang, Y., Deng, X., Li, Y., Yan, H., Ma, Y. (2014b). Evaluation of deoxynivalenol-induced toxic effects on DF-1 cells in vitro: Cell-cycle arrest, oxidative stress, and apoptosis. Environ. Toxicol. Pharmacol. Vol. 37, p. 141-149. | es_CO |
dc.relation.references | Liao, Y., Peng, Z., Chen, L., Nüssler, A., Liu, L. (2018). Deoxynivalenol, gut microbiota and immunotoxicity: A potential approach? Food and Chemical Toxicology. Vol. 112, p. 342–354. | es_CO |
dc.relation.references | Lin, J., Walter, P., y Yen, B. (2008). Endoplasmic Reticulum Stress in Disease Pathogenesis. Annu Rev Pathol. Vol. 3, P. 399–425. | es_CO |
dc.relation.references | Liu R, Jin Q, Huang J, Liu Y, Wang X, Zhou X. Mao W, Wang S. (2011) In vitro toxicity of aflatoxin B (1) and its photodegradation products in HepG2 cells. J Appl Toxicol. Vol. 32(4), p. 276-81. | es_CO |
dc.relation.references | Liu, Y., Lu, Y., Wang, L., Chang, F., Yang, L. (2016). Occurrence of deoxynivalenol in wheat, Hebei Province, China. Food Chemistry. Vol. 197, p. 1271–1274. | es_CO |
dc.relation.references | Lu, J., Yu, J., Lim, S., Son, Y., Kim, D., Lee, S., Shi, X. y Lee, J. (2013). Cellular mechanisms of the cytotoxic effects of the zearalenone metabolites a-zearalenol and b-zearalenol on RAW264.7 macrophages. En: Toxicology in Vitro, vol.27, p 1007– 1017. | es_CO |
dc.relation.references | Luo, Y., Liu, X., & Li, J. (2018). Updating techniques on controlling mycotoxins - A review. Food Control, Vol. 89, p. 123–132. | es_CO |
dc.relation.references | Lv, X.-C., Huang, Z.-Q., Zhang, W., Rao, P.-F., & Ni, L. (2012). Identification and characterization of filamentous fungi isolated from fermentation starters for Hong Qu glutinous rice wine brewing. The Journal of General and Applied Microbiology, Vol. 58(1), p. 33–42. | es_CO |
dc.relation.references | Bae, H., Gray, J., Li, M., Vines, L., Kim, J., Pestka, J., (2010). Hematopoietic cell kinase associates with the 40S ribosomal subunit and mediates the ribotoxic stress response to deoxynivalenol in mononuclear phagocytes. Toxicological Sciences Vol. 115, Pag. 444–452. | es_CO |
dc.relation.references | Ma, Y., Zhang, A., Shi, Z., He, C., Ding, J., Wang, X., … Zhang, H. (2012). A mitochondria- mediated apoptotic pathway induced by deoxynivalenol in human colon cancer cells. Toxicology in Vitro, Vol. 26(3), p. 414–420. | es_CO |
dc.relation.references | Magan, N. (2006). Mycotoxin contamination of food in Europe: early detection and prevention strategies. Mycopathologia. Vol. 162, p. 245–253. | es_CO |
dc.relation.references | Makun, H. A., Dutton, M. F., Njobeh, P. B., Mwanza, M., & Kabiru, A. Y. (2011). Natural multi-occurrence of mycotoxins in rice from Niger State, Nigeria. Mycotoxin Research, Vol. 27, p. 97-104. | es_CO |
dc.relation.references | Makun, H. A., Gbodi1, T. A., Akanya1, O. H., Salako, E. A., & Ogbadu, G. H. (2007). Fungi and some mycotoxins contaminating rice (Oryza Sativa) in Niger State, Nigeria. African Journal of Biotechnology, Vol. 6(2), p. 99-108. | es_CO |
dc.relation.references | Manda, G., Mocanu, M.A., Marin, D.E., Taranu, I. (2015). Dual effects exerted in vitro by micromolar concentrations of deoxynivalenol on undifferentiated caco-2 cells. Toxins. Vol. 7(2), 593-603. doi:10.3390/toxins7020593 | es_CO |
dc.relation.references | Manizan, A., Oplatowska-Stachowiak, M., Piro-Metayer, I., Campbell, K., Koffi-Nevry, R., Elliott, C., Akaki, D., Montet, D., Brabet, C. (2018). Multi-mycotoxin determination in rice, maize and peanut products most consumed in Cote d’Ivoire by UHPLC- MS/MS. Food Control, Vol 87, p 22-30. | es_CO |
dc.relation.references | Maresca, M., (2013). From the gut to the brain: journey and pathophysiological effects of the food-associated trichothecene mycotoxin deoxynivalenol. Toxins Vol. 5, p. 784–820. | es_CO |
dc.relation.references | Marin, S., Ramos, A.J., Cano-Sancho, G., Sanchis, V. (2013). Mycotoxins: Occurrence, toxicology, and exposure assessment. Food and Chemical Toxicology. 60, 218-237. | es_CO |
dc.relation.references | Martínez, M. y Londoño, W. (2017). Aflatoxinas en alimentos y exposición dietaria como factor de riesgo para el carcinoma hepatocelular. Biosalud. Vol.16. p.53-66. | es_CO |
dc.relation.references | Martinez, M., Moreano, M., y Ocampo, G. (2019). Occurrence, dietary exposure and risk assessment of aflatoxins in arepa, bread and rice. Food Control. Vol. 98. P 359-366. | es_CO |
dc.relation.references | Benbrook, D., y Long, A. (2012). Integration of autophagy, proteasomal degradation, unfolded protein response and apoptosis. Exp.Oncol. Vol. 34, Pag. 286–297. | es_CO |
dc.relation.references | Martínez, M., Taborda, G., y Rosero, M. (2015). Validation of a High Performance Liquid Chromatography Method for Aflatoxins Determination in Corn Arepas. Journal of the Brazilian Chemical Society.Vol. 26, p. 1-7. | es_CO |
dc.relation.references | Mayer, E., Novak, B., Springler, A., Schwartz-Zimmermann, H. E., Nagl, V., Reisinger, N., Schatzmayr, G. (2017). Effects of deoxynivalenol (DON) and its microbial biotransformation product deepoxy-deoxynivalenol (DOM-1) on a trout, pig, mouse, and human cell line. Mycotoxin Research, Vol. 33(4), p. 297–308. | es_CO |
dc.relation.references | McCormick, S., Stanley, A., Stover, N., Alexander, N. (2011). Trichothecenes: From Simple to Complex Mycotoxins. Toxins, 3(7), 802–814. | es_CO |
dc.relation.references | McGaw, L., Elgorashi, E., y Eloff, J. (2014). Cytotoxicity of African Medicinal Plants Against Normal Animal and Human Cells. En Kuete, V. (Ed). Toxicological Survey of African Medicinal Plants. Londres. Elsevier. | es_CO |
dc.relation.references | McIlwain, D., Berger, T., Mak, T. (2015). Caspase Functions in Cell Death and Disease. Cold Spring Harb. Perspect. Biol. Vol. 7, a026716. doi:10.1101/cshperspect.a026716 | es_CO |
dc.relation.references | Mendiola, A., y Cruz, S. (2005). Vía JAK-STAT: Una visión general. Revista Especializada en Ciencias de la Salud, Vol. 8(1-2), p. 14-25. | es_CO |
dc.relation.references | Menke, J., Weber, J., Broz, K. y Kistler, C. (2013). Cellular Development Associated with Induced Mycotoxin Synthesis in the Filamentous Fungus Fusarium graminearum. PLoS ONE 8(5): p. 63-77. doi:10.1371/journal.pone.0063077 | es_CO |
dc.relation.references | Mikami, O., Yamaguchi, H., Murata, H., Nakajima, Y., y Miyazaki, S. (2010). Induction of apoptotic lesions in liver and lymphoid tissues and modulation of cytokine mRNA expression by acute exposure to deoxynivalenol in piglets. Journal of Veterinary Science, Vol. 11(2), p. 107. doi:10.4142/jvs.2010.11.2.107 | es_CO |
dc.relation.references | Mikami, O., Yamamoto, S., Yamanaka, N., Nakajima, Y. (2004). Porcine hepatocyte apoptosis and reduction of albumin secretion induced by deoxynivalenol. Toxicology, Vol. 204, p. 241-249. | es_CO |
dc.relation.references | Milani, J. (2013). Ecological conditions affecting mycotoxin production in cereals: a review. Vet Med, Vol. 58, p. 405-411. | es_CO |
dc.relation.references | Bensassi, F., Bennour, E.E.O., Essefi, S.A., Bouaziz, C., Hajlaoui, M.R., Bacha, H., (2009). Pathway of deoxynivalenol-induced apoptosis in human colon carcinoma cells. Toxicol. 264, 104–109. | es_CO |
dc.relation.references | Minervini, F., Fornelli, F., Flynn K. (2004). Deoxynivalenol induces apoptosis in PC12 cells via the mitochondrial pathway. Toxicology in Vitro. Vol. 18, p. 21–28 | es_CO |
dc.relation.references | Ministerio de Salud y Protección social. (2013). Resolución número 004506 de 2013. Véase en internet: https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/DE/DIJ/resoluc ion-4506-de-2013.pdf | es_CO |
dc.relation.references | Mishra, S., Dwivedi, P., Pandey, H., Das. M. (2014). Role of oxidative stress in Deoxynivalenol induced toxicity. Food and Chemical Toxicology Vol. 72, P. 20–29 | es_CO |
dc.relation.references | Moore, D., Robson, G., y Trinci, A. (2011). 21st century guidebook to fungi (1st ed.). Cambridge University Press. ISBN 978-0521186957. http://dx.doi.org/10.1017/CBO9780511977022 | es_CO |
dc.relation.references | Moretti, A., Susca, A., Mulé, G., Logrieco, A., y Proctor, R. (2013). Molecular biodiversity of mycotoxigenic fungi that threaten food safety. International Journal of Food Microbiology. Vol. 167, p. 57-66. | es_CO |
dc.relation.references | Morris, L. (2011). Determinación de aflatoxinas en muestras de maíz (Zea mays) y arroz (Oryza sativa) para consumo humano en cinco departamentos de la Costa Caribe Colombiana mediante cromatografía de alta eficiencia durante seis meses en 2011. Universidad Nacional de Colombia. Bogotá. | es_CO |
dc.relation.references | Mosmann T. (1983). Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods Vol. 3, p. 65:55-63. | es_CO |
dc.relation.references | Moss, M.O. (1991). Mycology of cereal grain and grain products. In: Chelkowski, J. (Ed.), Cereal Grain: Mycotoxins, Fungi and Quality in Drying and Storage. Elsevier Science Publishing Inc, New York, pp. 23–51. | es_CO |
dc.relation.references | Muganda, P. (2015). An Overview of Apoptosis Methods in Toxicological Research: Recent Updates. Muganda, P. (Ed.). Apoptosis Methods in Toxicology. Humana Press. Estados Unidos. | es_CO |
dc.relation.references | Muthayya, S., Sugimoto, J. D., Montgomery, S., y Maberly, G. F. (2014). An overview of global rice production, supply, trade, and consumption. Annals of the New York Academy of Sciences, Vol. 1324, p. 7-14. | es_CO |
dc.relation.references | Bensassi, F., Gallerne, C., El Dein, O., Lemaire, C., Hajlaoui, M., Bacha, H. (2012). Involvement of mitochondria-mediated apoptosis in deoxynivalenol cytotoxicity. Food and Chemical Toxicology. Vol. 50, P. 1680–1689. | es_CO |
dc.relation.references | Nagy, C.M., Fejer, S.N., Berek, L., Molnar, J., Viskolcz, B. (2005.) Hydrogen bondings in deoxynivalenol (DON) conformations – a density functional study. J. Mol. Struct. Vol. 726, P. 55–59. | es_CO |
dc.relation.references | Neme, K., y Mohammed, A. (2017). Mycotoxin occurrence in grains and the role of postharvest management as a mitigation strategies. A review. Food Control. Vol 78; p. 412-425. | es_CO |
dc.relation.references | Nesic K, Milicevic D, Nesic V, Ivanovic S. (2015). Mycotoxins as one of the foodborne risks most susceptible to climatic change. Procedia Food Sci, Vol. 5, p. 207-210. | es_CO |
dc.relation.references | Nguyen, P., Strub, C., Fontana, A., y Schorr-Galindo S. (2017). Crop molds and mycotoxins: Alternative management using biocontrol. Biological Control. Vol. 104, P. 10-27. | es_CO |
dc.relation.references | Nielsen C, Lippke H, Didier A, Dietrich R, Martlbauer E. (2009). Potential of deoxynivalenol to induce transcription factors in human hepatomacells. Mol. Nutr. Food Res. Vol. 53: p. 479–491. | es_CO |
dc.relation.references | Nogueira, A., Keen, J., Wild, C., Findlay, J. (2011). An analysis of the phosphoproteome of immune cell lines exposed to the immunomodulatory mycotoxin deoxynivalenol. Biochimica et Biophysica Acta Vol. 1814. P. 850–857 | es_CO |
dc.relation.references | Núñez, F., Lara, M.S., Peromingo, B., Delgado, J., Sanchez-Montero, L., Andrade, M.J. (2015). Selection and evaluation of Debaryomyces hansenii isolates as potential bioprotective agents against toxigenic penicillia in dryfermented sausages. Food Microbiol. Vol. 46, p. 114-120. | es_CO |
dc.relation.references | Ok, H., Kim, D., Kim, D., Chung, S., Chung, M., Park, K. (2014). Mycobiota and natural occurrence of aflatoxin, deoxynivalenol, nivalenol and zearalenonein rice freshly harvested in South Korea. Food Control, Vol. 37, p. 284-291. | es_CO |
dc.relation.references | Ok, H., Lee, S., y Chun S. (2018). Occurrence and simultaneous determination of nivalenol and deoxynivalenol in rice and bran by HPLC-UV detection and immunoaffinity cleanup. Food Control Vol. 87, p. 53-59 | es_CO |
dc.relation.references | Okeke, C., Ezekiel, C., Sulyok, M., Ogunremi, O., Ezeamagu, C., Sarkanj, B., Warth, B., y Krska, R. (2018). Traditional processing impacts mycotoxin levels and nutritional value of ogi – a maizebased complementary food. Food Control. Vol. 86, P. 224-233. | es_CO |
dc.relation.references | Berridge, M., Herst, P., Tan, A. (2005). Tetrazolium dyes as tools in cell biology: New insights into their cellular reduction. In: El-Gewely MR (ed) Biotechnology annual review, vol 11. Elsevier, p 127–152. | es_CO |
dc.relation.references | Oliveira, CAF., Corassin, CH., Corrêa, B., Oswald, IP. (2014b). Animal Health: Mycotoxins. En Van Alfen (Ed.). Encyclopedia of Agriculture and Food Systems. Elsevier. USA. | es_CO |
dc.relation.references | Oliveira, P., Zannini, E., y Arendt, E. (2014a). Cereal fungal infection, mycotoxins, and lactic acid bacteria mediated bioprotection: from crop farming to cereal products. Food Microbiology. doi: 10.1016/j.fm.2013.06.003. | es_CO |
dc.relation.references | Orrenius, S., Nicotera, P., Zhivotovsky, B. (2011). Cell death mechanisms and their implications in toxicology, Toxicol Sci, Vol. 119, p. 3-19. | es_CO |
dc.relation.references | Ortiz, J., Camp, J., Mestdagh, F., Donoso, S., Meulenaer, B. (2013). Mycotoxin co- occurrence in rice, oat flakes and wheat noodles used as staple foods in Ecuador. Food Additives & Contaminants: Part A. Vol. 30:12, p. 2165-2176. | es_CO |
dc.relation.references | Pacin, A., Gonzáles, H., Etcheverry, M., Resnik, S., Vivas, L., Espin, S. (2002). Fungi associated with food and feed commodities from Ecuador. Mycopathologia, Vol. 156, p. 87-92. | es_CO |
dc.relation.references | Palacios-Prü, E., Mendoza-Briceño, R. (1972). An unusual relationship between glial cells and neuronal dendrites in olfactory bulbs of Desmodus rotundus. Brain Res Vol. 36, p. 404-408. | es_CO |
dc.relation.references | Pallepati, P., y Averill, D. (2012). Reactive Oxygen Species, Cell Death Signaling and Apoptosis, in: K. Pantopoulos, H. Schipper (Eds.) Princ Free Rad Biomed, Nova Science Publishers, Inc., Place Published, p. 513-546. | es_CO |
dc.relation.references | Pan, X., Whitten, D., Wilkerson C., Pestka, J. (2013). Dynamic changes in ribosomeassociated proteome and phosphoproteome during deoxynivalenol-induced translation inhibition and ribotoxic stress. Toxicol. Sci. Vol. 138, p. 217-233. | es_CO |
dc.relation.references | Patriarca, A., y Fernández, V. (2017). Prevalence of mycotoxins in foods and decontamination. Current Opinion in Food Science. Vol, 14, p.50–60. | es_CO |
dc.relation.references | Payros, D., Alassane‐Kpembi, I., Pierron, A., Loiseau, N., Pinton, P., Oswald, I. (2016). Toxicology of deoxynivalenol and its acetylated and modified forms. Archives of Toxicology. Vol. 90, p. 2931–2957 | es_CO |
dc.relation.references | Bethke, N., Conard, C., Fosdick, L., Fox, E., Grunig, D., Kirkvold, S., Ladhe, A., Leland, J., Lewis, J., Peters, E. (2014). Method and apparatus for reducing aflatoxin– contaminated corn. US Patent Publication No. 8919569 B2. | es_CO |
dc.relation.references | Payros, D., Dobrindt, U., Martin, P., Secher, T., Bracarense, A.P.F.L., Boury, M., Laffitte, J., Pinton, P., Oswald, E., Oswald, I.P. (2017). The food contaminant deoxynivalenol exacerbates the genotoxicity of gut microbiota. Vol. 8, P. 7–17. | es_CO |
dc.relation.references | Peng, W., Marchal, M., y van der Poel, A. (2018). Strategies to prevent and reduce mycotoxins for compound feed manufacturing. Animal Feed Science and Technology, Vol. 237, p. 129–153. | es_CO |
dc.relation.references | Peng, Z., Chen, L., Nüssler, A.K., Liu, L., Yang, W., (2016). Current sights for mechanisms of deoxynivalenol-induced hepatotoxicity and prospective views for future scientific research: a mini review. J. Appl. Toxicol. Vol. 37, p. 518–529. | es_CO |
dc.relation.references | Pereira, V. L., Fernandes, J. O. & Cunha, S. C. (2014). Mycotoxins in cereals and related foodstuffs: A review on occurrence and recent methods of analysis. Trends in food science and technology, Vol. 36, p. 96–136. | es_CO |
dc.relation.references | Perilla, N., & Diaz, G. (1998). Incidence and levels of fumonisin contamination in Colombian corn and corn products. Mycotoxin Research, Vol. 14(2), p. 74–82. | es_CO |
dc.relation.references | Pestka, J. (2007) Deoxynivalenol: toxicity, mechanisms and animal health risks. Anim Feed Sci Technol Vol. 137, p. 283–298. doi:10.1016/j.anifeedsci.2007.06.006 | es_CO |
dc.relation.references | Pestka, J. (2008) Mechanisms of deoxynivalenol-induced gene expression and apoptosis. Food Addit Contam Vol. 25, p. 1128–1140. doi:10.1080/02652030802056626 | es_CO |
dc.relation.references | Pestka, J. (2010). Deoxynivalenol-induced proinflammatory gene expression: mechanisms and pathological sequelae. Toxins (Basel) Vol. 2, p. 1300–17 | es_CO |
dc.relation.references | Pestka, J. (2010). Toxicological mechanisms and potential health effects of deoxynivalenol and nivalenol. World Mycotoxin J. Vol. 3, P. 323–47 | es_CO |
dc.relation.references | Pestka, J., y Smolinski, A. (2005). Deoxynivalenol: toxicology and potential effects on humans. J. Toxicol. Environ. Health B. Crit. Rev. Vol. 8, p. 39–69. | es_CO |
dc.relation.references | Bhullar, N., y Gruissem, W. (2013). Nutritional enhancement of rice for human health: The contribution of biotechnology. Biotechnology Advances. Vol. 31(1), p. 50–57. | es_CO |
dc.relation.references | Pestka, J., Zhou, H., Moon, Y., Chung, Y. (2004). Cellular and molecular mechanism for immune modulation by deoxynivalenol and others trichothecenes: unraveling a paradox. Toxicol. Lett. Vol. 153, p. 61–73. | es_CO |
dc.relation.references | Pfliegler, WP., Pusztahelyi, T., Pócsi, I. (2015). Mycotoxins-prevention and decontamination by yeasts. J Basic Microbiol, Vol. 55, p. 805-818. | es_CO |
dc.relation.references | Pfliegler, WP., Pusztahelyi, T., Pócsi, I. (2015). Mycotoxins-prevention and decontamination by yeasts. J Basic Microbiol, Vol. 55, p. 805-818. | es_CO |
dc.relation.references | Pierron A, Mimoun S, Murate LS et al (2016a) Intestinal toxicity of the masked mycotoxin deoxynivalenol-3-beta-d-glucoside. Arch Toxicol Vol. 90. P. 2037–2046. doi:10.1007/s00204-015-1592-8 | es_CO |
dc.relation.references | Pierron A, Mimoun S, Murate LS et al (2016b) Microbial biotransformation of DON: molecular basis for reduced toxicity. Sci Rep Vol. 6, p. 29105. doi:10.1038/srep29105 | es_CO |
dc.relation.references | Pinton, P. y Oswald, I. (2014). Effect of Deoxynivalenol and Other Type B Trichothecenes on the Intestine: A Review. Toxins, Vol. 6, P. 1615-1643. | es_CO |
dc.relation.references | Pistritto, G., Trisciuoglio, D., Ceci, C., Garufi, A., & D’Orazi, G. (2016). Apoptosis as anticancer mechanism: function and dysfunction of its modulators and targeted therapeutic strategies. Aging, Vol. 8(4), p. 603–619. | es_CO |
dc.relation.references | Pitt, J.I., (2000). Toxigenic fungi and mycotoxins. Br. Med. Bull. 56, 184–192. | es_CO |
dc.relation.references | Präbst, K., Engelhardt, H., Ringgeler, S., Hübner, H. (2017). Basic Colorimetric Proliferation Assays: MTT, WST, and Resazurin. En Gilbert, D., Friedrich, O. (Ed.). Cell Viability Assays. Methods and Protocols. Germany. Humana Press. | es_CO |
dc.relation.references | Prado, R. (2018). Revisión sobre las aflatoxinas en Avicultura. Universidad De Ciencias Aplicadas y Ambientales U.D.C.A. Bogotá. | es_CO |
dc.relation.references | Bin-Umer, M., McLaughlin, J., Butterly, M., McCormick, S., Tumer, N. (2014). Elimination of damaged mitocondria through mitophagy reduces mitochondrial oxidative stress and increases tolerance to trichothecenes. Proc Natl Acad Sci USA. Vol. 111, p. 11798-11803. | es_CO |
dc.relation.references | Radko, L., Tkaczyk, A., Jedziniak, P., Trebas, S., Posyniak, A. (2018). Toxicity and metabolism of deoxynivalenol in human hepatoma (HepG2) cell line. Toxicology Letters Vol. 295, p. S146-S147 | es_CO |
dc.relation.references | Ramírez S. Determinación de la aflatoxina b1 (af21) en algunos alimentos listos para el consumo por medio de la técnica diba competitiva indirecta. Alimentos Hoy. Vol. 8, p. 4-8. | es_CO |
dc.relation.references | Ran, R., Zhang, W., Cui, B., Xu, Y., Han, Z., Wu, A. and Shi, J. (2013). A simple and rapid method for the determination of deoxynivalenol in human cells by UPLC-TOF-MS. Analytical Methods Vol. 5, p. 5637-5643. | es_CO |
dc.relation.references | Ray, S., Yang, N., Pandey, S., Bello, N., Gray, J. (2019). Apoptosis. Reference Module in Biomedical Sciences. doi:10.1016/b978-0-12-801238-3.62145-1 | es_CO |
dc.relation.references | Reddy, K., Salleh, B., Saad, B., Abbas, HK., Abel, CA., Shier, WT. (2010). An overview of mycotoxin contamination in foods and its implications for human health. Toxin Rev, Vol. 29, p. 3-26. | es_CO |
dc.relation.references | Reddy, K., Saritha, P., Reddy, C., y Muralidharan, K. (2009). Aflatoxin B1 producing potential of Aspergillus flavus strains isolated from stored rice grains. African Journal of Biotechnology, Vol. 8, p. 3303-3308. | es_CO |
dc.relation.references | Redza, M., y Averill, D. (2016). Activation of apoptosis signalling pathways by reactive oxygen species. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, Vol. 1863(12), p. 2977–2992. | es_CO |
dc.relation.references | Reed, J.C., (2006). Proapoptotic multidomain Bcl-2/Bax-family proteins: mechanisms, physiological roles, and therapeutic opportunities. Cell Death Differ. Vol. 13, p. 1378– 1386. | es_CO |
dc.relation.references | Reynolds, E. (1965). The use of lead citrate at high pH as an electrón-opaque satín in electrón microscopy. J Cell Biol Vol. 17, p. 208-212. | es_CO |
dc.relation.references | Rocha O., Ansari K. y Doohan F. (2005): Effects of trichothecene mycotoxins on eukaryotic cells: A review, Food Additives and Contaminants, Vol. 22:4, p. 369-378 | es_CO |
dc.relation.references | Bodea, G., Munteanu, M., Dinu, D., Serban, A., Roming, F., Costache, M., Dinischiotu, A., (2009). Influence of deoxynivalenol on the oxidative status of HepG2 cells. Romanian Biotechnol. Lett. Vol. 14, p. 4349–4359. | es_CO |
dc.relation.references | Rocha, M.E.B. da, Freire, F. da C.O., Maia, F.E.F., Guedes, M.I.F., Rondina, D. (2014). Mycotoxins and their effects on human and animal health. Food Control Vol. 36, p. 159–165. | es_CO |
dc.relation.references | Rojas, L., y Wilches, A. (2012). C oexistencia de afl atoxinas, zearalenona y deoxinivalenol en alimentos de consumo infantil. Ciencia y Tecnología Alimentaria. Vol. 10., P. 73- 79. | es_CO |
dc.relation.references | Santos da Silva I., Paim A., y Silva M. (2018). Composition and estimate of daily mineral intake from samples of Brazilian rice. Microchemical Journal Vol. 137; p. 131–138. | es_CO |
dc.relation.references | Sarroco, S., y Vannacci, G. (2018). Preharvest application of beneficial fungi as a strategy | es_CO |
dc.relation.references | Savi, G. D., Piacentini, K. C., Rocha, L. O., Carnielli-Queiroz, L., Furtado, B. G., Scussel, R., … Angioletto, E. (2018). Incidence of toxigenic fungi and zearalenone in rice grains from Brazil. International Journal of Food Microbiology, Vol. 270, p 5–13. | es_CO |
dc.relation.references | Schenzel, J., Hungerbuhler, K., Bucheli, T.D., (2012). Mycotoxins in the environ-ment: II. Occurrence and origin in Swiss river waters. Environ. Sci. Technol. Vol. 46, p. 13076–13084. | es_CO |
dc.relation.references | Schmeits, P., Katika, M., Peijnenburg, A., van Loveren, H., Hendriksen, P. (2014). DON shares a similar mode of action as the ribotoxic stress inducer anisomycin while TBTO shares ER stress patterns with the ER stress inducer thapsigargin based on comparative gene expression profiling in Jurkat T cells. Toxicol. Lett. Vol. 224, P. 395–406. | es_CO |
dc.relation.references | Schönthal, A. (2012). Endoplasmic Reticulum Stress: Its Role in Disease and Novel Prospects for Therapy. Scientifica. Vol. 2012, pag. 26. | es_CO |
dc.relation.references | Serrano-Coll, H. y Cardona-Castro, N. (2015). Micotoxicosis y micotoxinas: generalidades y aspectos básicos. Rev CES Med. Vol. 29. P. 143-152. | es_CO |
dc.relation.references | Shalini, S., Dorstyn, L., Dawar, S., Kumar, S. (2015). Old, new and emerging functions of caspases. Cell Death Diff, Vol. 22, p. 526‐39. | es_CO |
dc.relation.references | Bony, S., Carcelen, M., Olivier, L., Devaux, A., (2006). Genotoxicity assessment of deoxynivalenol in the Caco-2 cell line model using the comet assay. Toxicol. Lett. Vol. 166, p. 67–76. | es_CO |
dc.relation.references | Sharif, M. K., Butt, M. S., Anjum, F. M., y Khan, S. H. (2014). Rice bran: A novel functional ingredient. Critical Reviews in Food Science and Nutrition, 54(6). | es_CO |
dc.relation.references | Sherrington, S., Kumwenda, P., Kousser, C. y Hall, R. (2018). Advances in Applied Microbiology, Vol. 102, p. 159-221. | es_CO |
dc.relation.references | Shi, Y., Porter, K., Parameswaran, N., Bae, H., Pestka, J. (2009). Role of GRP78/BiP Degradation and ER Stress in deoxynivalenolinduced interleukin-6 upregulation in the macrophage. Toxicol Sci. Vol. 110, Pag. 249–250. | es_CO |
dc.relation.references | Shraim A. (2017). Rice is a potential dietary source of not only arsenic but also other toxic elements like lead and chromium. Arabian Journal of Chemistry. Vol. 10, p. S3434– S344. | es_CO |
dc.relation.references | Singh J., Kaur L., y Ogawa Y. (2016). Importance of chemistry, nutrition and technology in rice processing. Food Chemistry Vol. 191; 1. | es_CO |
dc.relation.references | Singh, S., Banerjee, S., Chattopadhyay, P., Borthakur, S., Veer, V. (2015). Deoxynivalenol induces cytotoxicity and genotoxicity in animal primary cell culture. Toxicol. Mech. Methods. Vol. 25, p. 184-191. | es_CO |
dc.relation.references | Slobodchikova, I., y Vuckovic, D. (2018). Liquid Chromatography – High Resolution Mass Spectrometry Method for Monitoring of 17 Mycotoxins in Human Plasma for Exposure Studies. Journal of Chromatography A. Vol. 1548, p. 51-63. | es_CO |
dc.relation.references | Smith MC., Madec, S., Coton, E., Hymery, N. (2016). Natural Co-Occurrence of Mycotoxins in Foods and Feeds and Their in vitro Combined Toxicological Effects. Toxins, 8, 94; doi:10.3390/toxins8040094 | es_CO |
dc.relation.references | Smith, M.C., Gheux, A., Coton M., Madec, S., Hymery, N., y Coton, E. (2018). In vitro co- culture models to evaluate acute cytotoxicity of individual and combined mycotoxin exposures on Caco-2, THP-1 and HepaRG human cell lines. Chemico-Biological Interactions Vol. 281, P. 51-59. | es_CO |
dc.relation.references | Smith, M.C., Hymery, N., Troadec, S., Pawtowski, A., Coton, E., y Madec, S. (2017). Hepatotoxicity of fusariotoxins, alone and in combination, towards the HepaRG human hepatocyte cell line. Food and Chemical Toxicology. Vol. 109, P. 439-451 | es_CO |
dc.relation.references | Braicu, C., Berindan-Neagoe, I., Tudoran, O., Balacescu, O., Rugina, D., Gherman, C., Socaciu, C., Irimie, Al., 2009. In vitro evaluation of the chemoprotective action of flavan-3-ols against deoxynivalenol related toxicity. Arch. Zootechn. Vol. 3, p. 45– 55. | es_CO |
dc.relation.references | Sobral, M., Faria, M., Cunha, S., Ferreira, I. Toxicological interactions between mycotoxins from ubiquitous fungi: Impact on hepatic and intestinal human epithelial cells. Chemosphere. Vol. 202, p.538-548. | es_CO |
dc.relation.references | Sobrova, P., Adam, V., Vasatkova, A., Beklova, M., Zeman, L., Kizek, R. (2010) Deoxynivalenol and its toxicity, Interdiscip. Toxicol. Vol. 3, P. 94–99. | es_CO |
dc.relation.references | Stepanenko y Dmitrenko, V. (2015). Pitfalls of the MTT assay: Direct and off-target effects of inhibitors can result in over/underestimation of cell viability. Gene. Vol. 574, Issue 2, P. 193-203. | es_CO |
dc.relation.references | Stephanou, S., and Latchman, D. S. (2005). Opposing actions of STAT-1 and STAT-3. Growth Factors Vol. 23, p. 177–182. | es_CO |
dc.relation.references | Stockert JC, Blázquez-Castro A, Cañete M, Horobin RW, Villanueva A. (2012). MTT. Análisis de viabilidad celular: la localización intracelular del producto de formazán se encuentra en gotitas de lípidos. Acta Histochem.Vol. 114, p. 785–796. | es_CO |
dc.relation.references | Sugiyama, K., Kinoshita, M., Kamata, Y., Minai, Y., Tani, F., & Sugita-Konishi, Y. (2012). Thioredoxin-1 contributes to protection against DON-induced oxidative damage in HepG2 cells. Mycotoxin Research, Vol. 28(3), p. 163–168 | es_CO |
dc.relation.references | Summerell, B. y Leslie, J. (2011). Fifty years of Fusarium: how could nine species have ever been enough? Fungal Divers. Vol. 50, p. 135–144. | es_CO |
dc.relation.references | Sun, X., Zhang, X., Wang, H., Cao, W., Yan, X., Zuo, L., Wang, J., Wang, F., (2002). Effects of sterigmatocystin, deoxynivalenol and aflatoxin G1 on apoptosis of human peripheral blood lymphocytes in vitro. Biomed. Environ. Sci. Vol. 15, p. 145–152. | es_CO |
dc.relation.references | Tala, M., y Kebede, B. (2016). Occurrence, importance and control of mycotoxins: A review. Cogent Food & Agriculture. Vol.2. | es_CO |
dc.relation.references | Tanaka, K., Sago, Y., Zheng, Y., Nakagawa, H., & Kushiro, H. (2007). Mycotoxins in rice. International Journal of Food Microbiology, Vol. 119, p. 59-66. | es_CO |
dc.relation.references | Brase, S., Encinas, A., Keck, J., Nising, C. (2009). Chemistry and biology of mycotoxins and related fungal metabolites. Chem. Rev. Vol. 109, p. 3903–4399. | es_CO |
dc.relation.references | Taroncher, M., Tolosa, J., Prosperini, A., & Ruiz, M.-J. (2018). In silico and in vitro prediction of the toxicological effects of individual and combined mycotoxins. Food and Chemical Toxicology. Vol. 122, p. 194-202. | es_CO |
dc.relation.references | Taylor, R., Cullen, S., Martin, S. (2008). Apoptosis: controlled demolition at the celular level. Nat. Rev. Mol. Cell Biol. Vol. 9, p. 231–241. | es_CO |
dc.relation.references | Terzi, V., Tumino, G., Stanca, M., Morcia, C. (2014). Reducing the incidence of cereal head infection and mycotoxins in small grain cereal species. Journal of Cereal Science. Vol. 59, p. 284-293. | es_CO |
dc.relation.references | to prevent postharvest mycotoxin contamination: A review. Crop Protection. | es_CO |
dc.relation.references | Tolosa, L., Donato, M., y Gómez-Lechón, J. (2015). General Cytotoxicity Assessment by Means of the MTT Assay. En Vinken, M., y Rogiers, V. (Ed). Protocols in In Vitro Hepatocyte Research. Bruselas, Bélgica. Springer Science, Business Media. | es_CO |
dc.relation.references | Trung, T. (2008). Mycotoxins in maize in Vietnam. World mycotoxin Journal, vol. 1, p. 87- 94. | es_CO |
dc.relation.references | Turner, N., Bramhmbhatt, H., Szabo, M., Poma, A., Coker, R., Piletsky, S.A. (2015). Analytical methods for determination of mycotoxins: An update (2009-2014). Anal. Chim. Acta. Vol. 901, p. 12-33. | es_CO |
dc.relation.references | Turner, P.C., Rothwell, J.A., White, K.L.M., Gong, Y.Y., Cade, J.E., Wild, C.P., (2008). Urinary deoxynivalenol is correlated with cereal intake in individuals from the United Kingdom. Environ. Health Perspect. Vol. 116, p. 21–25. | es_CO |
dc.relation.references | Udomkun, P., Wiredu, A.N., Nagle, M., Bandyopadhyay, R., Müller, J., Vanlauwe, B. (2017). Mycotoxins in Sub-Saharan Africa: Present situation, socio-economic impact, awareness, and outlook. Food Control. Vol. 72, p. 110-122. | es_CO |
dc.relation.references | USDA. (2015). Grain: World Markets and Trade. United States Department of Agriculture, Foreign Agricultural Service, Washington, DC. | es_CO |
dc.relation.references | Broom, L. (2015). Mycotoxins and the intestine. Animal Nutrition. Vol. 1, p. 262-265. | es_CO |
dc.relation.references | Van Egmond, H. P., Schothorst, R. C., & Jonker, M. A. (2007). Regulations relating to mycotoxins in food: Perspectives in a global and European context. Analytical and Bioanalytical Chemistry, 389, 147–157. | es_CO |
dc.relation.references | Van Meerloo J, Kaspers GJ, Cloos J. (2011). Ensayos de sensibilidad celular: el ensayo MTT. Métodos Mol. Biol. Vol. 731: p. 237–245. | es_CO |
dc.relation.references | Vinken, M., and Rogiers, V. (eds.). (2015). Protocols in In Vitro Hepatocyte Research, Methods in Molecular Biology, vol. 1250, DOI 10.1007/978-1-4939-2074-7_5, © Springer Science+Business Media New York. | es_CO |
dc.relation.references | Vinken, M., y Blaauboer, B. (2017). In vitro testing of basal cytotoxicity: establishment of an adverse outcome pathway from chemical insult to cell death. Toxicol In Vitro. Vol. 39, P. 104–110. | es_CO |
dc.relation.references | Walle, J.V.D., During, A., Piront, N., Toussaint, O., Schneider, Y.J., Larondelle, Y. (2010). Physio-pathological parameters affect the activation of inflammatory pathways by deoxynivalenol in Caco-2 cells. Toxicol. In Vitro. Vol. 24, p. 1890–1898 | es_CO |
dc.relation.references | Wang, X., Liu, Q., Ihsan, A., Huang, L., Dai, Menghong, Hao, H., Cheng, G., Liu, Z., Wang, Y., Yuan, Z. (2012). JAK/STAT Pathway Plays a Critical Role in the Proinflammatory Gene Expression and Apoptosis of RAW264.7 Cells Induced by Trichothecenes as DON and T-2 Toxin. Toxicological Sciences. Vol. 127(2), p. 412– 424. | es_CO |
dc.relation.references | Wang, X., Liu, Q., Ihsan, A., Huang, L., Dai, Menghong, Hao, H., Cheng, G., Liu, Z., Wang, Y., Yuan, Z. (2012). JAK/STAT Pathway Plays a Critical Role in the Proinflammatory Gene Expression and Apoptosis of RAW264.7 Cells Induced by Trichothecenes as DON and T-2 Toxin. Toxicological Sciences. Vol. 127(2), p. 412– 424. | es_CO |
dc.relation.references | Wang, X., Xu, W., Fan, M., Meng, T., Chen, X., Jiang, Y., Zhu D., Hu, W., Gong, J., Feng, S., Wu, J., Li, Y. (2016). Deoxynivalenol induces apoptosis in PC12 cells via the mitochondrial pathway. Environmental Toxicology and Pharmacology. Vol. 3, P. 193-202 | es_CO |
dc.relation.references | Wang, Z., Wu., Q., Kuca, K., Dohnal, V., Tian, Z. (2014). Deoxynivalenol: signaling pathways and human exposure risk assessment—an update. Arch Toxicol. Vol. 88, p. 915–1928. | es_CO |
dc.relation.references | Warth, B., Sulyoka, M., Fruhmann, P., Berthiller, F., Schuhmacher, R., Hametner C., Adamc, G., Fröhlich, J., Krska R. (2012). Assessment of human deoxynivalenol exposure using an LC–MS/MS based biomarker method. Toxicology Letters. Vol. 211 P. 85– 90. | es_CO |
dc.relation.references | Bryden, W. (2009). Mycotoxins and mycotoxicoses: Significance, occurrence and and mitigation in the food chain. | es_CO |
dc.relation.references | Watson, M.L. (1958). Staining of tissue sections for electron microscopy with heavy metals. J Biophys Biochem Cytol 4: 475-478. | es_CO |
dc.relation.references | Wentzel, J., Lombard, M., Du Plessis, L., Zandberg, L. (2016). Evaluation of the cytotoxic properties, gene expression profiles and secondary signalling responses of cultured cells exposed to fumonisin B1, deoxynivalenol and zearalenone mycotoxins. Archives of Toxicology, Vol. 91(5), p. 2265–2282. | es_CO |
dc.relation.references | Wild, C., Miller, J. D., & Groopman, J. D. (2015). Mycotoxin control in low-and middleincome countries. IARC Working Group Report. | es_CO |
dc.relation.references | Wu, F., Groopman, F., Pestka1, J. (2014). Public Health Impacts of Foodborne Mycotoxins. Annu. Rev. Food Sci. Technol. Vol. 5, P. 351–72. | es_CO |
dc.relation.references | Wu, Q., Wang, X., Nepovimova, E., Wang, Y., Yang., Li, L., Zhang, X., Kuca, K. (2017). Antioxidant agents against trichothecenes: new hints for oxidative stress treatment. Oncotarget, Vol. 8, (No. 66), p. 110708-110726. | es_CO |
dc.relation.references | Wu, Q., Wang, X., Yang, W., Nüssler, A., Xiong, L., Kuca, K., Dohnal, V., Zhang, X., Yuan, Z. (2014b). Oxidative stress‐mediated cytotoxicity and metabolism of T‐2 toxin and deoxynivalenol in animals and humans: an update. Arch Toxicol. Vol. 88(7), p. 1309– 1326. | es_CO |
dc.relation.references | Xu, X., Lai, Y., Hua, Z. (2019). Apoptosis and apoptotic body: disease message and therapeutic target potentials. Bioscience Reports, Vol. 39(1). doi: 10.1042/BSR20180992 | es_CO |
dc.relation.references | Yang, J., Wang, J., Guo W., Ling, A., Luo, A., Liu, D., Yang, X., Zhao, Z. (2019). Toxic effects and possible mechanisms of deoxynivalenol exposure on sperm and testicular damages in BALB/c mice. J. Agric. Food Chem. DOI: 10.1021/acs.jafc.8b04783 | es_CO |
dc.relation.references | Yang, L., Zhang, J., Zhao, G., Wu, C., Ning, Y., Guo, X., Wang, X., Lammi, M. (2017). Gene expression profiles and molecular mechanism of cultured human chondrocytes exposure to T-2 toxin and deoxynivalenol. Toxicon. Vol 140, P. 38-44 | es_CO |
dc.relation.references | Yang, S., Mao, Y., Zhang, H., Xu, Y., An, J., Huang, Z. (2019). The chemical biology of apoptosis: Revisited after 17 years. European Journal of Medicinal Chemistry. Vol. 177, p. 63-75. | es_CO |
dc.relation.references | Bryden, W. (2012). Mycotoxin contamination of the feed supply chain: Implications for animal productivity and feed security. Animal Feed Science and Technology. Vol. 173, p.134– 158. | es_CO |
dc.relation.references | Yang, S., Wang, Y., Beier, R.C., Zhang, H., De Ruyck, K., Sun, F., Cao, X., Shen, J., Zhang, S., Wang, Z., (2015). Simultaneous determination of type A and B trichothecenes and their main metabolites in food animal tissues by ultraperformance liquid chromatography coupled with triple-quadrupole mass spectrometry. J. Agric. Food Chem. Vol. 63, p. 8592-8600. | es_CO |
dc.relation.references | Yang, W., Yu, M., Fu, J., Bao, W., Wang, D., Hao, L., Yao, P., Nüssler, A., Yan, H., Liu, L. (2014). Deoxynivalenol induced oxidative stress and genotoxicity in human peripheral blood lymphocytes. Food and Chemical Toxicology Vol. 64, P. 383–396. | es_CO |
dc.relation.references | Yu, M., Wei, Z.-Y., Xu, Z.-H., Pan, J.-Q., & Chen, J.-H. (2018). Oxidative Damage and Nrf2 Translocation Induced by Toxicities of Deoxynivalenol on the Placental and Embryo on Gestation Day 12.5 d and 18.5 d. Toxins, Vol. 10(9), p. 370. | es_CO |
dc.relation.references | Yuan, L., Mu, P., Huang, B., Li, H., Mu, H., Deng, Y. (2018). EGR1 is essential for deoxynivalenol-induced G2/M cell cycle arrest in HepG2 cells via the ATF3ΔZip2a/2b-EGR1-p21 pathway. Toxicology Letters. Vol. 299, p. 95–103. | es_CO |
dc.relation.references | Zain, M. E. (2011). Impact of mycotoxins on humans and animals. Journal of Saudi Chemical Society, Vol. 15(2), p. 129-144. https://doi.org/10.1016/j.jscs.2010.06.006. | es_CO |
dc.relation.references | Zhang, L., Pan, Z., Shen, K., Cai, X., Zheng, B., y Miao, S. (2018). Influence of ultrasound- assisted alkali treatment on the structural properties and functionalities of rice protein. Journal of Cereal Science Vol. 79; p. 204-209. | es_CO |
dc.relation.references | Zhang, L., Zhao, X., Jiang, X., (2015). Sevoflurane Post-conditioning Protects Primary Rat Cortical Neurons Against Oxygen-Glucose Deprivation/Resuscitation: Roles of Extracellular Signal-Regulated Kinase 1/2 and Bid, Bim, Puma. Neurochem. Res. Vol. 40, Pág. 1609-1619. | es_CO |
dc.relation.references | Zhang, X., Jiang, L., Geng, C., Cao, J., y Zhong, L. (2009). The role of oxidative stress in deoxynivalenol-induced DNA damage in HepG2 cells. Toxicon. Vol. 54, P. 513–518 | es_CO |
dc.relation.references | Zhao, Y., Wang, Q., Huang, J., Chen, Z., Liu, S., Wang, X., & Wang, F. (2019). Mycotoxin contamination and presence of mycobiota in rice sold for human consumption in China. Food Control, Vol. 98, p. 19–23. | es_CO |
dc.relation.references | Zhou, H., George, S., Hay, C., Lee, J., Qian, H., Sun, X. (2017). Individual and combined effects of Aflatoxin B1, Deoxynivalenol and Zearalenone on HepG2 and RAW 264.7 cell lines, Food and Chemical Toxicology. Vol. 103, P. 18-27. | es_CO |
dc.relation.references | Cano, G., González-Arias C.A., Ramos A.J., Sanchis V., Fernández-Cruz, M.L. (2015). Cytotoxicity of the mycotoxins deoxynivalenol and ochratoxin A on Caco-2 cell line in presence of resveratrol. Toxicology in Vitro. Vol. 29, p. 1639–1646. | es_CO |
dc.relation.references | Zigler R.S. (2017). Rice. Encyclopedia of Applied Plant Sciences, 2nd edition, Volume 3. | es_CO |
dc.relation.references | Cargnello, M., y Roux, P. (2011). Activation and Function of the MAPKs and Their Substrates, the MAPK-Activated Protein Kinases. Microbiology and Molecular Biology Reviews. Vol. 75, No. 1, p. 50–83. | es_CO |
dc.relation.references | Castaño, J. (1998). Etiología del manchado de grano en arroz de secano en Colombia e Indonesia. Fitopatología. Vol. 12. | es_CO |
dc.relation.references | Casteel, M., Nielsen, C., Kothlow, S., Dietrich, R., & Märtlbauer, E. (2010). Impact of DUSP1 on the apoptotic potential of deoxynivalenol in the epithelial cell line HepG2. Toxicology Letters, Vol. 199(1), p. 43–50. | es_CO |
dc.relation.references | Castilla, Y., Mercado, I., Mendoza, V., Monroy, M. (2011). Determinación y cuantificación de los niveles de aflatoxinas en bollos de mazorca producidos en Arjona (Departamento de Bolívar- Colombia). AVANCES Investigación en ingeneria. Vol. 8(1), p. 71-6. | es_CO |
dc.relation.references | Cetin, Y., y Bullerman, L. (2005). Cytotoxicity of Fusarium mycotoxins to mammalian cell cultures as determined by the MTT bioassay. Bullerman. Food and Chemical Toxicology. Vol. 43, p. 755–764. | es_CO |
dc.relation.references | Champagne, E., Wood, D., Juliano, B., y Bechtel, D. (2004). The rice grain and its gross composition, In: Champagne, E.T. (Ed.), Rice: Chemistry and Technology. 3rd ed. American Association of Cereal Chemists, St. Paul, MN, pp. 77–107. | es_CO |
dc.relation.references | Channaiah, L., & Maier, D. E. (2014). Best stored maize management practices for the prevention of mycotoxin contamination. Mycotoxin Reduction in Grain Chains, p. 78–88. doi: 10.1002/9781118832790.ch6 | es_CO |
dc.relation.references | Chaudari, N., Talwar, P., Parimisetty, A., d´Hellencourt, C., Ravanan, P. (2014). A molecular web: endoplasmic reticulum stress, inflammation, and oxidative stress. Frontiers in Cellular Neuroscience, Vol. 8. doi:10.3389/fncel.2014.00213 | es_CO |
dc.relation.references | Cheng, Y, y Yang, J. (2011). Survival and death of endoplasmic-reticulum-stressed cells: role of autophagy. WorldJ Biol Chem. Vol. 2, p. 226–231. | es_CO |
dc.relation.references | Chicagui, J., y Echeverría, E. (2015). Estado de la investigación a nivel mundial sobre la micotoxina deoxinivalenol (DON) durante los últimos cinco años (2010-2015). UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS. Bogotá. | es_CO |
dc.relation.references | Choi, J., Lee, S., Nah, J., Kim, H., Paek, Ji., Lee, S., Ham., Hong, S., et al. (2018). Species composition of and fumonisin production by the Fusarium fujikuroi species complex isolated from Korean cereals. International Journal of Food Microbiology. Vol 267, p. 62–69. | es_CO |
dc.relation.references | Cole, R., Scheweikert, M., Jarvis, B. (2003). Handbook of Secondary Fungal Metabolites, Vols. I–III. Academic Press, CA, USA | es_CO |
dc.relation.references | Comi, G., e Iacumin, L. (2013). Ecology of moulds during the pre-ripening and ripening of San Daniele dry cured ham. Food Research Int. Vol. 54, p. 1113-1119. | es_CO |
dc.relation.references | Commission of the European Communities, (2006). Commission recommendation of 17 August 2006 on the presence of deoxynivalenol, zearalenone, ochratotin A, T-2 and HT-2 and fumonisins in products intended for animal feeding. Off. J. Eur. Union L Vol. 229, p. 7–9. | es_CO |
dc.relation.references | Costa S, Schwaiger S, Cervellati R, Stuppner H, Speroni E, Guerra MC. (2009). In vitro evaluation of the chemoprotective action mechanisms of leontopodic acid against aflatoxin B1 and deoxynivalenol-induced cell damage. J Appl Toxicol. Vol. 29, p. 7- 14. | es_CO |
dc.relation.references | Costantini, S., Di Bernardo, G., Cammarota, M., Castello, G., Colonna, G. (2013). Gene expression signature of human HepG2 cell line. Gene, Vol. 518(2), p. 335–345. | es_CO |
dc.relation.references | Cuevas, A. (2012). El clima y el cultivo del arroz en Norte de Santander. Revista Arroz. Vol. 60 (497), p. 4-8. | es_CO |
dc.relation.references | DANE – FEDEARROZ. (2017). 4° Censo Nacional Arrocero Año 2016. Actualizado el 10 de febrero de 2017. Recuperado el 14 de septiembre del 2018. Véase en internet: http://www.dane.gov.co/files/investigaciones/agropecuario/censo-nacional- arrocero/boletin-tecnico-4to-censo-nacional-arrocero-2016.pdf | es_CO |
dc.relation.references | DANE. (2017). Encuesta Nacional Agropecuaria ENA-2016. Actualizado el 4 de agosto de 2017. Recuperado el 14 de septiembre del 2018. Véase en internet: https://www.dane.gov.co/files/investigaciones/agropecuario/enda/ena/2016/boletin_ ena_2016.pdf | es_CO |
dc.relation.references | Das, A., Raychaudhuri, U., & Chakraborty, R. (2011). Cereal based functional food of Indian subcontinent: A review. Journal of Food Science and Technology. Vol. 49, p. 665– 672. | es_CO |
dc.relation.references | De Ruyck, K., De Boevre, M., Huybrechts, I. y De Saeger, S. (2015). Dietary mycotoxins, co-exposure, and carcinogenesis in humans: short review. Mutation Research/Reviews in Mutation Research. Vol. 766, p. 32-41. | es_CO |
dc.relation.references | Del Ponte, E., Garda-Buffon, J., Badiale-Furlong, E. (2012). Deoxynivalenol and nivalenol in commercial wheat grain related to Fusarium head blight epidemics in southern Brazil. Food Chemistry. Vol. 132, p. 1087–1091. | es_CO |
dc.relation.references | Deng, C., Ji, C., Qin, W., Cao, X., Zhong, J., Li, Y., Srinivas, S., Feng, Y., Deng, X. (2016). Deoxynivalenol inhibits proliferation and induces apoptosis in humanumbilical vein endothelial cells. Environmental Toxicology and Pharmacology. Vol.43, P. 232–241. | es_CO |
dc.relation.references | Díaz, G., Krska, R., y Sulyok, M. (2015). Mycotoxins and cyanogenic glycosides in staple foods of three indigenous people of the Colombian Amazon. Food Additives & Contaminants: Part B, DOI: 10.1080/19393210.2015.1089948 | es_CO |
dc.relation.references | Díaz, G., Perilla, N., & Rojas, Y. (2001). Occurrence of aflatoxins in selected colombian foods. Mycotoxin Research, 17(1), 15–20. | es_CO |
dc.relation.references | Díaz, G., y Céspedes, A. (1997). Natural occurrence of zeralenone in feeds and feedstuffs used in poultry and pig nutrition in colombia. Mycotoxin Research, Vol. 13(2), p. 81– | es_CO |
dc.relation.references | Dinu, D., Bodea, G., Ceapa, C., Munteanu, M., Roming, F., Serban, A., Hermenean A., Costache, M., Zarnescu, O., y Dinischiotu, A. (2011). Adapted response of the antioxidant defense system to oxidative stress induced by deoxynivalenol in Hek-293 cells. Toxicon, Vol. 57, p. 1023–1032. | es_CO |
dc.relation.references | Döll, S., y Dänicke, S. (2011). The Fusarium toxins deoxynivalenol (DON) and zearalenone (ZON) in animal feeding. Preventive Veterinary Medicine. Vol. 102, P. 132– 145. | es_CO |
dc.relation.references | Donato, M., Tolosa, L., y Gómez. M. (2014). Culture and Functional Characterization of Human Hepatoma HepG2 Cells. Protocols in In Vitro Hepatocyte Research, p. 77– 93. doi:10.1007/978-1-4939-2074-7_5 | es_CO |
dc.relation.references | Dragomir, B., Munteanu, M., Dinu, D., Serban, A., Roming, F., Costache, M., Dinischiotu, A., (2009). Influence of deoxynivalenol on the oxidative status of HepG2 cells. Rom. Biotech. Lett. Vol. 14, p. 4349–4359. | es_CO |
dc.relation.references | Eckhardt, J., Santurio, J., Zanette, R., Rosa, A., Scher, A., Dal Pozzo, M., Alves, S., Ferreiro, L. (2014). Efficacy of a Brazilian calcium montmorillonite against toxic effects of dietary aflatoxins on broilers reared to market weight. Br. Poult. Sci. Vol. 55, p. 215- 220. | es_CO |
dc.relation.references | Edwards, S. G., Dickin, E. T., MacDonald, S., Buttler, D., Hazel, C. M., Patel, S., et al. (2011). Distribution of Fusarium mycotoxins in UK wheat mill fractions. Food Additives and Contaminants, Vol. 28, p. 1694-1704. | es_CO |
dc.relation.references | EFSA. (2004). Opinion of the scientific panel on contaminants in the food chain on a request from the commission related to deoxynivalenol (DON) as undesirable substance in animal feed. EFSA J. 73, 1–41, Available http://www.efsa.eu.int/. | es_CO |
dc.relation.references | EFSA. (2013). Deoxynivalenol in food and feed: Occurrence and exposure, EFSA Journal, Vol. 11 (10), 3379. | es_CO |
dc.relation.references | Elmore, S. (2007). Apoptosis: A Review of Programmed Cell Death. Toxicologic Pathology, Vol. 35(4), p. 495–516. | es_CO |
dc.relation.references | Eriksen, G. (2003). Metabolism and toxicity of trichothecenes. Doctoral thesis, Swedish University of Agricultural Science. Disponible en: http://diss-epsilon.slu.se/archive/ 00000287/01/Thesis.pdf. | es_CO |
dc.relation.references | Escrivá, L., Font, G., Manyes, L., (2015). In vivo toxicity studies of fusarium mycotoxins in the last decade: A review. Food and Chemical Toxicology. Vol. 78, P. 185-206. | es_CO |
dc.relation.references | European Commission (EC), (2017). Commission Regulation (EC) No 1881/2006 of 19 December 2006 setting maximum levels for certain contaminants in foodstuffs. Document including amendments until August 2017. Disponible en: https://tinyurl.com/yd23m3q6. | es_CO |
dc.relation.references | Fang, H., Zhi, Y., Yu, Z., Lynch, R., y XudongJia. (2018). The embryonic toxicity evaluation of Deoxynivalenol (DON) by murine embryonic stem cell test and human embryonic stem cell test models. Food Control. Vol. 86, p. 234-240. | es_CO |
dc.relation.references | FAO. (2003). Reglamentos a nivel mundial para las micotoxinas en los alimentos y en las raciones en el año 2003. Véase en internet: http://www.fao.org/3/a-y5499s.pdf | es_CO |
dc.relation.references | FAO. (2004). El arroz en el mundo: Colombia. Disponible en: http://www.fao.org/rice2004/es/p3.htm. | es_CO |
dc.relation.references | FAO. (2016). FAOSTAT. Online available: http://www.fao.org/faostat/en/#compare (Acceso 18 agosto 2017). | es_CO |
dc.relation.references | FAO. (2017). Rice Market Monitor. Online available: http://www.fao.org/economic/RMM (Acceso 20 December 2017). | es_CO |
dc.relation.references | FAO. (2017b). Seguimiento del mercado del arroz de la FAO. FAO vol. XX, Ed No 1. http://www.fao.org/fileadmin/templates/est/COMM_MARKETS_MONITORING/ Rice/Images/RMM/SMA_APR17.pdf | es_CO |
dc.relation.references | Favero, G., Woelflingseder, L., Braun, D., Puntscher, H., Kütt, M.-L., Dellafiora, L., Marko, D. (2018). Response of intestinal HT-29 cells to the trichothecene mycotoxin deoxynivalenol and its sulfated conjugates. Toxicology Letters, Vol. 295, p. 424–437. | es_CO |
dc.relation.references | Fedearroz. (2017). Consumo de Arroz en Colombia. Recuperado el 15 de septiembre del 2018. Véase en internet: http://www.fedearroz.com.co/new/consumo.php | es_CO |
dc.relation.references | Fernández, C., Elmo, L., Waldner, T., & Ruiz, M.-J. (2018). Cytotoxic effects induced by patulin, deoxynivalenol and toxin T2 individually and in combination in hepatic cells (HepG2). Food and Chemical Toxicology, Vol. 120, p. 12–23. | es_CO |
dc.relation.references | Ferre, F. (2016). Worldwide occurrence of mycotoxins in rice. Food Control 62, 291-298. | es_CO |
dc.relation.references | Flusberg, D., y Sorger, P. (2015). Surviving apoptosis: life-death signaling in single cells, Trends Cell Biol, Vol. 25, p. 446-458. | es_CO |
dc.relation.references | Foroud, N., y Eudes, F. (2009). Trichothecenes in Cereal Grains. International Journal of Molecular Sciences, Vol. 10(1), p. 147–173. | es_CO |
dc.relation.references | García, D., Ramos, A., Sanchis, V. y Marin, S. (2009). Predicting mycotoxins in foods: A review. Food Microbiology. Vol. 26, p. 757–769. | es_CO |
dc.relation.references | Gimeno, A., Martins, M. (2011). Micotoxinas y micotoxicosis en animales y humanos. 3 edición. | es_CO |
dc.relation.references | González, M., Pereyra, C., Ramirez, M., Rosa, C., Dalcero, A., Cavaglieri, L. (2008). Determination of mycobiota and mycotoxins in pig feed in central Argentina. Letters in applied microbiology, Vol.46, p. 555-561. | es_CO |
dc.relation.references | Gordeziani, M., Adamia, G., Khatisashvili, G., & Gigolashvili, G. (2017). Programmed cell self-liquidation (apoptosis). Annals of Agrarian Science, Vol. 15(1), p. 148–154. | es_CO |
dc.relation.references | Gouze, M., Laffitte, J., Rouimi, P., Loiseau, N., Oswald, I., Galtier, P., (2005). Effect of various doses of deoxynivalenol on liver xenobiotic metabolizing enzymes in mice. Food Chem. Toxicol. Vol. 27, p. 585–590. | es_CO |
dc.relation.references | Green, D., y Kroemer, G. (2004). The pathophysiology of mitocondrial cell death. Science, Vol. 305, p. 626‐629. | es_CO |
dc.relation.references | Grilo, A. L., & Mantalaris, A. (2019). Apoptosis: A mammalian cell bioprocessing perspective. Biotechnology Advances. Vol. 37(3), p. 459-475. | es_CO |
dc.relation.references | Grove, J., (2007). The trichothecenes and their biosynthesis. Progress in the Chemistry of Organic Natural Products Vol. 88, p. 63–130. | es_CO |
dc.relation.references | Guo, C., Sun, L., Chen, X., Zhang, D. (2013). Oxidative stress, mitochondrial damage and neurodegenerative diseases. Neural Regen Res. Vol. 8(21), p. 2003–2014. | es_CO |
dc.relation.references | He, T., Zhou, T., Young, C., Boland, G., y Scott, P. (2010). Chemical and biological transformations for detoxification of trichothecene mycotoxins in human and animal food chains: a review. rends in Food Science & Technology. Vol. 21, p. 67-76. | es_CO |
dc.relation.references | Hirst, J. y Stedman, O. (1967). Long-distance spore transport: methods of measurement, vertical spore profiles and the detection of immigrant spores. Journal of general microbiology, Vol. 48(3), p. 329–55. | es_CO |
dc.relation.references | Hoffmeister, D., y Keller, N. (2007). Natural products of filamentous fungi: enzymes, genes, and their regulation. Nat Prod Rep. Vol. 24, p. 393–416. doi:10.1039/b603084j. | es_CO |
dc.relation.references | Hou, Y., Zhao, Y., Xiong, B., Cui, X., Kim, N., Xu, Y., Sun, S. (2013) Mycotoxin-containing diet causes oxidative stress in the mouse. PLoS One Vol. 8(3) e60374 | es_CO |
dc.relation.references | Hove, M., De Boevre, M., Lachat, C., Jacxsens, L., Nyanga, L.K., De Saeger S. (2016). Occurrence and risk assessment of mycotoxins in subsistence farmed maize from Zimbabwe. Food Control Vol. 69, p. 36-44. | es_CO |
dc.relation.references | Huang, D., Cui, L., Dai, M., Wang, X., Wu, Q., Hussain, H.I., Yuan, Z., (2019b). Mitochondrion: a new molecular target and potential treatment strategies against trichothecenes, Trends in Food Science & Technology, https://doi.org/10.1016/j.tifs.2019.03.004. | es_CO |
dc.relation.references | Huang, D., Cui, L., Sajid, A., Zainab, F., Wu, Q., Wang, X., & Yuan, Z. (2019a). The epigenetic mechanisms in Fusarium mycotoxins induced toxicities. Food and Chemical Toxicology. Vol. 123, p. 595-601. | es_CO |
dc.relation.references | Huis in’t Veld, J.H.J. (1996). Microbial and biochemical spoilage of foods: an overview. Int. J. Food Microbiol. 33, 1–18. | es_CO |
dc.relation.references | Hundie, G., Woldemeskel, D., Gessesse, A. (2016). Evaluation of Direct Colorimetric MTT Assay for Rapid Detection of Rifampicin and Isoniazid Resistance in Mycobacterium tuberculosis. PLoS One. Vol 12(2). | es_CO |
dc.relation.references | Huong, B., Tuyen, L., Do, T., Madsen, H., Brimer, L., Dalsgaard, A. (2016). Aflatoxins and fumonisins in rice and maize staple cereals in Northern Vietnam and dietary exposure in different ethnic groups. Food Control. Vol. 70, p. 191-200. | es_CO |
dc.relation.references | IARC. (2002). International agency for research on cancer iarc monographs on the evaluation of carcinogenic risks to humans. In IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. Lyon: IARC Press, pp. 1–601. | es_CO |
dc.rights.accessrights | http://purl.org/coar/access_right/c_abf2 | es_CO |
dc.type.coarversion | http://purl.org/coar/resource_type/c_2df8fbb1 | es_CO |
Aparece en las colecciones: | Biología |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
Garzón _2019_TG.pdf | Garzón _2019_TG | 2,44 MB | Adobe PDF | Visualizar/Abrir |
Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.