• Repositorio Institucional Universidad de Pamplona
  • Trabajos de pregrado y especialización
  • Facultad de Ciencias Básicas
  • Biología
  • Por favor, use este identificador para citar o enlazar este ítem: http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/5940
    Registro completo de metadatos
    Campo DC Valor Lengua/Idioma
    dc.contributor.authorGarzón González, Harold Duvan.-
    dc.date.accessioned2023-02-17T15:38:31Z-
    dc.date.available2019-11-01-
    dc.date.available2023-02-17T15:38:31Z-
    dc.date.issued2020-
    dc.identifier.citationGarzón González, H. D. (2019). Efecto citotóxico del deoxinivalenol sobre células humanas y su presencia en el arroz cultivado en Cúcuta y el Zulia [Trabajo de Grado Pregrado, Universidad de Pamplona]. Repositorio Hulago Universidad de Pamplona. http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/5940es_CO
    dc.identifier.urihttp://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/5940-
    dc.descriptionEn la actualidad, la frecuente contaminación con deoxinivalenol (DON) en los granos de cereales y sus subproductos, se ha convertido en un problema importante en la industria alimentaria y en la salud pública a nivel mundial. Por ende, en el presente estudio, se estableció la presencia de hongos micotoxigénicos y de DON en el arroz cultivado en los municipios de Cúcuta y El Zulia. La incidencia de los hongos micotoxigénicos en el arroz cultivado se evaluó por medio de siembras en agar PDA y la presencia de DON con la técnica de cromatografía líquida de alta resolución (HPLC). Sumado a esto, se evaluó el efecto citotóxico de DON en la línea celular HepG2 y en células polimorfonucleares (PMN), mediante los parámetros de viabilidad celular (MTT), cambios morfológicos (Microscopía Electrónica de Transmisión) y tipo de muerte celular (Citometría de Flujo). Se evidenció la presencia de hongos micotoxigénicos del género Aspergillus spp., Penicillium spp. y Fusarium spp., siendo éste último el de mayor ocurrencia en las muestras de arroz cultivado en los municipios mencionados. Por el contrario, no se presentaron valores detectables de DON en las muestras de arroz. El efecto citotóxico de DON en las células HepG2, se presentó de manera dependiente de la concentración y tiempo de exposición, con una CI50 de 42,82 µM±1,2 y 29,6 µM±4,8 a 48 y 72 h., respectivamente. Se observaron cambios morfológicos en las células HepG2, como fragmentación del contenido celular y nuclear, formación de protuberacias en la membrana plasmática, cuerpos apoptóticos, así como alteraciones de la morfología celular y por tanto pérdida de los contactos célula a célula. Finalmente, se detectaron cambios bioquímicos como la externalización de las fosfatidilserina y la fragmentación del DNA por citometría de flujo en las células PMN, que determinaron la apoptosis en hasta el 52,74 % ±1,3 de la población celular. Los resultados sugieren que el arroz en cultivo presenta las condiciones óptimas para el crecimiento de hongos toxigénicos Como Fusarium spp., pero no para la producción del DON. Por otro lado, indican que la exposición al DON sobre las células HepG2 y PMN resulta en la muerte celular apoptótica.es_CO
    dc.description.abstractEl autor no proporciona la información sobre este ítem.es_CO
    dc.format.extent110es_CO
    dc.format.mimetypeapplication/pdfes_CO
    dc.language.isoeses_CO
    dc.publisherUniversidad de Pamplona – Facultad de Ciencias Básicas.es_CO
    dc.subjectApoptosis.es_CO
    dc.subjectArroz cultivado.es_CO
    dc.subjectCitotoxicidad.es_CO
    dc.subjectDeoxinivalenol.es_CO
    dc.subjectFusarium spp.es_CO
    dc.titleEfecto citotóxico del deoxinivalenol sobre células humanas y su presencia en el arroz cultivado en Cúcuta y el Zulia.es_CO
    dc.typehttp://purl.org/coar/resource_type/c_7a1fes_CO
    dc.date.accepted2019-08-01-
    dc.relation.referencesAbdus-Salaam, R., Atanda, O., Fanelli, F., Sulyok, M., Cozzi, G., Bavaro, S., et al. (2016). Fungal isolates and metabolites in locally processed rice from five agro-ecological zones of Nigeria. Food Additives and Contaminants: Part B, 9, 281–289.es_CO
    dc.relation.referencesAcuña, C., Díaz, G., y Espitia, M. (2005). Aflatoxiinas en maíz: reporte de caso en la Costa Atlantica colombiana. Rev. Med. Vet. Zoot., Vol. 52, p. 156 – 162.es_CO
    dc.relation.referencesAdejumo, T., y Adejoro, D. (2014). Incidence of aflatoxins, fumonisins, trichothecenes and ochratoxins in Nigerian foods and possible intervention strategies. Food Science and Quality Management, 31, 127–146.es_CO
    dc.relation.referencesAdeyeye, S. (2016). Fungal mycotoxins in foods: A review. Cogent Food & Agriculture, 2: 1213127. Adeyeye, Cogent Food & Agriculture (2016), 2: 1213127 http://dx.doi.org/10.1080/23311932.2016.1213127es_CO
    dc.relation.referencesAFSSA (Agence française de s ecurit e sanitaire des aliments). (2006). Risk assessment for mycotoxins in human and animal food chains. Retrieved from https://www.anses.fr/fr/system/files/RCCP-Ra-MycotoxinesEN.pdf.es_CO
    dc.relation.referencesAhmad, B., Ashiq, S., Hussain, A., Bashir, S. y Hussain, M. (2014). Evaluation of mycotoxins, mycobiota, and toxigenic fungi in selected medicinal plants of Khyber Pakhtunkhwa, Pakistan. fungal biology Vol. 118, p. 776-784.es_CO
    dc.relation.referencesAlassane-Kpembi, I., Kolf-Clauw, M., Gauthier, T., Abrami, R., Abiola, F.A., Oswald, I.P., (2013). New insights into mycotoxin mixtures: the toxicity of low doses of Type B trichothecenes on intestinal epithelial cells is synergistic. Toxicol. Appl. Pharmacol. 272, 191–198.es_CO
    dc.relation.referencesAlcaldía Municipal del Zulia. (2018). Nuestro municipio. Actualizado el 16 de mayo de 2018. Recuperado en internet de: http://www.elzulia- nortedesantander.gov.co/municipio/nuestro-municipioes_CO
    dc.relation.referencesAlexander, N., Proctor, R., McCormick, S. (2009). Genes, gene clusters, and biosynthesis of trichothecenes and fumonisins inFusarium. Toxin Reviews, Vol. 28(2-3), p. 198–215.es_CO
    dc.relation.referencesAlmeida, M., Almeida, N., Carvalho, K., Gonçalves, G., Silva, C., Santos, E., Garcia, C., Vargas, E. (2012). Co-occurrence of aflatoxins B1, B2, G1 and G2, ochratoxin A, zearalenone, deoxynivalenol, and citreoviridin in rice in Brazil. Food Additives & Contaminants: Part A: Chemistry, Analysis, Control, Exposure & Risk Assessment. Vol. 29:4, p. 694-703.es_CO
    dc.relation.referencesAmagliani, L., O´regan, J., Kelly, A., y O´Mahony. J. (2017). Composition and protein profile analysis of rice protein ingredients. Journal of Food Composition and Analysis. Vol. 59; p. 18–26.es_CO
    dc.relation.referencesIDEAM. (S.f.). Carácterísticas climatológicas de ciudades principales y municipios turísticos. Resupero en internet de: http://www.ideam.gov.co/documents/21021/21789/1Sitios+turisticos2.pdf/cd4106e 9-d608-4c29-91cc-16bee9151dddes_CO
    dc.relation.referencesINS. (2015). Evaluación de riesgo de carcinoma hepatocelular en poblacion colombiana por consumo de arepa de maíz contaminada con aflatoxina B1 (AFB1). Recuperado de internet: https://www.ins.gov.co/Direcciones/Vigilancia/Publicaciones%20ERIA%20y%20Pl aguicidas/ER%20AFB1.pdfes_CO
    dc.relation.referencesIqbal, S., Nisar, S., Asi, M., Jinap, S. (2014). Natural incidence of aflatoxins, ochratoxin A and zearalenone in chicken meat and eggs. Food Control. Vol. 43, p. 98-103.es_CO
    dc.relation.referencesIslam, M.R., Roh, Y.S., Kim, J., Lim, C.W., Kim, B. (2013). Differential immune modulation by deoxynivalenol (vomitoxin) in mice. Toxicol. Lett. Vol. 221, p. 152-163.es_CO
    dc.relation.referencesJaimes, N., Salmen, S., Colmenares, M., Burgos, A., Tamayo, L., Mendoza, V., Cantor, A. (2016). Efecto citotóxico de los compuestos de inclusión de paladio (II) en la beta- ciclodextrina. Biomédica. vol.36, n.4, p.603-611.es_CO
    dc.relation.referencesJECFA. (2011). Evaluation of certain contaminants in food. Seventy-second report of the Joint FAO/WHO Expert Committee on Food Additives. WHO Technical Report Series No 959.es_CO
    dc.relation.referencesJedidi, I., soldevilla, C., Lahouar, A., Marín, P., González-Jaén, M., Said, S. (2018). Mycoflora isolation and molecular characterization of Aspergillus and Fusarium species in Tunisian cereals. Saudi Journal of Biological Sciences. Vol. 25, p. 868-874es_CO
    dc.relation.referencesJuan, A., Berrada, H., Font, G., & Ruiz, M.-J. (2017). Evaluation of acute toxicity and genotoxicity of DON, 3-ADON and 15-ADON in HepG2 cells. Toxicology Letters, Vol. 280, S266. doi:10.1016/j.toxlet.2017.07.942es_CO
    dc.relation.referencesJuan, A., Taroncher, M., Font, G., Ruiz, Marí.-José (2018)., Micronucleus induction and cell cycle alterations produced by deoxynivalenol and its acetylated derivatives in individual and combined exposure on HepG2 cells, Food and Chemical Toxicology Volume 118, August, Pages 719-725es_CO
    dc.relation.referencesKang, R., Li, R., Dai, P., Li, Z., Li, Y., Li, C. (2019). Deoxynivalenol induced apoptosis and inflammation of IPEC-J2 cells by promoting ROS production. Environmental Pollution. Vol. 251, p. 689-698.es_CO
    dc.relation.referencesAnfossi, L., Giovannoli, C., Baggiani, C. (2016). Mycotoxin detection. Current Opinion in Biotechnology. Vol. 37 p. 120–126.es_CO
    dc.relation.referencesKatika, M.R., Hendriksen, P.J., van Loveren, H., P A, A.C.M., (2015). Characterization of the modes of action of deoxynivalenol (DON) in the human Jurkat T-cell line. J. Immunotoxicol. Vol. 12, p 206–216.es_CO
    dc.relation.referencesKatika, M.R., Hendriksen, P.J.M., Shao, J., van Loveren, H., Peijnenburg, A., (2012). Transcriptome analysis of the human T lymphocyte cell line Jurkat and human peripheral blood mononuclear cells exposed to deoxynivalenol (DON): new mechanistic insights. Toxicol. Appl. Pharm. Vol. 264, p. 51–64.es_CO
    dc.relation.referencesKeller, N., Turner, G., y Bennett, J. (2005). Fungal secondary metabolism — from biochemistry to genomics. Nature Reviews Microbiology Vol. 3, p. 937–947.es_CO
    dc.relation.referencesKharayat, B., y Singh, Y. (2018). Mycotoxins in Foods: Mycotoxicoses, Detection, and Management. Microbial Contamination and Food Degradation http://dx.doi.org/10.1016/B978-0-12-811515-2.00013-5es_CO
    dc.relation.referencesKim, H. S., and Lee, M. S. (2007). STAT1 as a key modulator of cell death. Cell. Signal. Vol. 19, p. 454–465.es_CO
    dc.relation.referencesKimura, M., Tokai, T., Takahashi-Ando, N., Ohsato, S., Fujimura, M. (2007). Molecular and Genetic Studies ofFusariumTrichothecene Biosynthesis: Pathways, Genes, and Evolution. Bioscience, Biotechnology, and Biochemistry, 71(9), 2105–2123.es_CO
    dc.relation.referencesKnasmüller, S., Mersch-Sundermann, V., Kevekordes, S., Darroudi, F., Huber, W., Hoelzl, C., Bichler, J., Majer, B (2004). Use of human-derived liver cell lines for the detection of environmental and dietary genotoxicants; current state of knowledge. Toxicology. Vol.198(1-3) p. 315-28.es_CO
    dc.relation.referencesKondratskyi, A., Kondratska, K., Skryma, R., & Prevarskaya, N. (2015). Ion channels in the regulation of apoptosis. Biochimica et Biophysica Acta (BBA) - Biomembranes, Vol. 1848(10), p. 2532–2546.es_CO
    dc.relation.referencesKönigs, M., Lenczyk, M., Schwerdt, G., Holzinger, H., Gekle, N., Humpf, H.U. (2007). Cytotoxicity, metabolism and cellular uptake of the mycotoxin deoxynivalenol in human proximal tubule cells and lung fibroblasts in primary culture. Toxicology. Vol. 240, p. 48–59.es_CO
    dc.relation.referencesKönigs, M., Schwerdt, Gekle N., Humpf, H.U. (2008). Effects of the mycotoxin deoxynivalenol on human primary hepatocytes. Mol. Nutr. Food Res. Vol. 52, p. 830– 839.es_CO
    dc.relation.referencesArunachalam, C., y Doohan F. (2013). Trichothecene toxicity in eukaryotes: Cellular and molecular mechanisms in plants and animals Toxicology Letters, Vol. 217 P. 149– 158es_CO
    dc.relation.referencesKouadio, J.H., Dano, S.D., Moukha, S., Mobio, T.A., Creppy, E.E. (2007). Effects of combinations of Fusarium mycotoxins on the inhibition of macromolecular synthesis, malondialdehyde levels, DNA methylation and fragmentation, and viability in Caco- 2 cells. Toxicon Vol. 49, p. 306–317.es_CO
    dc.relation.referencesKouadio, J.H., Mobio, T.A., Baudrimont, I., Moukha, S., Dano, S.D., Creppy, E.E. (2005). Comparative study of cytotoxicity and oxidative stress induced by deoxynivalenol, zearalenone or fumonisin B1 in human intestinal cell line Caco-2. Toxicology Vol. 213, p. 56–65.es_CO
    dc.relation.referencesKovalsky, P., Kos, G., Nahrer, K., Schwab, C., Jenkins, T., Schatzmayr, G., Sulyok, M., Krska, R. (2016). Co-occurrence of regulated, masked and emerging mycotoxins andsecondary metabolites in finished feed and maize-an extensive survey. Toxins Vol. 8, 363.es_CO
    dc.relation.referencesKrajarng, A., Imoto, M., Tashiro, E., Fujimaki, T., Shinjo, S., Watanapokasin, R., (2015). Apoptosis 356 induction associated with the ER stress response through up-regulation of JNK in HeLa cells by 357 gambogic acid. BMC Comple. Alter. Med. Vol. 15, p. 26-34es_CO
    dc.relation.referencesKroemer, G., Galluzzi, L., Brenner, C. (2007). Mitochondrial membrane permeabilization in cell death. Physiol. Rev. Vol. 87 (1), p. 99–163.es_CO
    dc.relation.referencesKupcsik, L. (2011). Estimation of Cell Number Based on Metabolic Activity: The MTT Reduction Assay. Mammalian Cell Viability, 13–19. doi:10.1007/978-1-61779-108- 6_3es_CO
    dc.relation.referencesKushiro, M. (2015). Historical review of researches on yellow rice and mycotoxigenic fungi adherent to rice in Japan. JSM Mycotoxins. Vol. 65, p. 19 – 23.es_CO
    dc.relation.referencesLaitila, A. (2015). Toxigenic fungi and mycotoxins in the barley-to-beer chain. Brewing Microbiology. http://dx.doi.org/10.1016/B978-1-78242-331-7.00006-Xes_CO
    dc.relation.referencesLapmak, K., Lumyong, S., Wangspa, R. and Sardsud, U. (2009). Diversity of filamentous fungi on brown rice from Pattalung Province, Thailand. Journal of Agricultural Technology Vol. 5 (1), p. 129-142.es_CO
    dc.relation.referencesLei, Y., Guanghui, Z., Xi, W., Yingting, W., Xialu, L., Fangfang, Y., … Lammi, M. J. (2017). Cellular responses to T-2 toxin and/or deoxynivalenol that induce cartilage damage are not specific to chondrocytes. Scientific Reports, 7(1). doi:10.1038/s41598-017- 02568-5es_CO
    dc.relation.referencesAshiq, S., Hussain, M. y Ahmad, B. (2014). Natural occurrence of mycotoxins in medicinal plants: A review. Fungal Genet. Biol. Vol. 66, p. 1-10.es_CO
    dc.relation.referencesLeslie, J., y Summerell, B. (2006). The Fusarium Laboratory Manual. Blacwell. Iowa USA. 388 p.es_CO
    dc.relation.referencesLi, D., Ma, H., Ye, Y., Ji, C., Tang, X., Ouyang, D., Chen, J., Li, Y., Ma, Y. (2014a). Deoxynivalenol induces apoptosis in mouse thymic epithelial cells through mitochondria-mediated pathway. Environ. Toxicol. Pharmacol. Vol. 38, p. 163–171.es_CO
    dc.relation.referencesLi, D., Ye, Y., Lin, S., Deng, L., Fan, X., Zhang, Y., Deng, X., Li, Y., Yan, H., Ma, Y. (2014b). Evaluation of deoxynivalenol-induced toxic effects on DF-1 cells in vitro: Cell-cycle arrest, oxidative stress, and apoptosis. Environ. Toxicol. Pharmacol. Vol. 37, p. 141-149.es_CO
    dc.relation.referencesLiao, Y., Peng, Z., Chen, L., Nüssler, A., Liu, L. (2018). Deoxynivalenol, gut microbiota and immunotoxicity: A potential approach? Food and Chemical Toxicology. Vol. 112, p. 342–354.es_CO
    dc.relation.referencesLin, J., Walter, P., y Yen, B. (2008). Endoplasmic Reticulum Stress in Disease Pathogenesis. Annu Rev Pathol. Vol. 3, P. 399–425.es_CO
    dc.relation.referencesLiu R, Jin Q, Huang J, Liu Y, Wang X, Zhou X. Mao W, Wang S. (2011) In vitro toxicity of aflatoxin B (1) and its photodegradation products in HepG2 cells. J Appl Toxicol. Vol. 32(4), p. 276-81.es_CO
    dc.relation.referencesLiu, Y., Lu, Y., Wang, L., Chang, F., Yang, L. (2016). Occurrence of deoxynivalenol in wheat, Hebei Province, China. Food Chemistry. Vol. 197, p. 1271–1274.es_CO
    dc.relation.referencesLu, J., Yu, J., Lim, S., Son, Y., Kim, D., Lee, S., Shi, X. y Lee, J. (2013). Cellular mechanisms of the cytotoxic effects of the zearalenone metabolites a-zearalenol and b-zearalenol on RAW264.7 macrophages. En: Toxicology in Vitro, vol.27, p 1007– 1017.es_CO
    dc.relation.referencesLuo, Y., Liu, X., & Li, J. (2018). Updating techniques on controlling mycotoxins - A review. Food Control, Vol. 89, p. 123–132.es_CO
    dc.relation.referencesLv, X.-C., Huang, Z.-Q., Zhang, W., Rao, P.-F., & Ni, L. (2012). Identification and characterization of filamentous fungi isolated from fermentation starters for Hong Qu glutinous rice wine brewing. The Journal of General and Applied Microbiology, Vol. 58(1), p. 33–42.es_CO
    dc.relation.referencesBae, H., Gray, J., Li, M., Vines, L., Kim, J., Pestka, J., (2010). Hematopoietic cell kinase associates with the 40S ribosomal subunit and mediates the ribotoxic stress response to deoxynivalenol in mononuclear phagocytes. Toxicological Sciences Vol. 115, Pag. 444–452.es_CO
    dc.relation.referencesMa, Y., Zhang, A., Shi, Z., He, C., Ding, J., Wang, X., … Zhang, H. (2012). A mitochondria- mediated apoptotic pathway induced by deoxynivalenol in human colon cancer cells. Toxicology in Vitro, Vol. 26(3), p. 414–420.es_CO
    dc.relation.referencesMagan, N. (2006). Mycotoxin contamination of food in Europe: early detection and prevention strategies. Mycopathologia. Vol. 162, p. 245–253.es_CO
    dc.relation.referencesMakun, H. A., Dutton, M. F., Njobeh, P. B., Mwanza, M., & Kabiru, A. Y. (2011). Natural multi-occurrence of mycotoxins in rice from Niger State, Nigeria. Mycotoxin Research, Vol. 27, p. 97-104.es_CO
    dc.relation.referencesMakun, H. A., Gbodi1, T. A., Akanya1, O. H., Salako, E. A., & Ogbadu, G. H. (2007). Fungi and some mycotoxins contaminating rice (Oryza Sativa) in Niger State, Nigeria. African Journal of Biotechnology, Vol. 6(2), p. 99-108.es_CO
    dc.relation.referencesManda, G., Mocanu, M.A., Marin, D.E., Taranu, I. (2015). Dual effects exerted in vitro by micromolar concentrations of deoxynivalenol on undifferentiated caco-2 cells. Toxins. Vol. 7(2), 593-603. doi:10.3390/toxins7020593es_CO
    dc.relation.referencesManizan, A., Oplatowska-Stachowiak, M., Piro-Metayer, I., Campbell, K., Koffi-Nevry, R., Elliott, C., Akaki, D., Montet, D., Brabet, C. (2018). Multi-mycotoxin determination in rice, maize and peanut products most consumed in Cote d’Ivoire by UHPLC- MS/MS. Food Control, Vol 87, p 22-30.es_CO
    dc.relation.referencesMaresca, M., (2013). From the gut to the brain: journey and pathophysiological effects of the food-associated trichothecene mycotoxin deoxynivalenol. Toxins Vol. 5, p. 784–820.es_CO
    dc.relation.referencesMarin, S., Ramos, A.J., Cano-Sancho, G., Sanchis, V. (2013). Mycotoxins: Occurrence, toxicology, and exposure assessment. Food and Chemical Toxicology. 60, 218-237.es_CO
    dc.relation.referencesMartínez, M. y Londoño, W. (2017). Aflatoxinas en alimentos y exposición dietaria como factor de riesgo para el carcinoma hepatocelular. Biosalud. Vol.16. p.53-66.es_CO
    dc.relation.referencesMartinez, M., Moreano, M., y Ocampo, G. (2019). Occurrence, dietary exposure and risk assessment of aflatoxins in arepa, bread and rice. Food Control. Vol. 98. P 359-366.es_CO
    dc.relation.referencesBenbrook, D., y Long, A. (2012). Integration of autophagy, proteasomal degradation, unfolded protein response and apoptosis. Exp.Oncol. Vol. 34, Pag. 286–297.es_CO
    dc.relation.referencesMartínez, M., Taborda, G., y Rosero, M. (2015). Validation of a High Performance Liquid Chromatography Method for Aflatoxins Determination in Corn Arepas. Journal of the Brazilian Chemical Society.Vol. 26, p. 1-7.es_CO
    dc.relation.referencesMayer, E., Novak, B., Springler, A., Schwartz-Zimmermann, H. E., Nagl, V., Reisinger, N., Schatzmayr, G. (2017). Effects of deoxynivalenol (DON) and its microbial biotransformation product deepoxy-deoxynivalenol (DOM-1) on a trout, pig, mouse, and human cell line. Mycotoxin Research, Vol. 33(4), p. 297–308.es_CO
    dc.relation.referencesMcCormick, S., Stanley, A., Stover, N., Alexander, N. (2011). Trichothecenes: From Simple to Complex Mycotoxins. Toxins, 3(7), 802–814.es_CO
    dc.relation.referencesMcGaw, L., Elgorashi, E., y Eloff, J. (2014). Cytotoxicity of African Medicinal Plants Against Normal Animal and Human Cells. En Kuete, V. (Ed). Toxicological Survey of African Medicinal Plants. Londres. Elsevier.es_CO
    dc.relation.referencesMcIlwain, D., Berger, T., Mak, T. (2015). Caspase Functions in Cell Death and Disease. Cold Spring Harb. Perspect. Biol. Vol. 7, a026716. doi:10.1101/cshperspect.a026716es_CO
    dc.relation.referencesMendiola, A., y Cruz, S. (2005). Vía JAK-STAT: Una visión general. Revista Especializada en Ciencias de la Salud, Vol. 8(1-2), p. 14-25.es_CO
    dc.relation.referencesMenke, J., Weber, J., Broz, K. y Kistler, C. (2013). Cellular Development Associated with Induced Mycotoxin Synthesis in the Filamentous Fungus Fusarium graminearum. PLoS ONE 8(5): p. 63-77. doi:10.1371/journal.pone.0063077es_CO
    dc.relation.referencesMikami, O., Yamaguchi, H., Murata, H., Nakajima, Y., y Miyazaki, S. (2010). Induction of apoptotic lesions in liver and lymphoid tissues and modulation of cytokine mRNA expression by acute exposure to deoxynivalenol in piglets. Journal of Veterinary Science, Vol. 11(2), p. 107. doi:10.4142/jvs.2010.11.2.107es_CO
    dc.relation.referencesMikami, O., Yamamoto, S., Yamanaka, N., Nakajima, Y. (2004). Porcine hepatocyte apoptosis and reduction of albumin secretion induced by deoxynivalenol. Toxicology, Vol. 204, p. 241-249.es_CO
    dc.relation.referencesMilani, J. (2013). Ecological conditions affecting mycotoxin production in cereals: a review. Vet Med, Vol. 58, p. 405-411.es_CO
    dc.relation.referencesBensassi, F., Bennour, E.E.O., Essefi, S.A., Bouaziz, C., Hajlaoui, M.R., Bacha, H., (2009). Pathway of deoxynivalenol-induced apoptosis in human colon carcinoma cells. Toxicol. 264, 104–109.es_CO
    dc.relation.referencesMinervini, F., Fornelli, F., Flynn K. (2004). Deoxynivalenol induces apoptosis in PC12 cells via the mitochondrial pathway. Toxicology in Vitro. Vol. 18, p. 21–28es_CO
    dc.relation.referencesMinisterio de Salud y Protección social. (2013). Resolución número 004506 de 2013. Véase en internet: https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/DE/DIJ/resoluc ion-4506-de-2013.pdfes_CO
    dc.relation.referencesMishra, S., Dwivedi, P., Pandey, H., Das. M. (2014). Role of oxidative stress in Deoxynivalenol induced toxicity. Food and Chemical Toxicology Vol. 72, P. 20–29es_CO
    dc.relation.referencesMoore, D., Robson, G., y Trinci, A. (2011). 21st century guidebook to fungi (1st ed.). Cambridge University Press. ISBN 978-0521186957. http://dx.doi.org/10.1017/CBO9780511977022es_CO
    dc.relation.referencesMoretti, A., Susca, A., Mulé, G., Logrieco, A., y Proctor, R. (2013). Molecular biodiversity of mycotoxigenic fungi that threaten food safety. International Journal of Food Microbiology. Vol. 167, p. 57-66.es_CO
    dc.relation.referencesMorris, L. (2011). Determinación de aflatoxinas en muestras de maíz (Zea mays) y arroz (Oryza sativa) para consumo humano en cinco departamentos de la Costa Caribe Colombiana mediante cromatografía de alta eficiencia durante seis meses en 2011. Universidad Nacional de Colombia. Bogotá.es_CO
    dc.relation.referencesMosmann T. (1983). Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods Vol. 3, p. 65:55-63.es_CO
    dc.relation.referencesMoss, M.O. (1991). Mycology of cereal grain and grain products. In: Chelkowski, J. (Ed.), Cereal Grain: Mycotoxins, Fungi and Quality in Drying and Storage. Elsevier Science Publishing Inc, New York, pp. 23–51.es_CO
    dc.relation.referencesMuganda, P. (2015). An Overview of Apoptosis Methods in Toxicological Research: Recent Updates. Muganda, P. (Ed.). Apoptosis Methods in Toxicology. Humana Press. Estados Unidos.es_CO
    dc.relation.referencesMuthayya, S., Sugimoto, J. D., Montgomery, S., y Maberly, G. F. (2014). An overview of global rice production, supply, trade, and consumption. Annals of the New York Academy of Sciences, Vol. 1324, p. 7-14.es_CO
    dc.relation.referencesBensassi, F., Gallerne, C., El Dein, O., Lemaire, C., Hajlaoui, M., Bacha, H. (2012). Involvement of mitochondria-mediated apoptosis in deoxynivalenol cytotoxicity. Food and Chemical Toxicology. Vol. 50, P. 1680–1689.es_CO
    dc.relation.referencesNagy, C.M., Fejer, S.N., Berek, L., Molnar, J., Viskolcz, B. (2005.) Hydrogen bondings in deoxynivalenol (DON) conformations – a density functional study. J. Mol. Struct. Vol. 726, P. 55–59.es_CO
    dc.relation.referencesNeme, K., y Mohammed, A. (2017). Mycotoxin occurrence in grains and the role of postharvest management as a mitigation strategies. A review. Food Control. Vol 78; p. 412-425.es_CO
    dc.relation.referencesNesic K, Milicevic D, Nesic V, Ivanovic S. (2015). Mycotoxins as one of the foodborne risks most susceptible to climatic change. Procedia Food Sci, Vol. 5, p. 207-210.es_CO
    dc.relation.referencesNguyen, P., Strub, C., Fontana, A., y Schorr-Galindo S. (2017). Crop molds and mycotoxins: Alternative management using biocontrol. Biological Control. Vol. 104, P. 10-27.es_CO
    dc.relation.referencesNielsen C, Lippke H, Didier A, Dietrich R, Martlbauer E. (2009). Potential of deoxynivalenol to induce transcription factors in human hepatomacells. Mol. Nutr. Food Res. Vol. 53: p. 479–491.es_CO
    dc.relation.referencesNogueira, A., Keen, J., Wild, C., Findlay, J. (2011). An analysis of the phosphoproteome of immune cell lines exposed to the immunomodulatory mycotoxin deoxynivalenol. Biochimica et Biophysica Acta Vol. 1814. P. 850–857es_CO
    dc.relation.referencesNúñez, F., Lara, M.S., Peromingo, B., Delgado, J., Sanchez-Montero, L., Andrade, M.J. (2015). Selection and evaluation of Debaryomyces hansenii isolates as potential bioprotective agents against toxigenic penicillia in dryfermented sausages. Food Microbiol. Vol. 46, p. 114-120.es_CO
    dc.relation.referencesOk, H., Kim, D., Kim, D., Chung, S., Chung, M., Park, K. (2014). Mycobiota and natural occurrence of aflatoxin, deoxynivalenol, nivalenol and zearalenonein rice freshly harvested in South Korea. Food Control, Vol. 37, p. 284-291.es_CO
    dc.relation.referencesOk, H., Lee, S., y Chun S. (2018). Occurrence and simultaneous determination of nivalenol and deoxynivalenol in rice and bran by HPLC-UV detection and immunoaffinity cleanup. Food Control Vol. 87, p. 53-59es_CO
    dc.relation.referencesOkeke, C., Ezekiel, C., Sulyok, M., Ogunremi, O., Ezeamagu, C., Sarkanj, B., Warth, B., y Krska, R. (2018). Traditional processing impacts mycotoxin levels and nutritional value of ogi – a maizebased complementary food. Food Control. Vol. 86, P. 224-233.es_CO
    dc.relation.referencesBerridge, M., Herst, P., Tan, A. (2005). Tetrazolium dyes as tools in cell biology: New insights into their cellular reduction. In: El-Gewely MR (ed) Biotechnology annual review, vol 11. Elsevier, p 127–152.es_CO
    dc.relation.referencesOliveira, CAF., Corassin, CH., Corrêa, B., Oswald, IP. (2014b). Animal Health: Mycotoxins. En Van Alfen (Ed.). Encyclopedia of Agriculture and Food Systems. Elsevier. USA.es_CO
    dc.relation.referencesOliveira, P., Zannini, E., y Arendt, E. (2014a). Cereal fungal infection, mycotoxins, and lactic acid bacteria mediated bioprotection: from crop farming to cereal products. Food Microbiology. doi: 10.1016/j.fm.2013.06.003.es_CO
    dc.relation.referencesOrrenius, S., Nicotera, P., Zhivotovsky, B. (2011). Cell death mechanisms and their implications in toxicology, Toxicol Sci, Vol. 119, p. 3-19.es_CO
    dc.relation.referencesOrtiz, J., Camp, J., Mestdagh, F., Donoso, S., Meulenaer, B. (2013). Mycotoxin co- occurrence in rice, oat flakes and wheat noodles used as staple foods in Ecuador. Food Additives & Contaminants: Part A. Vol. 30:12, p. 2165-2176.es_CO
    dc.relation.referencesPacin, A., Gonzáles, H., Etcheverry, M., Resnik, S., Vivas, L., Espin, S. (2002). Fungi associated with food and feed commodities from Ecuador. Mycopathologia, Vol. 156, p. 87-92.es_CO
    dc.relation.referencesPalacios-Prü, E., Mendoza-Briceño, R. (1972). An unusual relationship between glial cells and neuronal dendrites in olfactory bulbs of Desmodus rotundus. Brain Res Vol. 36, p. 404-408.es_CO
    dc.relation.referencesPallepati, P., y Averill, D. (2012). Reactive Oxygen Species, Cell Death Signaling and Apoptosis, in: K. Pantopoulos, H. Schipper (Eds.) Princ Free Rad Biomed, Nova Science Publishers, Inc., Place Published, p. 513-546.es_CO
    dc.relation.referencesPan, X., Whitten, D., Wilkerson C., Pestka, J. (2013). Dynamic changes in ribosomeassociated proteome and phosphoproteome during deoxynivalenol-induced translation inhibition and ribotoxic stress. Toxicol. Sci. Vol. 138, p. 217-233.es_CO
    dc.relation.referencesPatriarca, A., y Fernández, V. (2017). Prevalence of mycotoxins in foods and decontamination. Current Opinion in Food Science. Vol, 14, p.50–60.es_CO
    dc.relation.referencesPayros, D., Alassane‐Kpembi, I., Pierron, A., Loiseau, N., Pinton, P., Oswald, I. (2016). Toxicology of deoxynivalenol and its acetylated and modified forms. Archives of Toxicology. Vol. 90, p. 2931–2957es_CO
    dc.relation.referencesBethke, N., Conard, C., Fosdick, L., Fox, E., Grunig, D., Kirkvold, S., Ladhe, A., Leland, J., Lewis, J., Peters, E. (2014). Method and apparatus for reducing aflatoxin– contaminated corn. US Patent Publication No. 8919569 B2.es_CO
    dc.relation.referencesPayros, D., Dobrindt, U., Martin, P., Secher, T., Bracarense, A.P.F.L., Boury, M., Laffitte, J., Pinton, P., Oswald, E., Oswald, I.P. (2017). The food contaminant deoxynivalenol exacerbates the genotoxicity of gut microbiota. Vol. 8, P. 7–17.es_CO
    dc.relation.referencesPeng, W., Marchal, M., y van der Poel, A. (2018). Strategies to prevent and reduce mycotoxins for compound feed manufacturing. Animal Feed Science and Technology, Vol. 237, p. 129–153.es_CO
    dc.relation.referencesPeng, Z., Chen, L., Nüssler, A.K., Liu, L., Yang, W., (2016). Current sights for mechanisms of deoxynivalenol-induced hepatotoxicity and prospective views for future scientific research: a mini review. J. Appl. Toxicol. Vol. 37, p. 518–529.es_CO
    dc.relation.referencesPereira, V. L., Fernandes, J. O. & Cunha, S. C. (2014). Mycotoxins in cereals and related foodstuffs: A review on occurrence and recent methods of analysis. Trends in food science and technology, Vol. 36, p. 96–136.es_CO
    dc.relation.referencesPerilla, N., & Diaz, G. (1998). Incidence and levels of fumonisin contamination in Colombian corn and corn products. Mycotoxin Research, Vol. 14(2), p. 74–82.es_CO
    dc.relation.referencesPestka, J. (2007) Deoxynivalenol: toxicity, mechanisms and animal health risks. Anim Feed Sci Technol Vol. 137, p. 283–298. doi:10.1016/j.anifeedsci.2007.06.006es_CO
    dc.relation.referencesPestka, J. (2008) Mechanisms of deoxynivalenol-induced gene expression and apoptosis. Food Addit Contam Vol. 25, p. 1128–1140. doi:10.1080/02652030802056626es_CO
    dc.relation.referencesPestka, J. (2010). Deoxynivalenol-induced proinflammatory gene expression: mechanisms and pathological sequelae. Toxins (Basel) Vol. 2, p. 1300–17es_CO
    dc.relation.referencesPestka, J. (2010). Toxicological mechanisms and potential health effects of deoxynivalenol and nivalenol. World Mycotoxin J. Vol. 3, P. 323–47es_CO
    dc.relation.referencesPestka, J., y Smolinski, A. (2005). Deoxynivalenol: toxicology and potential effects on humans. J. Toxicol. Environ. Health B. Crit. Rev. Vol. 8, p. 39–69.es_CO
    dc.relation.referencesBhullar, N., y Gruissem, W. (2013). Nutritional enhancement of rice for human health: The contribution of biotechnology. Biotechnology Advances. Vol. 31(1), p. 50–57.es_CO
    dc.relation.referencesPestka, J., Zhou, H., Moon, Y., Chung, Y. (2004). Cellular and molecular mechanism for immune modulation by deoxynivalenol and others trichothecenes: unraveling a paradox. Toxicol. Lett. Vol. 153, p. 61–73.es_CO
    dc.relation.referencesPfliegler, WP., Pusztahelyi, T., Pócsi, I. (2015). Mycotoxins-prevention and decontamination by yeasts. J Basic Microbiol, Vol. 55, p. 805-818.es_CO
    dc.relation.referencesPfliegler, WP., Pusztahelyi, T., Pócsi, I. (2015). Mycotoxins-prevention and decontamination by yeasts. J Basic Microbiol, Vol. 55, p. 805-818.es_CO
    dc.relation.referencesPierron A, Mimoun S, Murate LS et al (2016a) Intestinal toxicity of the masked mycotoxin deoxynivalenol-3-beta-d-glucoside. Arch Toxicol Vol. 90. P. 2037–2046. doi:10.1007/s00204-015-1592-8es_CO
    dc.relation.referencesPierron A, Mimoun S, Murate LS et al (2016b) Microbial biotransformation of DON: molecular basis for reduced toxicity. Sci Rep Vol. 6, p. 29105. doi:10.1038/srep29105es_CO
    dc.relation.referencesPinton, P. y Oswald, I. (2014). Effect of Deoxynivalenol and Other Type B Trichothecenes on the Intestine: A Review. Toxins, Vol. 6, P. 1615-1643.es_CO
    dc.relation.referencesPistritto, G., Trisciuoglio, D., Ceci, C., Garufi, A., & D’Orazi, G. (2016). Apoptosis as anticancer mechanism: function and dysfunction of its modulators and targeted therapeutic strategies. Aging, Vol. 8(4), p. 603–619.es_CO
    dc.relation.referencesPitt, J.I., (2000). Toxigenic fungi and mycotoxins. Br. Med. Bull. 56, 184–192.es_CO
    dc.relation.referencesPräbst, K., Engelhardt, H., Ringgeler, S., Hübner, H. (2017). Basic Colorimetric Proliferation Assays: MTT, WST, and Resazurin. En Gilbert, D., Friedrich, O. (Ed.). Cell Viability Assays. Methods and Protocols. Germany. Humana Press.es_CO
    dc.relation.referencesPrado, R. (2018). Revisión sobre las aflatoxinas en Avicultura. Universidad De Ciencias Aplicadas y Ambientales U.D.C.A. Bogotá.es_CO
    dc.relation.referencesBin-Umer, M., McLaughlin, J., Butterly, M., McCormick, S., Tumer, N. (2014). Elimination of damaged mitocondria through mitophagy reduces mitochondrial oxidative stress and increases tolerance to trichothecenes. Proc Natl Acad Sci USA. Vol. 111, p. 11798-11803.es_CO
    dc.relation.referencesRadko, L., Tkaczyk, A., Jedziniak, P., Trebas, S., Posyniak, A. (2018). Toxicity and metabolism of deoxynivalenol in human hepatoma (HepG2) cell line. Toxicology Letters Vol. 295, p. S146-S147es_CO
    dc.relation.referencesRamírez S. Determinación de la aflatoxina b1 (af21) en algunos alimentos listos para el consumo por medio de la técnica diba competitiva indirecta. Alimentos Hoy. Vol. 8, p. 4-8.es_CO
    dc.relation.referencesRan, R., Zhang, W., Cui, B., Xu, Y., Han, Z., Wu, A. and Shi, J. (2013). A simple and rapid method for the determination of deoxynivalenol in human cells by UPLC-TOF-MS. Analytical Methods Vol. 5, p. 5637-5643.es_CO
    dc.relation.referencesRay, S., Yang, N., Pandey, S., Bello, N., Gray, J. (2019). Apoptosis. Reference Module in Biomedical Sciences. doi:10.1016/b978-0-12-801238-3.62145-1es_CO
    dc.relation.referencesReddy, K., Salleh, B., Saad, B., Abbas, HK., Abel, CA., Shier, WT. (2010). An overview of mycotoxin contamination in foods and its implications for human health. Toxin Rev, Vol. 29, p. 3-26.es_CO
    dc.relation.referencesReddy, K., Saritha, P., Reddy, C., y Muralidharan, K. (2009). Aflatoxin B1 producing potential of Aspergillus flavus strains isolated from stored rice grains. African Journal of Biotechnology, Vol. 8, p. 3303-3308.es_CO
    dc.relation.referencesRedza, M., y Averill, D. (2016). Activation of apoptosis signalling pathways by reactive oxygen species. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, Vol. 1863(12), p. 2977–2992.es_CO
    dc.relation.referencesReed, J.C., (2006). Proapoptotic multidomain Bcl-2/Bax-family proteins: mechanisms, physiological roles, and therapeutic opportunities. Cell Death Differ. Vol. 13, p. 1378– 1386.es_CO
    dc.relation.referencesReynolds, E. (1965). The use of lead citrate at high pH as an electrón-opaque satín in electrón microscopy. J Cell Biol Vol. 17, p. 208-212.es_CO
    dc.relation.referencesRocha O., Ansari K. y Doohan F. (2005): Effects of trichothecene mycotoxins on eukaryotic cells: A review, Food Additives and Contaminants, Vol. 22:4, p. 369-378es_CO
    dc.relation.referencesBodea, G., Munteanu, M., Dinu, D., Serban, A., Roming, F., Costache, M., Dinischiotu, A., (2009). Influence of deoxynivalenol on the oxidative status of HepG2 cells. Romanian Biotechnol. Lett. Vol. 14, p. 4349–4359.es_CO
    dc.relation.referencesRocha, M.E.B. da, Freire, F. da C.O., Maia, F.E.F., Guedes, M.I.F., Rondina, D. (2014). Mycotoxins and their effects on human and animal health. Food Control Vol. 36, p. 159–165.es_CO
    dc.relation.referencesRojas, L., y Wilches, A. (2012). C oexistencia de afl atoxinas, zearalenona y deoxinivalenol en alimentos de consumo infantil. Ciencia y Tecnología Alimentaria. Vol. 10., P. 73- 79.es_CO
    dc.relation.referencesSantos da Silva I., Paim A., y Silva M. (2018). Composition and estimate of daily mineral intake from samples of Brazilian rice. Microchemical Journal Vol. 137; p. 131–138.es_CO
    dc.relation.referencesSarroco, S., y Vannacci, G. (2018). Preharvest application of beneficial fungi as a strategyes_CO
    dc.relation.referencesSavi, G. D., Piacentini, K. C., Rocha, L. O., Carnielli-Queiroz, L., Furtado, B. G., Scussel, R., … Angioletto, E. (2018). Incidence of toxigenic fungi and zearalenone in rice grains from Brazil. International Journal of Food Microbiology, Vol. 270, p 5–13.es_CO
    dc.relation.referencesSchenzel, J., Hungerbuhler, K., Bucheli, T.D., (2012). Mycotoxins in the environ-ment: II. Occurrence and origin in Swiss river waters. Environ. Sci. Technol. Vol. 46, p. 13076–13084.es_CO
    dc.relation.referencesSchmeits, P., Katika, M., Peijnenburg, A., van Loveren, H., Hendriksen, P. (2014). DON shares a similar mode of action as the ribotoxic stress inducer anisomycin while TBTO shares ER stress patterns with the ER stress inducer thapsigargin based on comparative gene expression profiling in Jurkat T cells. Toxicol. Lett. Vol. 224, P. 395–406.es_CO
    dc.relation.referencesSchönthal, A. (2012). Endoplasmic Reticulum Stress: Its Role in Disease and Novel Prospects for Therapy. Scientifica. Vol. 2012, pag. 26.es_CO
    dc.relation.referencesSerrano-Coll, H. y Cardona-Castro, N. (2015). Micotoxicosis y micotoxinas: generalidades y aspectos básicos. Rev CES Med. Vol. 29. P. 143-152.es_CO
    dc.relation.referencesShalini, S., Dorstyn, L., Dawar, S., Kumar, S. (2015). Old, new and emerging functions of caspases. Cell Death Diff, Vol. 22, p. 526‐39.es_CO
    dc.relation.referencesBony, S., Carcelen, M., Olivier, L., Devaux, A., (2006). Genotoxicity assessment of deoxynivalenol in the Caco-2 cell line model using the comet assay. Toxicol. Lett. Vol. 166, p. 67–76.es_CO
    dc.relation.referencesSharif, M. K., Butt, M. S., Anjum, F. M., y Khan, S. H. (2014). Rice bran: A novel functional ingredient. Critical Reviews in Food Science and Nutrition, 54(6).es_CO
    dc.relation.referencesSherrington, S., Kumwenda, P., Kousser, C. y Hall, R. (2018). Advances in Applied Microbiology, Vol. 102, p. 159-221.es_CO
    dc.relation.referencesShi, Y., Porter, K., Parameswaran, N., Bae, H., Pestka, J. (2009). Role of GRP78/BiP Degradation and ER Stress in deoxynivalenolinduced interleukin-6 upregulation in the macrophage. Toxicol Sci. Vol. 110, Pag. 249–250.es_CO
    dc.relation.referencesShraim A. (2017). Rice is a potential dietary source of not only arsenic but also other toxic elements like lead and chromium. Arabian Journal of Chemistry. Vol. 10, p. S3434– S344.es_CO
    dc.relation.referencesSingh J., Kaur L., y Ogawa Y. (2016). Importance of chemistry, nutrition and technology in rice processing. Food Chemistry Vol. 191; 1.es_CO
    dc.relation.referencesSingh, S., Banerjee, S., Chattopadhyay, P., Borthakur, S., Veer, V. (2015). Deoxynivalenol induces cytotoxicity and genotoxicity in animal primary cell culture. Toxicol. Mech. Methods. Vol. 25, p. 184-191.es_CO
    dc.relation.referencesSlobodchikova, I., y Vuckovic, D. (2018). Liquid Chromatography – High Resolution Mass Spectrometry Method for Monitoring of 17 Mycotoxins in Human Plasma for Exposure Studies. Journal of Chromatography A. Vol. 1548, p. 51-63.es_CO
    dc.relation.referencesSmith MC., Madec, S., Coton, E., Hymery, N. (2016). Natural Co-Occurrence of Mycotoxins in Foods and Feeds and Their in vitro Combined Toxicological Effects. Toxins, 8, 94; doi:10.3390/toxins8040094es_CO
    dc.relation.referencesSmith, M.C., Gheux, A., Coton M., Madec, S., Hymery, N., y Coton, E. (2018). In vitro co- culture models to evaluate acute cytotoxicity of individual and combined mycotoxin exposures on Caco-2, THP-1 and HepaRG human cell lines. Chemico-Biological Interactions Vol. 281, P. 51-59.es_CO
    dc.relation.referencesSmith, M.C., Hymery, N., Troadec, S., Pawtowski, A., Coton, E., y Madec, S. (2017). Hepatotoxicity of fusariotoxins, alone and in combination, towards the HepaRG human hepatocyte cell line. Food and Chemical Toxicology. Vol. 109, P. 439-451es_CO
    dc.relation.referencesBraicu, C., Berindan-Neagoe, I., Tudoran, O., Balacescu, O., Rugina, D., Gherman, C., Socaciu, C., Irimie, Al., 2009. In vitro evaluation of the chemoprotective action of flavan-3-ols against deoxynivalenol related toxicity. Arch. Zootechn. Vol. 3, p. 45– 55.es_CO
    dc.relation.referencesSobral, M., Faria, M., Cunha, S., Ferreira, I. Toxicological interactions between mycotoxins from ubiquitous fungi: Impact on hepatic and intestinal human epithelial cells. Chemosphere. Vol. 202, p.538-548.es_CO
    dc.relation.referencesSobrova, P., Adam, V., Vasatkova, A., Beklova, M., Zeman, L., Kizek, R. (2010) Deoxynivalenol and its toxicity, Interdiscip. Toxicol. Vol. 3, P. 94–99.es_CO
    dc.relation.referencesStepanenko y Dmitrenko, V. (2015). Pitfalls of the MTT assay: Direct and off-target effects of inhibitors can result in over/underestimation of cell viability. Gene. Vol. 574, Issue 2, P. 193-203.es_CO
    dc.relation.referencesStephanou, S., and Latchman, D. S. (2005). Opposing actions of STAT-1 and STAT-3. Growth Factors Vol. 23, p. 177–182.es_CO
    dc.relation.referencesStockert JC, Blázquez-Castro A, Cañete M, Horobin RW, Villanueva A. (2012). MTT. Análisis de viabilidad celular: la localización intracelular del producto de formazán se encuentra en gotitas de lípidos. Acta Histochem.Vol. 114, p. 785–796.es_CO
    dc.relation.referencesSugiyama, K., Kinoshita, M., Kamata, Y., Minai, Y., Tani, F., & Sugita-Konishi, Y. (2012). Thioredoxin-1 contributes to protection against DON-induced oxidative damage in HepG2 cells. Mycotoxin Research, Vol. 28(3), p. 163–168es_CO
    dc.relation.referencesSummerell, B. y Leslie, J. (2011). Fifty years of Fusarium: how could nine species have ever been enough? Fungal Divers. Vol. 50, p. 135–144.es_CO
    dc.relation.referencesSun, X., Zhang, X., Wang, H., Cao, W., Yan, X., Zuo, L., Wang, J., Wang, F., (2002). Effects of sterigmatocystin, deoxynivalenol and aflatoxin G1 on apoptosis of human peripheral blood lymphocytes in vitro. Biomed. Environ. Sci. Vol. 15, p. 145–152.es_CO
    dc.relation.referencesTala, M., y Kebede, B. (2016). Occurrence, importance and control of mycotoxins: A review. Cogent Food & Agriculture. Vol.2.es_CO
    dc.relation.referencesTanaka, K., Sago, Y., Zheng, Y., Nakagawa, H., & Kushiro, H. (2007). Mycotoxins in rice. International Journal of Food Microbiology, Vol. 119, p. 59-66.es_CO
    dc.relation.referencesBrase, S., Encinas, A., Keck, J., Nising, C. (2009). Chemistry and biology of mycotoxins and related fungal metabolites. Chem. Rev. Vol. 109, p. 3903–4399.es_CO
    dc.relation.referencesTaroncher, M., Tolosa, J., Prosperini, A., & Ruiz, M.-J. (2018). In silico and in vitro prediction of the toxicological effects of individual and combined mycotoxins. Food and Chemical Toxicology. Vol. 122, p. 194-202.es_CO
    dc.relation.referencesTaylor, R., Cullen, S., Martin, S. (2008). Apoptosis: controlled demolition at the celular level. Nat. Rev. Mol. Cell Biol. Vol. 9, p. 231–241.es_CO
    dc.relation.referencesTerzi, V., Tumino, G., Stanca, M., Morcia, C. (2014). Reducing the incidence of cereal head infection and mycotoxins in small grain cereal species. Journal of Cereal Science. Vol. 59, p. 284-293.es_CO
    dc.relation.referencesto prevent postharvest mycotoxin contamination: A review. Crop Protection.es_CO
    dc.relation.referencesTolosa, L., Donato, M., y Gómez-Lechón, J. (2015). General Cytotoxicity Assessment by Means of the MTT Assay. En Vinken, M., y Rogiers, V. (Ed). Protocols in In Vitro Hepatocyte Research. Bruselas, Bélgica. Springer Science, Business Media.es_CO
    dc.relation.referencesTrung, T. (2008). Mycotoxins in maize in Vietnam. World mycotoxin Journal, vol. 1, p. 87- 94.es_CO
    dc.relation.referencesTurner, N., Bramhmbhatt, H., Szabo, M., Poma, A., Coker, R., Piletsky, S.A. (2015). Analytical methods for determination of mycotoxins: An update (2009-2014). Anal. Chim. Acta. Vol. 901, p. 12-33.es_CO
    dc.relation.referencesTurner, P.C., Rothwell, J.A., White, K.L.M., Gong, Y.Y., Cade, J.E., Wild, C.P., (2008). Urinary deoxynivalenol is correlated with cereal intake in individuals from the United Kingdom. Environ. Health Perspect. Vol. 116, p. 21–25.es_CO
    dc.relation.referencesUdomkun, P., Wiredu, A.N., Nagle, M., Bandyopadhyay, R., Müller, J., Vanlauwe, B. (2017). Mycotoxins in Sub-Saharan Africa: Present situation, socio-economic impact, awareness, and outlook. Food Control. Vol. 72, p. 110-122.es_CO
    dc.relation.referencesUSDA. (2015). Grain: World Markets and Trade. United States Department of Agriculture, Foreign Agricultural Service, Washington, DC.es_CO
    dc.relation.referencesBroom, L. (2015). Mycotoxins and the intestine. Animal Nutrition. Vol. 1, p. 262-265.es_CO
    dc.relation.referencesVan Egmond, H. P., Schothorst, R. C., & Jonker, M. A. (2007). Regulations relating to mycotoxins in food: Perspectives in a global and European context. Analytical and Bioanalytical Chemistry, 389, 147–157.es_CO
    dc.relation.referencesVan Meerloo J, Kaspers GJ, Cloos J. (2011). Ensayos de sensibilidad celular: el ensayo MTT. Métodos Mol. Biol. Vol. 731: p. 237–245.es_CO
    dc.relation.referencesVinken, M., and Rogiers, V. (eds.). (2015). Protocols in In Vitro Hepatocyte Research, Methods in Molecular Biology, vol. 1250, DOI 10.1007/978-1-4939-2074-7_5, © Springer Science+Business Media New York.es_CO
    dc.relation.referencesVinken, M., y Blaauboer, B. (2017). In vitro testing of basal cytotoxicity: establishment of an adverse outcome pathway from chemical insult to cell death. Toxicol In Vitro. Vol. 39, P. 104–110.es_CO
    dc.relation.referencesWalle, J.V.D., During, A., Piront, N., Toussaint, O., Schneider, Y.J., Larondelle, Y. (2010). Physio-pathological parameters affect the activation of inflammatory pathways by deoxynivalenol in Caco-2 cells. Toxicol. In Vitro. Vol. 24, p. 1890–1898es_CO
    dc.relation.referencesWang, X., Liu, Q., Ihsan, A., Huang, L., Dai, Menghong, Hao, H., Cheng, G., Liu, Z., Wang, Y., Yuan, Z. (2012). JAK/STAT Pathway Plays a Critical Role in the Proinflammatory Gene Expression and Apoptosis of RAW264.7 Cells Induced by Trichothecenes as DON and T-2 Toxin. Toxicological Sciences. Vol. 127(2), p. 412– 424.es_CO
    dc.relation.referencesWang, X., Liu, Q., Ihsan, A., Huang, L., Dai, Menghong, Hao, H., Cheng, G., Liu, Z., Wang, Y., Yuan, Z. (2012). JAK/STAT Pathway Plays a Critical Role in the Proinflammatory Gene Expression and Apoptosis of RAW264.7 Cells Induced by Trichothecenes as DON and T-2 Toxin. Toxicological Sciences. Vol. 127(2), p. 412– 424.es_CO
    dc.relation.referencesWang, X., Xu, W., Fan, M., Meng, T., Chen, X., Jiang, Y., Zhu D., Hu, W., Gong, J., Feng, S., Wu, J., Li, Y. (2016). Deoxynivalenol induces apoptosis in PC12 cells via the mitochondrial pathway. Environmental Toxicology and Pharmacology. Vol. 3, P. 193-202es_CO
    dc.relation.referencesWang, Z., Wu., Q., Kuca, K., Dohnal, V., Tian, Z. (2014). Deoxynivalenol: signaling pathways and human exposure risk assessment—an update. Arch Toxicol. Vol. 88, p. 915–1928.es_CO
    dc.relation.referencesWarth, B., Sulyoka, M., Fruhmann, P., Berthiller, F., Schuhmacher, R., Hametner C., Adamc, G., Fröhlich, J., Krska R. (2012). Assessment of human deoxynivalenol exposure using an LC–MS/MS based biomarker method. Toxicology Letters. Vol. 211 P. 85– 90.es_CO
    dc.relation.referencesBryden, W. (2009). Mycotoxins and mycotoxicoses: Significance, occurrence and and mitigation in the food chain.es_CO
    dc.relation.referencesWatson, M.L. (1958). Staining of tissue sections for electron microscopy with heavy metals. J Biophys Biochem Cytol 4: 475-478.es_CO
    dc.relation.referencesWentzel, J., Lombard, M., Du Plessis, L., Zandberg, L. (2016). Evaluation of the cytotoxic properties, gene expression profiles and secondary signalling responses of cultured cells exposed to fumonisin B1, deoxynivalenol and zearalenone mycotoxins. Archives of Toxicology, Vol. 91(5), p. 2265–2282.es_CO
    dc.relation.referencesWild, C., Miller, J. D., & Groopman, J. D. (2015). Mycotoxin control in low-and middleincome countries. IARC Working Group Report.es_CO
    dc.relation.referencesWu, F., Groopman, F., Pestka1, J. (2014). Public Health Impacts of Foodborne Mycotoxins. Annu. Rev. Food Sci. Technol. Vol. 5, P. 351–72.es_CO
    dc.relation.referencesWu, Q., Wang, X., Nepovimova, E., Wang, Y., Yang., Li, L., Zhang, X., Kuca, K. (2017). Antioxidant agents against trichothecenes: new hints for oxidative stress treatment. Oncotarget, Vol. 8, (No. 66), p. 110708-110726.es_CO
    dc.relation.referencesWu, Q., Wang, X., Yang, W., Nüssler, A., Xiong, L., Kuca, K., Dohnal, V., Zhang, X., Yuan, Z. (2014b). Oxidative stress‐mediated cytotoxicity and metabolism of T‐2 toxin and deoxynivalenol in animals and humans: an update. Arch Toxicol. Vol. 88(7), p. 1309– 1326.es_CO
    dc.relation.referencesXu, X., Lai, Y., Hua, Z. (2019). Apoptosis and apoptotic body: disease message and therapeutic target potentials. Bioscience Reports, Vol. 39(1). doi: 10.1042/BSR20180992es_CO
    dc.relation.referencesYang, J., Wang, J., Guo W., Ling, A., Luo, A., Liu, D., Yang, X., Zhao, Z. (2019). Toxic effects and possible mechanisms of deoxynivalenol exposure on sperm and testicular damages in BALB/c mice. J. Agric. Food Chem. DOI: 10.1021/acs.jafc.8b04783es_CO
    dc.relation.referencesYang, L., Zhang, J., Zhao, G., Wu, C., Ning, Y., Guo, X., Wang, X., Lammi, M. (2017). Gene expression profiles and molecular mechanism of cultured human chondrocytes exposure to T-2 toxin and deoxynivalenol. Toxicon. Vol 140, P. 38-44es_CO
    dc.relation.referencesYang, S., Mao, Y., Zhang, H., Xu, Y., An, J., Huang, Z. (2019). The chemical biology of apoptosis: Revisited after 17 years. European Journal of Medicinal Chemistry. Vol. 177, p. 63-75.es_CO
    dc.relation.referencesBryden, W. (2012). Mycotoxin contamination of the feed supply chain: Implications for animal productivity and feed security. Animal Feed Science and Technology. Vol. 173, p.134– 158.es_CO
    dc.relation.referencesYang, S., Wang, Y., Beier, R.C., Zhang, H., De Ruyck, K., Sun, F., Cao, X., Shen, J., Zhang, S., Wang, Z., (2015). Simultaneous determination of type A and B trichothecenes and their main metabolites in food animal tissues by ultraperformance liquid chromatography coupled with triple-quadrupole mass spectrometry. J. Agric. Food Chem. Vol. 63, p. 8592-8600.es_CO
    dc.relation.referencesYang, W., Yu, M., Fu, J., Bao, W., Wang, D., Hao, L., Yao, P., Nüssler, A., Yan, H., Liu, L. (2014). Deoxynivalenol induced oxidative stress and genotoxicity in human peripheral blood lymphocytes. Food and Chemical Toxicology Vol. 64, P. 383–396.es_CO
    dc.relation.referencesYu, M., Wei, Z.-Y., Xu, Z.-H., Pan, J.-Q., & Chen, J.-H. (2018). Oxidative Damage and Nrf2 Translocation Induced by Toxicities of Deoxynivalenol on the Placental and Embryo on Gestation Day 12.5 d and 18.5 d. Toxins, Vol. 10(9), p. 370.es_CO
    dc.relation.referencesYuan, L., Mu, P., Huang, B., Li, H., Mu, H., Deng, Y. (2018). EGR1 is essential for deoxynivalenol-induced G2/M cell cycle arrest in HepG2 cells via the ATF3ΔZip2a/2b-EGR1-p21 pathway. Toxicology Letters. Vol. 299, p. 95–103.es_CO
    dc.relation.referencesZain, M. E. (2011). Impact of mycotoxins on humans and animals. Journal of Saudi Chemical Society, Vol. 15(2), p. 129-144. https://doi.org/10.1016/j.jscs.2010.06.006.es_CO
    dc.relation.referencesZhang, L., Pan, Z., Shen, K., Cai, X., Zheng, B., y Miao, S. (2018). Influence of ultrasound- assisted alkali treatment on the structural properties and functionalities of rice protein. Journal of Cereal Science Vol. 79; p. 204-209.es_CO
    dc.relation.referencesZhang, L., Zhao, X., Jiang, X., (2015). Sevoflurane Post-conditioning Protects Primary Rat Cortical Neurons Against Oxygen-Glucose Deprivation/Resuscitation: Roles of Extracellular Signal-Regulated Kinase 1/2 and Bid, Bim, Puma. Neurochem. Res. Vol. 40, Pág. 1609-1619.es_CO
    dc.relation.referencesZhang, X., Jiang, L., Geng, C., Cao, J., y Zhong, L. (2009). The role of oxidative stress in deoxynivalenol-induced DNA damage in HepG2 cells. Toxicon. Vol. 54, P. 513–518es_CO
    dc.relation.referencesZhao, Y., Wang, Q., Huang, J., Chen, Z., Liu, S., Wang, X., & Wang, F. (2019). Mycotoxin contamination and presence of mycobiota in rice sold for human consumption in China. Food Control, Vol. 98, p. 19–23.es_CO
    dc.relation.referencesZhou, H., George, S., Hay, C., Lee, J., Qian, H., Sun, X. (2017). Individual and combined effects of Aflatoxin B1, Deoxynivalenol and Zearalenone on HepG2 and RAW 264.7 cell lines, Food and Chemical Toxicology. Vol. 103, P. 18-27.es_CO
    dc.relation.referencesCano, G., González-Arias C.A., Ramos A.J., Sanchis V., Fernández-Cruz, M.L. (2015). Cytotoxicity of the mycotoxins deoxynivalenol and ochratoxin A on Caco-2 cell line in presence of resveratrol. Toxicology in Vitro. Vol. 29, p. 1639–1646.es_CO
    dc.relation.referencesZigler R.S. (2017). Rice. Encyclopedia of Applied Plant Sciences, 2nd edition, Volume 3.es_CO
    dc.relation.referencesCargnello, M., y Roux, P. (2011). Activation and Function of the MAPKs and Their Substrates, the MAPK-Activated Protein Kinases. Microbiology and Molecular Biology Reviews. Vol. 75, No. 1, p. 50–83.es_CO
    dc.relation.referencesCastaño, J. (1998). Etiología del manchado de grano en arroz de secano en Colombia e Indonesia. Fitopatología. Vol. 12.es_CO
    dc.relation.referencesCasteel, M., Nielsen, C., Kothlow, S., Dietrich, R., & Märtlbauer, E. (2010). Impact of DUSP1 on the apoptotic potential of deoxynivalenol in the epithelial cell line HepG2. Toxicology Letters, Vol. 199(1), p. 43–50.es_CO
    dc.relation.referencesCastilla, Y., Mercado, I., Mendoza, V., Monroy, M. (2011). Determinación y cuantificación de los niveles de aflatoxinas en bollos de mazorca producidos en Arjona (Departamento de Bolívar- Colombia). AVANCES Investigación en ingeneria. Vol. 8(1), p. 71-6.es_CO
    dc.relation.referencesCetin, Y., y Bullerman, L. (2005). Cytotoxicity of Fusarium mycotoxins to mammalian cell cultures as determined by the MTT bioassay. Bullerman. Food and Chemical Toxicology. Vol. 43, p. 755–764.es_CO
    dc.relation.referencesChampagne, E., Wood, D., Juliano, B., y Bechtel, D. (2004). The rice grain and its gross composition, In: Champagne, E.T. (Ed.), Rice: Chemistry and Technology. 3rd ed. American Association of Cereal Chemists, St. Paul, MN, pp. 77–107.es_CO
    dc.relation.referencesChannaiah, L., & Maier, D. E. (2014). Best stored maize management practices for the prevention of mycotoxin contamination. Mycotoxin Reduction in Grain Chains, p. 78–88. doi: 10.1002/9781118832790.ch6es_CO
    dc.relation.referencesChaudari, N., Talwar, P., Parimisetty, A., d´Hellencourt, C., Ravanan, P. (2014). A molecular web: endoplasmic reticulum stress, inflammation, and oxidative stress. Frontiers in Cellular Neuroscience, Vol. 8. doi:10.3389/fncel.2014.00213es_CO
    dc.relation.referencesCheng, Y, y Yang, J. (2011). Survival and death of endoplasmic-reticulum-stressed cells: role of autophagy. WorldJ Biol Chem. Vol. 2, p. 226–231.es_CO
    dc.relation.referencesChicagui, J., y Echeverría, E. (2015). Estado de la investigación a nivel mundial sobre la micotoxina deoxinivalenol (DON) durante los últimos cinco años (2010-2015). UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS. Bogotá.es_CO
    dc.relation.referencesChoi, J., Lee, S., Nah, J., Kim, H., Paek, Ji., Lee, S., Ham., Hong, S., et al. (2018). Species composition of and fumonisin production by the Fusarium fujikuroi species complex isolated from Korean cereals. International Journal of Food Microbiology. Vol 267, p. 62–69.es_CO
    dc.relation.referencesCole, R., Scheweikert, M., Jarvis, B. (2003). Handbook of Secondary Fungal Metabolites, Vols. I–III. Academic Press, CA, USAes_CO
    dc.relation.referencesComi, G., e Iacumin, L. (2013). Ecology of moulds during the pre-ripening and ripening of San Daniele dry cured ham. Food Research Int. Vol. 54, p. 1113-1119.es_CO
    dc.relation.referencesCommission of the European Communities, (2006). Commission recommendation of 17 August 2006 on the presence of deoxynivalenol, zearalenone, ochratotin A, T-2 and HT-2 and fumonisins in products intended for animal feeding. Off. J. Eur. Union L Vol. 229, p. 7–9.es_CO
    dc.relation.referencesCosta S, Schwaiger S, Cervellati R, Stuppner H, Speroni E, Guerra MC. (2009). In vitro evaluation of the chemoprotective action mechanisms of leontopodic acid against aflatoxin B1 and deoxynivalenol-induced cell damage. J Appl Toxicol. Vol. 29, p. 7- 14.es_CO
    dc.relation.referencesCostantini, S., Di Bernardo, G., Cammarota, M., Castello, G., Colonna, G. (2013). Gene expression signature of human HepG2 cell line. Gene, Vol. 518(2), p. 335–345.es_CO
    dc.relation.referencesCuevas, A. (2012). El clima y el cultivo del arroz en Norte de Santander. Revista Arroz. Vol. 60 (497), p. 4-8.es_CO
    dc.relation.referencesDANE – FEDEARROZ. (2017). 4° Censo Nacional Arrocero Año 2016. Actualizado el 10 de febrero de 2017. Recuperado el 14 de septiembre del 2018. Véase en internet: http://www.dane.gov.co/files/investigaciones/agropecuario/censo-nacional- arrocero/boletin-tecnico-4to-censo-nacional-arrocero-2016.pdfes_CO
    dc.relation.referencesDANE. (2017). Encuesta Nacional Agropecuaria ENA-2016. Actualizado el 4 de agosto de 2017. Recuperado el 14 de septiembre del 2018. Véase en internet: https://www.dane.gov.co/files/investigaciones/agropecuario/enda/ena/2016/boletin_ ena_2016.pdfes_CO
    dc.relation.referencesDas, A., Raychaudhuri, U., & Chakraborty, R. (2011). Cereal based functional food of Indian subcontinent: A review. Journal of Food Science and Technology. Vol. 49, p. 665– 672.es_CO
    dc.relation.referencesDe Ruyck, K., De Boevre, M., Huybrechts, I. y De Saeger, S. (2015). Dietary mycotoxins, co-exposure, and carcinogenesis in humans: short review. Mutation Research/Reviews in Mutation Research. Vol. 766, p. 32-41.es_CO
    dc.relation.referencesDel Ponte, E., Garda-Buffon, J., Badiale-Furlong, E. (2012). Deoxynivalenol and nivalenol in commercial wheat grain related to Fusarium head blight epidemics in southern Brazil. Food Chemistry. Vol. 132, p. 1087–1091.es_CO
    dc.relation.referencesDeng, C., Ji, C., Qin, W., Cao, X., Zhong, J., Li, Y., Srinivas, S., Feng, Y., Deng, X. (2016). Deoxynivalenol inhibits proliferation and induces apoptosis in humanumbilical vein endothelial cells. Environmental Toxicology and Pharmacology. Vol.43, P. 232–241.es_CO
    dc.relation.referencesDíaz, G., Krska, R., y Sulyok, M. (2015). Mycotoxins and cyanogenic glycosides in staple foods of three indigenous people of the Colombian Amazon. Food Additives & Contaminants: Part B, DOI: 10.1080/19393210.2015.1089948es_CO
    dc.relation.referencesDíaz, G., Perilla, N., & Rojas, Y. (2001). Occurrence of aflatoxins in selected colombian foods. Mycotoxin Research, 17(1), 15–20.es_CO
    dc.relation.referencesDíaz, G., y Céspedes, A. (1997). Natural occurrence of zeralenone in feeds and feedstuffs used in poultry and pig nutrition in colombia. Mycotoxin Research, Vol. 13(2), p. 81–es_CO
    dc.relation.referencesDinu, D., Bodea, G., Ceapa, C., Munteanu, M., Roming, F., Serban, A., Hermenean A., Costache, M., Zarnescu, O., y Dinischiotu, A. (2011). Adapted response of the antioxidant defense system to oxidative stress induced by deoxynivalenol in Hek-293 cells. Toxicon, Vol. 57, p. 1023–1032.es_CO
    dc.relation.referencesDöll, S., y Dänicke, S. (2011). The Fusarium toxins deoxynivalenol (DON) and zearalenone (ZON) in animal feeding. Preventive Veterinary Medicine. Vol. 102, P. 132– 145.es_CO
    dc.relation.referencesDonato, M., Tolosa, L., y Gómez. M. (2014). Culture and Functional Characterization of Human Hepatoma HepG2 Cells. Protocols in In Vitro Hepatocyte Research, p. 77– 93. doi:10.1007/978-1-4939-2074-7_5es_CO
    dc.relation.referencesDragomir, B., Munteanu, M., Dinu, D., Serban, A., Roming, F., Costache, M., Dinischiotu, A., (2009). Influence of deoxynivalenol on the oxidative status of HepG2 cells. Rom. Biotech. Lett. Vol. 14, p. 4349–4359.es_CO
    dc.relation.referencesEckhardt, J., Santurio, J., Zanette, R., Rosa, A., Scher, A., Dal Pozzo, M., Alves, S., Ferreiro, L. (2014). Efficacy of a Brazilian calcium montmorillonite against toxic effects of dietary aflatoxins on broilers reared to market weight. Br. Poult. Sci. Vol. 55, p. 215- 220.es_CO
    dc.relation.referencesEdwards, S. G., Dickin, E. T., MacDonald, S., Buttler, D., Hazel, C. M., Patel, S., et al. (2011). Distribution of Fusarium mycotoxins in UK wheat mill fractions. Food Additives and Contaminants, Vol. 28, p. 1694-1704.es_CO
    dc.relation.referencesEFSA. (2004). Opinion of the scientific panel on contaminants in the food chain on a request from the commission related to deoxynivalenol (DON) as undesirable substance in animal feed. EFSA J. 73, 1–41, Available http://www.efsa.eu.int/.es_CO
    dc.relation.referencesEFSA. (2013). Deoxynivalenol in food and feed: Occurrence and exposure, EFSA Journal, Vol. 11 (10), 3379.es_CO
    dc.relation.referencesElmore, S. (2007). Apoptosis: A Review of Programmed Cell Death. Toxicologic Pathology, Vol. 35(4), p. 495–516.es_CO
    dc.relation.referencesEriksen, G. (2003). Metabolism and toxicity of trichothecenes. Doctoral thesis, Swedish University of Agricultural Science. Disponible en: http://diss-epsilon.slu.se/archive/ 00000287/01/Thesis.pdf.es_CO
    dc.relation.referencesEscrivá, L., Font, G., Manyes, L., (2015). In vivo toxicity studies of fusarium mycotoxins in the last decade: A review. Food and Chemical Toxicology. Vol. 78, P. 185-206.es_CO
    dc.relation.referencesEuropean Commission (EC), (2017). Commission Regulation (EC) No 1881/2006 of 19 December 2006 setting maximum levels for certain contaminants in foodstuffs. Document including amendments until August 2017. Disponible en: https://tinyurl.com/yd23m3q6.es_CO
    dc.relation.referencesFang, H., Zhi, Y., Yu, Z., Lynch, R., y XudongJia. (2018). The embryonic toxicity evaluation of Deoxynivalenol (DON) by murine embryonic stem cell test and human embryonic stem cell test models. Food Control. Vol. 86, p. 234-240.es_CO
    dc.relation.referencesFAO. (2003). Reglamentos a nivel mundial para las micotoxinas en los alimentos y en las raciones en el año 2003. Véase en internet: http://www.fao.org/3/a-y5499s.pdfes_CO
    dc.relation.referencesFAO. (2004). El arroz en el mundo: Colombia. Disponible en: http://www.fao.org/rice2004/es/p3.htm.es_CO
    dc.relation.referencesFAO. (2016). FAOSTAT. Online available: http://www.fao.org/faostat/en/#compare (Acceso 18 agosto 2017).es_CO
    dc.relation.referencesFAO. (2017). Rice Market Monitor. Online available: http://www.fao.org/economic/RMM (Acceso 20 December 2017).es_CO
    dc.relation.referencesFAO. (2017b). Seguimiento del mercado del arroz de la FAO. FAO vol. XX, Ed No 1. http://www.fao.org/fileadmin/templates/est/COMM_MARKETS_MONITORING/ Rice/Images/RMM/SMA_APR17.pdfes_CO
    dc.relation.referencesFavero, G., Woelflingseder, L., Braun, D., Puntscher, H., Kütt, M.-L., Dellafiora, L., Marko, D. (2018). Response of intestinal HT-29 cells to the trichothecene mycotoxin deoxynivalenol and its sulfated conjugates. Toxicology Letters, Vol. 295, p. 424–437.es_CO
    dc.relation.referencesFedearroz. (2017). Consumo de Arroz en Colombia. Recuperado el 15 de septiembre del 2018. Véase en internet: http://www.fedearroz.com.co/new/consumo.phpes_CO
    dc.relation.referencesFernández, C., Elmo, L., Waldner, T., & Ruiz, M.-J. (2018). Cytotoxic effects induced by patulin, deoxynivalenol and toxin T2 individually and in combination in hepatic cells (HepG2). Food and Chemical Toxicology, Vol. 120, p. 12–23.es_CO
    dc.relation.referencesFerre, F. (2016). Worldwide occurrence of mycotoxins in rice. Food Control 62, 291-298.es_CO
    dc.relation.referencesFlusberg, D., y Sorger, P. (2015). Surviving apoptosis: life-death signaling in single cells, Trends Cell Biol, Vol. 25, p. 446-458.es_CO
    dc.relation.referencesForoud, N., y Eudes, F. (2009). Trichothecenes in Cereal Grains. International Journal of Molecular Sciences, Vol. 10(1), p. 147–173.es_CO
    dc.relation.referencesGarcía, D., Ramos, A., Sanchis, V. y Marin, S. (2009). Predicting mycotoxins in foods: A review. Food Microbiology. Vol. 26, p. 757–769.es_CO
    dc.relation.referencesGimeno, A., Martins, M. (2011). Micotoxinas y micotoxicosis en animales y humanos. 3 edición.es_CO
    dc.relation.referencesGonzález, M., Pereyra, C., Ramirez, M., Rosa, C., Dalcero, A., Cavaglieri, L. (2008). Determination of mycobiota and mycotoxins in pig feed in central Argentina. Letters in applied microbiology, Vol.46, p. 555-561.es_CO
    dc.relation.referencesGordeziani, M., Adamia, G., Khatisashvili, G., & Gigolashvili, G. (2017). Programmed cell self-liquidation (apoptosis). Annals of Agrarian Science, Vol. 15(1), p. 148–154.es_CO
    dc.relation.referencesGouze, M., Laffitte, J., Rouimi, P., Loiseau, N., Oswald, I., Galtier, P., (2005). Effect of various doses of deoxynivalenol on liver xenobiotic metabolizing enzymes in mice. Food Chem. Toxicol. Vol. 27, p. 585–590.es_CO
    dc.relation.referencesGreen, D., y Kroemer, G. (2004). The pathophysiology of mitocondrial cell death. Science, Vol. 305, p. 626‐629.es_CO
    dc.relation.referencesGrilo, A. L., & Mantalaris, A. (2019). Apoptosis: A mammalian cell bioprocessing perspective. Biotechnology Advances. Vol. 37(3), p. 459-475.es_CO
    dc.relation.referencesGrove, J., (2007). The trichothecenes and their biosynthesis. Progress in the Chemistry of Organic Natural Products Vol. 88, p. 63–130.es_CO
    dc.relation.referencesGuo, C., Sun, L., Chen, X., Zhang, D. (2013). Oxidative stress, mitochondrial damage and neurodegenerative diseases. Neural Regen Res. Vol. 8(21), p. 2003–2014.es_CO
    dc.relation.referencesHe, T., Zhou, T., Young, C., Boland, G., y Scott, P. (2010). Chemical and biological transformations for detoxification of trichothecene mycotoxins in human and animal food chains: a review. rends in Food Science & Technology. Vol. 21, p. 67-76.es_CO
    dc.relation.referencesHirst, J. y Stedman, O. (1967). Long-distance spore transport: methods of measurement, vertical spore profiles and the detection of immigrant spores. Journal of general microbiology, Vol. 48(3), p. 329–55.es_CO
    dc.relation.referencesHoffmeister, D., y Keller, N. (2007). Natural products of filamentous fungi: enzymes, genes, and their regulation. Nat Prod Rep. Vol. 24, p. 393–416. doi:10.1039/b603084j.es_CO
    dc.relation.referencesHou, Y., Zhao, Y., Xiong, B., Cui, X., Kim, N., Xu, Y., Sun, S. (2013) Mycotoxin-containing diet causes oxidative stress in the mouse. PLoS One Vol. 8(3) e60374es_CO
    dc.relation.referencesHove, M., De Boevre, M., Lachat, C., Jacxsens, L., Nyanga, L.K., De Saeger S. (2016). Occurrence and risk assessment of mycotoxins in subsistence farmed maize from Zimbabwe. Food Control Vol. 69, p. 36-44.es_CO
    dc.relation.referencesHuang, D., Cui, L., Dai, M., Wang, X., Wu, Q., Hussain, H.I., Yuan, Z., (2019b). Mitochondrion: a new molecular target and potential treatment strategies against trichothecenes, Trends in Food Science & Technology, https://doi.org/10.1016/j.tifs.2019.03.004.es_CO
    dc.relation.referencesHuang, D., Cui, L., Sajid, A., Zainab, F., Wu, Q., Wang, X., & Yuan, Z. (2019a). The epigenetic mechanisms in Fusarium mycotoxins induced toxicities. Food and Chemical Toxicology. Vol. 123, p. 595-601.es_CO
    dc.relation.referencesHuis in’t Veld, J.H.J. (1996). Microbial and biochemical spoilage of foods: an overview. Int. J. Food Microbiol. 33, 1–18.es_CO
    dc.relation.referencesHundie, G., Woldemeskel, D., Gessesse, A. (2016). Evaluation of Direct Colorimetric MTT Assay for Rapid Detection of Rifampicin and Isoniazid Resistance in Mycobacterium tuberculosis. PLoS One. Vol 12(2).es_CO
    dc.relation.referencesHuong, B., Tuyen, L., Do, T., Madsen, H., Brimer, L., Dalsgaard, A. (2016). Aflatoxins and fumonisins in rice and maize staple cereals in Northern Vietnam and dietary exposure in different ethnic groups. Food Control. Vol. 70, p. 191-200.es_CO
    dc.relation.referencesIARC. (2002). International agency for research on cancer iarc monographs on the evaluation of carcinogenic risks to humans. In IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. Lyon: IARC Press, pp. 1–601.es_CO
    dc.rights.accessrightshttp://purl.org/coar/access_right/c_abf2es_CO
    dc.type.coarversionhttp://purl.org/coar/resource_type/c_2df8fbb1es_CO
    Aparece en las colecciones: Biología

    Ficheros en este ítem:
    Fichero Descripción Tamaño Formato  
    Garzón _2019_TG.pdfGarzón _2019_TG2,44 MBAdobe PDFVisualizar/Abrir


    Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.