• Repositorio Institucional Universidad de Pamplona
  • Trabajos de pregrado y especialización
  • Facultad de Ingenierías y Arquitectura
  • Ingeniería Industrial
  • Por favor, use este identificador para citar o enlazar este ítem: http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/5523
    Registro completo de metadatos
    Campo DC Valor Lengua/Idioma
    dc.contributor.authorRodríguez Guerrero, Fabián Leonardo.-
    dc.date.accessioned2022-12-16T20:04:05Z-
    dc.date.available2020-03-17-
    dc.date.available2022-12-16T20:04:05Z-
    dc.date.issued2020-
    dc.identifier.citationRodríguez Guerrero, F. L. (2019). Tecnologías no convencionales que transforman energía eléctrica a energía térmica para corte de metales: una revisión [Trabajo de Grado Pregrado, Universidad de Pamplona]. Repositorio Hulago Universidad de Pamplona. http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/5523es_CO
    dc.identifier.urihttp://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/5523-
    dc.descriptionLas tecnologías de mecanizado no convencional UCM, son aquellas que utilizan energías diferentes a la energía mecánica para realizar mecanizados complejos, y en las cuales la herramienta de corte no llega a toca el material que se quiere cortar. Las tecnologías de mecanizado no convencional de tipo termoeléctrico hacen parte de las UCM y se caracterizan por transformar energía eléctrica en energía térmica por una diferencia de potencial, por la ionización de sustancias dieléctricas para crear chispas con elevadas temperaturas y con la amplificación de luz. Este artículo presenta una revisión bibliográfica de la aplicación de las tecnologías no convencionales de fabricación que transforman energía eléctrica a térmica de mayor relevancia, con el fin de exponer aquellos que son más conveniente para cortar metales de mayor uso en la industria, así como sus beneficios y retos más sobresalientes. Diferentes estudios experimentales evidenciaron las ventajas de este tipo de mecanizado frente al tradicional, brindando soluciones para el corte de distintos tipos de metales como las súper-aleaciones y acero. Se pudo concluir que a pesar de que la UMC de tipo térmico consume mayor energía, es más costoso de implementar y presenta algunos retos como la generación de capa de refundición y daño por calor, también ofrece mejores beneficios a las industrias más exigentes en cuanto a calidad y tiempo de mecanizado.es_CO
    dc.description.abstractUCM unconventional machining technologies are those that use energies other than mechanical energy to perform complex machining, and in which the cutting tool does not touch the material to be cut. Non-conventional thermoelectric machining technologies are part of the UCM and are characterized by transforming electrical energy into thermal energy by a difference in potential, by ionization of dielectric substances to create sparks at high temperatures and with the amplification of light. This article presents a bibliographic review of the application of non-conventional manufacturing technologies that convert electrical energy to thermal energy of greater relevance, in order to expose those that are most suitable for cutting metals of greater use in industry, as well as their most outstanding benefits and challenges. Different experimental studies evidenced the advantages of this type of machining as opposed to the traditional one, offering solutions for the cutting of different types of metals such as superalloys and steel. It was concluded that although the thermal type WBU consumes more energy, is more expensive to implement and presents some challenges such as the generation of cast layer and heat damage, it also offers better benefits to the most demanding industries in terms of quality and machining time.es_CO
    dc.format.extent15es_CO
    dc.format.mimetypeapplication/pdfes_CO
    dc.language.isoeses_CO
    dc.publisherUniversidad de Pamplona – Facultad de Ingenierías y Arquitectura.es_CO
    dc.subjectMecanizado no convencional.es_CO
    dc.subjectElectroerosión.es_CO
    dc.subjectLáser.es_CO
    dc.subjectPlasma.es_CO
    dc.subjectHaz de electrones.es_CO
    dc.subjectMetales.es_CO
    dc.titleTecnologías no convencionales que transforman energía eléctrica a energía térmica para corte de metales: una revisión.es_CO
    dc.typehttp://purl.org/coar/resource_type/c_7a1fes_CO
    dc.date.accepted2019-12-17-
    dc.relation.referencesAnanthakumar, K., Rajamani, D., Balasubramanian, E., & Davim, J. P. (2019). Measurement and optimization of multi-response characteristics in plasma arc cutting of Monel 400 TM using RSM and TOPSIS. Measurement, 135, 725–737. https://doi.org/10.1016/j.measurement.2018.12.010es_CO
    dc.relation.referencesBhowmick, S., Basu, J., Majumdar, G., & Bandyopadhyay, A. (2018). Experimental study of plasma arc cutting of AISI 304 stainless steel. Materials Today: Proceedings, 5(2), 4541–4550. https://doi.org/10.1016/j.matpr.2017.12.024es_CO
    dc.relation.referencesBiri, C., Marinescu, V., Bologa, O., Breaz, R., Deac, C., & Tera, M. (2010). Improving the Manufacturing Accuracy of the Profiling Machines. 335–338. https://doi.org/10.3182/20100908-3-PT-3007.00077es_CO
    dc.relation.referencesBrant, A., & Sundaram, M. (2016). A Novel Electrochemical Micro Additive Manufacturing Method of Overhanging Metal Parts Without Reliance on Support Structures. Procedia Manufacturing, 5, 928–943. https://doi.org/10.1016/j.promfg.2016.08.081es_CO
    dc.relation.referencesChaitanya, A. K., Babu, D. K., & Kumar, K. V. N. G. (2019). Experimental study on surface roughness by using abrasive jet machine. Materials Today: Proceedings, (xxxx). https://doi.org/10.1016/j.matpr.2019.05.343es_CO
    dc.relation.referencesChandra, B., & Singh, H. (2015). Machining of aluminium metal matrix composites with Electrical discharge machining - A Review. Materials Today: Proceedings, 2(4–5), 1665–1671. https://doi.org/10.1016/j.matpr.2015.07.094es_CO
    dc.relation.referencesDuan, W., Mei, X., Fan, Z., Li, J., Wang, K., & Zhang, Y. (2019). Electrochemical corrosion assisted laser drilling of micro-hole without recast layer. Optik - International Journal for Light and Electron Optics, 163577. https://doi.org/10.1016/j.ijleo.2019.163577es_CO
    dc.relation.referencesDwivedi, A. P., & Choudhury, S. K. (2016). Increasing the Performance of EDM Process Using Tool Rotation Methodology for Machining AISI D3 Steel. 46, 131–134. https://doi.org/10.1016/j.procir.2016.03.207es_CO
    dc.relation.referencesGamage, J. R., & Desilva, A. K. M. (2015). Assessment of research needs for sustainability of unconventional machining processes. Procedia CIRP, 26, 385–390. https://doi.org/10.1016/j.procir.2014.07.096es_CO
    dc.relation.referencesGangil, M., Pradhan, M. K., & Purohit, R. (2017). Review on modelling and optimization of electrical discharge machining process using modern Techniques. Materials Today: Proceedings, 4(2), 2048–2057. https://doi.org/10.1016/j.matpr.2017.02.050es_CO
    dc.relation.referencesGowthaman, P. S., & Jeyakumar, S. (2019). A Review on machining of High Temperature Aeronautics Super- alloys using WEDM. Materials Today: Proceedings, 18, 4782–4791. https://doi.org/10.1016/j.matpr.2019.07.466es_CO
    dc.relation.referencesGroover, M. (2011). fundamentos de manufactura moderna (1ra edicio).es_CO
    dc.relation.referencesGuimarães, B., Figueiredo, D., Fernandes, C. M., Silva, F. S., Miranda, G., & Carvalho, O. (2019). Laser machining of WC-Co green compacts for cutting tools manufacturing. International Journal of Refractory Metals & Hard Materials, 81(February), 316–324. https://doi.org/10.1016/j.ijrmhm.2019.03.018es_CO
    dc.relation.referencesIbarra, G. G. (2014). ESTUDIO DE MAQUINABILIDAD DE 2 SUPERALEACIONES INCONEL 617 Y 718 (UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN). Retrieved from http://eprints.uanl.mx/3991/1/1080253632.pdfes_CO
    dc.relation.referencesMaharana, H. S., Kumar, R., Murty, S. V. S. N., Ramkumar, J., & Mondal, K. (2019). Surface micro-texturing of dual phase steel and copper by combining laser machining and electrochemical dissolution. Journal ofes_CO
    dc.relation.referencesMouralova, K, Kovar, J., Klakurkova, L., Bednar, J., Benes, L., & Zahradnicek, R. (2018). Analysis of surface morphology and topography of pure aluminium machined using WEDM. Measurement, 114(September 2017), 169–176. https://doi.org/10.1016/j.measurement.2017.09.040es_CO
    dc.relation.referencesMouralova, Katerina, Klakurkova, L., Matousek, R., Prokes, T., Hrdy, R., & Kana, V. (2018). Influence of the cut direction through the semi-finished product on the occurrence of cracks for X210Cr12 steel using WEDM. Archives of Civil and Mechanical Engineering, 18(4), 1318–1331. https://doi.org/10.1016/j.acme.2018.04.004es_CO
    dc.relation.referencesNagimova, A., & Perveen, A. (2019). A review on Laser Machining of hard to cut materials. Materials Today: Proceedings, 18, 2440–2447. https://doi.org/10.1016/j.matpr.2019.07.092es_CO
    dc.relation.referencesPant, P., & Bharti, P. S. (2019). Electrical Discharge Machining ( EDM ) of nickel-based nimonic alloys : A review. Materials Today: Proceedings, (xxxx). https://doi.org/10.1016/j.matpr.2019.09.007es_CO
    dc.relation.referencesParmar, V., Kumar, A., Prakash, G. V., & Datta, S. (2019). Investigation , modelling and validation of material separation mechanism during fi ber laser machining of medical grade titanium alloy Ti6Al4V and stainless steel SS316L. Mechanics of Materials, 137(February), 103125. https://doi.org/10.1016/j.mechmat.2019.103125es_CO
    dc.relation.referencesPatel, P., Nakum, B., Abhishek, K., & Kumar, V. R. (2018). Optimization of Surface Roughness in Plasma Arc Cutting of AISID2 Steel Using TLBO. Materials Today: Proceedings, 5(9), 18927–18932. https://doi.org/10.1016/j.matpr.2018.06.242es_CO
    dc.relation.referencesPatel, P., Soni, S., Kotkunde, N., & Khanna, N. (2018). Study the effect of process parameters in plasma arc cutting on Quard-400 material using analysis of variance. Materials Today: Proceedings, 5(2), 6023–6029. https://doi.org/10.1016/j.matpr.2017.12.206es_CO
    dc.relation.referencesSalonitis, K., & Vatousianos, S. (2012). Experimental Investigation of the Plasma Arc Cutting Process. 3, 287–292. https://doi.org/10.1016/j.procir.2012.07.050es_CO
    dc.relation.referencesStoker, M. R. (2008). Electricity and magnetism. Anaesthesia and Intensive Care Medicine, 10(1), 62–64. https://doi.org/10.1016/j.mpaic.2008.11.013es_CO
    dc.relation.referencesSuchánek, L., & Zetková, I. (2015). Evaluation of the Surface Small Holes Drilled by Unconventional Methods. Procedia Engineering, 100, 1582–1590. https://doi.org/10.1016/j.proeng.2015.01.531es_CO
    dc.relation.referencesSureban, R., Kulkarni, V. N., & Gaitonde, V. N. (2019). Modern Optimization Techniques for Advanced Machining Processes – A Review. Materials Today: Proceedings, 18, 3034–3042. https://doi.org/10.1016/j.matpr.2019.07.175es_CO
    dc.relation.referencesv. Alderete gatica. (2013). Planeacion y manufactura de un herramental mecanico para el desprendimiento de la cascara de haba seca. universidad Tecnologica de la mixtecaes_CO
    dc.relation.referencesWu, H., Zou, P., Yan, W., Cao, J., & Ehmann, K. F. (2019). MICRO WAVE PATTERNS BY VIBRATING-LENS ASSISTED LASER MACHINING. Journal of Materials Processing Tech., 116424. https://doi.org/10.1016/j.jmatprotec.2019.116424es_CO
    dc.relation.referencesZ. Q. Deng, Y. W. Zhu, F. Wang, X. Gu, D. Y. (2017). ANALYSIS AND EXPERIMENTAL STUDY OF VIBRATION SYSTEM CHARACTERISTICS OF ULTRASONIC COMPOUND ELECTRICAL MACHINING. 49(1), 37–44. https://doi.org/10.1007/s11223-017-9839-7es_CO
    dc.relation.referencesZhang, Y., Xu, Z., Wang, Y., Ni, Q., & Ling, X. (2019). Surface-improvement mechanism of hybrid electrochemical discharge process using variable- amplitude pulses. Chinese Journal of Aeronautics, (October). https://doi.org/10.1016/j.cja.2019.09.003es_CO
    dc.rights.accessrightshttp://purl.org/coar/access_right/c_abf2es_CO
    dc.type.coarversionhttp://purl.org/coar/resource_type/c_2df8fbb1es_CO
    Aparece en las colecciones: Ingeniería Industrial

    Ficheros en este ítem:
    Fichero Descripción Tamaño Formato  
    Rodríguez_2019_TG.pdfRodríguez_2019_TG899,04 kBAdobe PDFVisualizar/Abrir


    Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.