Por favor, use este identificador para citar o enlazar este ítem:
http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/5523
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | Rodríguez Guerrero, Fabián Leonardo. | - |
dc.date.accessioned | 2022-12-16T20:04:05Z | - |
dc.date.available | 2020-03-17 | - |
dc.date.available | 2022-12-16T20:04:05Z | - |
dc.date.issued | 2020 | - |
dc.identifier.citation | Rodríguez Guerrero, F. L. (2019). Tecnologías no convencionales que transforman energía eléctrica a energía térmica para corte de metales: una revisión [Trabajo de Grado Pregrado, Universidad de Pamplona]. Repositorio Hulago Universidad de Pamplona. http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/5523 | es_CO |
dc.identifier.uri | http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/5523 | - |
dc.description | Las tecnologías de mecanizado no convencional UCM, son aquellas que utilizan energías diferentes a la energía mecánica para realizar mecanizados complejos, y en las cuales la herramienta de corte no llega a toca el material que se quiere cortar. Las tecnologías de mecanizado no convencional de tipo termoeléctrico hacen parte de las UCM y se caracterizan por transformar energía eléctrica en energía térmica por una diferencia de potencial, por la ionización de sustancias dieléctricas para crear chispas con elevadas temperaturas y con la amplificación de luz. Este artículo presenta una revisión bibliográfica de la aplicación de las tecnologías no convencionales de fabricación que transforman energía eléctrica a térmica de mayor relevancia, con el fin de exponer aquellos que son más conveniente para cortar metales de mayor uso en la industria, así como sus beneficios y retos más sobresalientes. Diferentes estudios experimentales evidenciaron las ventajas de este tipo de mecanizado frente al tradicional, brindando soluciones para el corte de distintos tipos de metales como las súper-aleaciones y acero. Se pudo concluir que a pesar de que la UMC de tipo térmico consume mayor energía, es más costoso de implementar y presenta algunos retos como la generación de capa de refundición y daño por calor, también ofrece mejores beneficios a las industrias más exigentes en cuanto a calidad y tiempo de mecanizado. | es_CO |
dc.description.abstract | UCM unconventional machining technologies are those that use energies other than mechanical energy to perform complex machining, and in which the cutting tool does not touch the material to be cut. Non-conventional thermoelectric machining technologies are part of the UCM and are characterized by transforming electrical energy into thermal energy by a difference in potential, by ionization of dielectric substances to create sparks at high temperatures and with the amplification of light. This article presents a bibliographic review of the application of non-conventional manufacturing technologies that convert electrical energy to thermal energy of greater relevance, in order to expose those that are most suitable for cutting metals of greater use in industry, as well as their most outstanding benefits and challenges. Different experimental studies evidenced the advantages of this type of machining as opposed to the traditional one, offering solutions for the cutting of different types of metals such as superalloys and steel. It was concluded that although the thermal type WBU consumes more energy, is more expensive to implement and presents some challenges such as the generation of cast layer and heat damage, it also offers better benefits to the most demanding industries in terms of quality and machining time. | es_CO |
dc.format.extent | 15 | es_CO |
dc.format.mimetype | application/pdf | es_CO |
dc.language.iso | es | es_CO |
dc.publisher | Universidad de Pamplona – Facultad de Ingenierías y Arquitectura. | es_CO |
dc.subject | Mecanizado no convencional. | es_CO |
dc.subject | Electroerosión. | es_CO |
dc.subject | Láser. | es_CO |
dc.subject | Plasma. | es_CO |
dc.subject | Haz de electrones. | es_CO |
dc.subject | Metales. | es_CO |
dc.title | Tecnologías no convencionales que transforman energía eléctrica a energía térmica para corte de metales: una revisión. | es_CO |
dc.type | http://purl.org/coar/resource_type/c_7a1f | es_CO |
dc.date.accepted | 2019-12-17 | - |
dc.relation.references | Ananthakumar, K., Rajamani, D., Balasubramanian, E., & Davim, J. P. (2019). Measurement and optimization of multi-response characteristics in plasma arc cutting of Monel 400 TM using RSM and TOPSIS. Measurement, 135, 725–737. https://doi.org/10.1016/j.measurement.2018.12.010 | es_CO |
dc.relation.references | Bhowmick, S., Basu, J., Majumdar, G., & Bandyopadhyay, A. (2018). Experimental study of plasma arc cutting of AISI 304 stainless steel. Materials Today: Proceedings, 5(2), 4541–4550. https://doi.org/10.1016/j.matpr.2017.12.024 | es_CO |
dc.relation.references | Biri, C., Marinescu, V., Bologa, O., Breaz, R., Deac, C., & Tera, M. (2010). Improving the Manufacturing Accuracy of the Profiling Machines. 335–338. https://doi.org/10.3182/20100908-3-PT-3007.00077 | es_CO |
dc.relation.references | Brant, A., & Sundaram, M. (2016). A Novel Electrochemical Micro Additive Manufacturing Method of Overhanging Metal Parts Without Reliance on Support Structures. Procedia Manufacturing, 5, 928–943. https://doi.org/10.1016/j.promfg.2016.08.081 | es_CO |
dc.relation.references | Chaitanya, A. K., Babu, D. K., & Kumar, K. V. N. G. (2019). Experimental study on surface roughness by using abrasive jet machine. Materials Today: Proceedings, (xxxx). https://doi.org/10.1016/j.matpr.2019.05.343 | es_CO |
dc.relation.references | Chandra, B., & Singh, H. (2015). Machining of aluminium metal matrix composites with Electrical discharge machining - A Review. Materials Today: Proceedings, 2(4–5), 1665–1671. https://doi.org/10.1016/j.matpr.2015.07.094 | es_CO |
dc.relation.references | Duan, W., Mei, X., Fan, Z., Li, J., Wang, K., & Zhang, Y. (2019). Electrochemical corrosion assisted laser drilling of micro-hole without recast layer. Optik - International Journal for Light and Electron Optics, 163577. https://doi.org/10.1016/j.ijleo.2019.163577 | es_CO |
dc.relation.references | Dwivedi, A. P., & Choudhury, S. K. (2016). Increasing the Performance of EDM Process Using Tool Rotation Methodology for Machining AISI D3 Steel. 46, 131–134. https://doi.org/10.1016/j.procir.2016.03.207 | es_CO |
dc.relation.references | Gamage, J. R., & Desilva, A. K. M. (2015). Assessment of research needs for sustainability of unconventional machining processes. Procedia CIRP, 26, 385–390. https://doi.org/10.1016/j.procir.2014.07.096 | es_CO |
dc.relation.references | Gangil, M., Pradhan, M. K., & Purohit, R. (2017). Review on modelling and optimization of electrical discharge machining process using modern Techniques. Materials Today: Proceedings, 4(2), 2048–2057. https://doi.org/10.1016/j.matpr.2017.02.050 | es_CO |
dc.relation.references | Gowthaman, P. S., & Jeyakumar, S. (2019). A Review on machining of High Temperature Aeronautics Super- alloys using WEDM. Materials Today: Proceedings, 18, 4782–4791. https://doi.org/10.1016/j.matpr.2019.07.466 | es_CO |
dc.relation.references | Groover, M. (2011). fundamentos de manufactura moderna (1ra edicio). | es_CO |
dc.relation.references | Guimarães, B., Figueiredo, D., Fernandes, C. M., Silva, F. S., Miranda, G., & Carvalho, O. (2019). Laser machining of WC-Co green compacts for cutting tools manufacturing. International Journal of Refractory Metals & Hard Materials, 81(February), 316–324. https://doi.org/10.1016/j.ijrmhm.2019.03.018 | es_CO |
dc.relation.references | Ibarra, G. G. (2014). ESTUDIO DE MAQUINABILIDAD DE 2 SUPERALEACIONES INCONEL 617 Y 718 (UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN). Retrieved from http://eprints.uanl.mx/3991/1/1080253632.pdf | es_CO |
dc.relation.references | Maharana, H. S., Kumar, R., Murty, S. V. S. N., Ramkumar, J., & Mondal, K. (2019). Surface micro-texturing of dual phase steel and copper by combining laser machining and electrochemical dissolution. Journal of | es_CO |
dc.relation.references | Mouralova, K, Kovar, J., Klakurkova, L., Bednar, J., Benes, L., & Zahradnicek, R. (2018). Analysis of surface morphology and topography of pure aluminium machined using WEDM. Measurement, 114(September 2017), 169–176. https://doi.org/10.1016/j.measurement.2017.09.040 | es_CO |
dc.relation.references | Mouralova, Katerina, Klakurkova, L., Matousek, R., Prokes, T., Hrdy, R., & Kana, V. (2018). Influence of the cut direction through the semi-finished product on the occurrence of cracks for X210Cr12 steel using WEDM. Archives of Civil and Mechanical Engineering, 18(4), 1318–1331. https://doi.org/10.1016/j.acme.2018.04.004 | es_CO |
dc.relation.references | Nagimova, A., & Perveen, A. (2019). A review on Laser Machining of hard to cut materials. Materials Today: Proceedings, 18, 2440–2447. https://doi.org/10.1016/j.matpr.2019.07.092 | es_CO |
dc.relation.references | Pant, P., & Bharti, P. S. (2019). Electrical Discharge Machining ( EDM ) of nickel-based nimonic alloys : A review. Materials Today: Proceedings, (xxxx). https://doi.org/10.1016/j.matpr.2019.09.007 | es_CO |
dc.relation.references | Parmar, V., Kumar, A., Prakash, G. V., & Datta, S. (2019). Investigation , modelling and validation of material separation mechanism during fi ber laser machining of medical grade titanium alloy Ti6Al4V and stainless steel SS316L. Mechanics of Materials, 137(February), 103125. https://doi.org/10.1016/j.mechmat.2019.103125 | es_CO |
dc.relation.references | Patel, P., Nakum, B., Abhishek, K., & Kumar, V. R. (2018). Optimization of Surface Roughness in Plasma Arc Cutting of AISID2 Steel Using TLBO. Materials Today: Proceedings, 5(9), 18927–18932. https://doi.org/10.1016/j.matpr.2018.06.242 | es_CO |
dc.relation.references | Patel, P., Soni, S., Kotkunde, N., & Khanna, N. (2018). Study the effect of process parameters in plasma arc cutting on Quard-400 material using analysis of variance. Materials Today: Proceedings, 5(2), 6023–6029. https://doi.org/10.1016/j.matpr.2017.12.206 | es_CO |
dc.relation.references | Salonitis, K., & Vatousianos, S. (2012). Experimental Investigation of the Plasma Arc Cutting Process. 3, 287–292. https://doi.org/10.1016/j.procir.2012.07.050 | es_CO |
dc.relation.references | Stoker, M. R. (2008). Electricity and magnetism. Anaesthesia and Intensive Care Medicine, 10(1), 62–64. https://doi.org/10.1016/j.mpaic.2008.11.013 | es_CO |
dc.relation.references | Suchánek, L., & Zetková, I. (2015). Evaluation of the Surface Small Holes Drilled by Unconventional Methods. Procedia Engineering, 100, 1582–1590. https://doi.org/10.1016/j.proeng.2015.01.531 | es_CO |
dc.relation.references | Sureban, R., Kulkarni, V. N., & Gaitonde, V. N. (2019). Modern Optimization Techniques for Advanced Machining Processes – A Review. Materials Today: Proceedings, 18, 3034–3042. https://doi.org/10.1016/j.matpr.2019.07.175 | es_CO |
dc.relation.references | v. Alderete gatica. (2013). Planeacion y manufactura de un herramental mecanico para el desprendimiento de la cascara de haba seca. universidad Tecnologica de la mixteca | es_CO |
dc.relation.references | Wu, H., Zou, P., Yan, W., Cao, J., & Ehmann, K. F. (2019). MICRO WAVE PATTERNS BY VIBRATING-LENS ASSISTED LASER MACHINING. Journal of Materials Processing Tech., 116424. https://doi.org/10.1016/j.jmatprotec.2019.116424 | es_CO |
dc.relation.references | Z. Q. Deng, Y. W. Zhu, F. Wang, X. Gu, D. Y. (2017). ANALYSIS AND EXPERIMENTAL STUDY OF VIBRATION SYSTEM CHARACTERISTICS OF ULTRASONIC COMPOUND ELECTRICAL MACHINING. 49(1), 37–44. https://doi.org/10.1007/s11223-017-9839-7 | es_CO |
dc.relation.references | Zhang, Y., Xu, Z., Wang, Y., Ni, Q., & Ling, X. (2019). Surface-improvement mechanism of hybrid electrochemical discharge process using variable- amplitude pulses. Chinese Journal of Aeronautics, (October). https://doi.org/10.1016/j.cja.2019.09.003 | es_CO |
dc.rights.accessrights | http://purl.org/coar/access_right/c_abf2 | es_CO |
dc.type.coarversion | http://purl.org/coar/resource_type/c_2df8fbb1 | es_CO |
Aparece en las colecciones: | Ingeniería Industrial |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
Rodríguez_2019_TG.pdf | Rodríguez_2019_TG | 899,04 kB | Adobe PDF | Visualizar/Abrir |
Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.