• Repositorio Institucional Universidad de Pamplona
  • Trabajos de pregrado y especialización
  • Facultad de Ingenierías y Arquitectura
  • Ingeniería Mecatrónica
  • Por favor, use este identificador para citar o enlazar este ítem: http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/4215
    Registro completo de metadatos
    Campo DC Valor Lengua/Idioma
    dc.contributor.authorMendoza Peñaloza, Jose Alfredo.-
    dc.date.accessioned2022-11-05T00:04:55Z-
    dc.date.available2020-03-19-
    dc.date.available2022-11-05T00:04:55Z-
    dc.date.issued2020-
    dc.identifier.citationMendoza Peñaloza, J. A. (2019). Desarrollo de un sistema distribuido en SOC-FPGA para el control de un actuador robótico con interfaz IIC en conjunto con la Universidad de Brasilia – Brasil [Trabajo de Grado Pregrado, Universidad de Pamplona]. Repositorio Hulago Universidad de Pamplona. http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/4215es_CO
    dc.identifier.urihttp://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/4215-
    dc.descriptionEn este trabajo de tesis se expone el trabajo realiza en la pasantía de investigación en la universidad de Brasilia – Brasil, así como también el cómo también del convenio realizado entre la universidad de pamplona y la universidad de Brasilia. También se expondrán trabajos adicionales realzados. En el desarrollo del fundamento principal de la tesis comenzamos con la construcción de un nuevo actuador robótico compuesto por driver de motor, sensores de posición, sensores de corriente y un módulo de comunicación IIC que serán controlador mediante un sistema de control basado en módulos que trabajan en paralelo también llamado sistema en chip (SoC) implementado una tarjeta FPGA, el actuador robótico esta direccionado para formar parte de un nuevo diseño de mano robótica con mejor funcionalidad y más grados de libertad. También se desarrollarán actividades secundarias como la asistencia a clases de sistemas Bioinspirados que van enfocados las actividades como la participación a congresos y la publicación de artículos científicos en revistas indexadas. El actuador robótico se desarrollará a partir de diferentes técnicas de manufactura, de CAD/CAM de diseño electrónico y mecánico utilizando equipos de prototipado rápido de placas para componentes electrónicos SMD de LPKF protomat e Impresoras 3D disponibles en los laboratorios del campus universitario de la UNB e IFB en Brasilia, El controlador de este sistema será desarrollado en un SoC-FPGA de Xilinx en la placa de desarrollo Zybo con chipset Zynq-7010 que está compuesta de un procesador ARM Dual-Core Cortex A9 que permite realizar programar procesos en paralelo en su entorno de programación VHDL o Verilog. La ventaja de trabajar en este tipo de ambientes es que se puede controlar el actuador robótico en forma paralela. Esto traduce la capacidad de controlar varios actuadores al mismo tiempo con un solo chip, permitiendo tiempos de procesamiento se produzcan más gasto computacional, sin embrago este problema también se puede abordar y analizar para desarrollar el proceso con el menor gasto computacional posible y que posee una velocidad alta en la ejecución del proceso.es_CO
    dc.description.abstractIn this thesis work, the work carried out in the research internship at the University of Brasilia - Brazil is exposed, as well as the how also of the agreement made between the University of Pamplona and the University of Brasilia. Additional enhanced works will also be exhibited. In the development of the main basis of the thesis we begin with the construction of a new robotic actuator composed of motor driver, position sensors, current sensors and an IIC communication module that will be controller through a control system based on modules that work In parallel also called chip system (SoC) implemented an FPGA card, the robotic actuator is addressed to be part of a new robotic hand design with better functionality and more degrees of freedom. Secondary activities will also be developed, such as attendance at classes of Bio-inspired systems that focus on activities such as participation in conferences and the publication of scientific articles in indexed journals. The robotic actuator will be developed from different manufacturing techniques, from CAD/CAM of electronic and mechanical design using rapid plate prototyping equipment for SMK electronic components of LPKF protomat and 3D printers available in the laboratories of the university campus of UNB e IFB in Brasilia, The controller of this system will be developed in an Xilinx SoC-FPGA on the Zybo development board with Zynq-7010 chipset that is composed of an ARM Dual-Core Cortex A9 processor that allows you to program processes in parallel in your VHDL or Verilog programming environment. The advantage of working in these types of environments is that the robotic actuator can be controlled in parallel. This translates the ability to control several actuators at the same time with a single chip, allowing processing times to produce more computational expense, however this problem can also be addressed and analyzed to develop the process with the lowest possible computational expense and that has a high speed in the execution of the process.es_CO
    dc.format.extent57es_CO
    dc.format.mimetypeapplication/pdfes_CO
    dc.language.isoeses_CO
    dc.publisherUniversidad de Pamplona- Facultad de Ingenierías y Arquitectura.es_CO
    dc.subjectEl autor no proporciona la información sobre este ítem.es_CO
    dc.titleDesarrollo de un sistema distribuido en SOC-FPGA para el control de un actuador robótico con interfaz IIC en conjunto con la Universidad de Brasilia – Brasil.es_CO
    dc.typehttp://purl.org/coar/resource_type/c_7a1fes_CO
    dc.date.accepted2019-12-19-
    dc.relation.referencesSachin Maheshwari, V. A. Bartlett, Izzet Kale, Modelling, simulation and verification of 4-phase adiabatic logic design: A VHDL-Based approach, Integration, Volume 67, July 2019, Pages 144-154. https://doi.org/10.1016/j.vlsi.2019.01.007es_CO
    dc.relation.referencesDu-Juan Dong, Wen Liu, Mei-Juan Cai, Jin-Xing Wang, Xiao-Fan Zhao, Steroid hormone 20-hydroxyecdysone regulation of the very-high-density lipoprotein (VHDL) receptor phosphorylation for VHDL uptake, Insect Biochemistry and Molecular Biology, Volume 43, Issue 4, April 2013, Pages 328-335. https://doi.org/10.1016/j.ibmb.2013.02.001es_CO
    dc.relation.referencesGodofredo R. Garaya, Andrei Tchernykh, Alexander Yu. Drozdov, Visualization of VHDL-based simulations as a pedagogical tool for supporting computer science education, Journal of Computational Science, Volume 36, September 2019, 100652. https://doi.org/10.1016/j.jocs.2017.04.004es_CO
    dc.relation.referencesSanjeeb Mishra, Neeraj Kumar Singh, Vijayakrishnan Rousseau, SoC Design Fundamentals and Evolution, System on Chip Interfaces for Low Power Design, 2016, Pages 1-11. https://doi.org/10.1016/B978-0-12-801630-5.00001-3es_CO
    dc.relation.referencesXuecheng Du, Chaohui He, Shuhuan Liu, Analysis of sensitive blocks of soft errors in the Xilinx Zynq-7000 System-on-Chip, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Volume 940, 1 October 2019, Pages 125-128, https://doi.org/10.1016/j.nima.2019.06.015es_CO
    dc.relation.referencesGina R. Smith, FPGA Development Phases, FPGAs 101, 2010, Pages 43-55. https://doi.org/10.1016/B978-1-85617-706-1.00003-5es_CO
    dc.relation.referencesZoran Jakšić, Nicola Cadenelli, A highly parameterizable framework for Conditional Restricted Boltzmann Machine based workloads accelerated with FPGAs and OpenCL, Future Generation Computer Systems, Volume 104, March 2020, Pages 201-211, https://doi.org/10.1016/j.future.2019.10.025es_CO
    dc.relation.referencesWen Bai, Yadi Chen, Di Wua, Efficient temporal core maintenance of massive graphs, Information Sciences, Available online 9 November 2019. https://doi.org/10.1016/j.ins.2019.11.003es_CO
    dc.relation.referencesOussama Kerdjidj, Abbes Amira, Khalida Ghanem, An FPGA implementation of the matching pursuit algorithm for a compressed sensing enabled e-Health monitoring platform, Microprocessors and Microsystems, Volume 67, June 2019, Pages 131-139. https://doi.org/10.1016/j.micpro.2019.03.007es_CO
    dc.relation.referencesVinh Nguyena, Andrew Dugenske, An I2C based architecture for monitoring legacy manufacturing equipment, Manufacturing Letters, Volume 15, Part B, January 2018, Pages 67-70. https://doi.org/10.1016/j.mfglet.2017.12.018es_CO
    dc.relation.referencesF. Gomez-Bravo, J. Medina García, Plataforma Experimental para el Estudio de la Vulnerabilidad Hardware en los Robots Móviles: el Bus I2C como Caso de EstudioExperimental Platform for Studying Hardware Vulnerabilities on Mobile Robots: I2C Bus, a Case of Study, Revista Iberoamericana de Automática e Informática Industrial RIAI, Volume 14, Issue 2, April–June 2017, Pages 205-216. https://doi.org/10.1016/j.riai.2017.02.002es_CO
    dc.relation.referencesJesús Lázaro, Armando Astarloa, I2CSec: A secure serial Chip-to-Chip communication protocol, Journal of Systems Architecture, Volume 57, Issue 2, February 2011, Pages 206-213. https://doi.org/10.1016/j.sysarc.2010.12.001es_CO
    dc.relation.referencesJim Drew, Chapter 48 - Compact I2C-controllable quad synchronous step-down DC/DC regulator for power-conscious portable processors, Analog Circuit Design, Volume 3: Design Note Collection, 2015, Pages 105-106. https://doi.org/10.1016/B978-0-12-800001-4.00048-Xes_CO
    dc.relation.referencesKatrin Hecka, Helena Paterno, Fatigue resistance of ultrathin CAD/CAM ceramic and nanoceramic composite occlusal veneers, Dental Materials, Volume 35, Issue 10, October 2019, Pages 1370-1377. https://doi.org/10.1016/j.dental.2019.07.006es_CO
    dc.relation.referencesDaniel O. Bittner MD, Prognostic Value of Coronary CTA in Stable Chest Pain: CAD-RADS, CAC, and Cardiovascular Events in PROMISE, JACC: Cardiovascular Imaging, Available online 13 November 2019. https://doi.org/10.1016/j.jcmg.2019.09.012es_CO
    dc.relation.referencesZongze Lia, A preliminary study of a novel robotic system for pedicle screw fixation: A randomised controlled trial, Journal of Orthopaedic Translation, Available online 16 September 2019. https://doi.org/10.1016/j.jot.2019.09.002es_CO
    dc.relation.referencesK. Rahul, Hifjur Raheman, Vikas Paradkar, Design and development of a 5R 2DOF parallel robot arm for handling paper pot seedlings in a vegetable transplanter, Computers and Electronics in Agriculture, Volume 166, November 2019, 105014. https://doi.org/10.1016/j.compag.2019.105014es_CO
    dc.relation.referencesDechao Chena, Shuai Li, Liefa Liao, A recurrent neural network applied to optimal motion control of mobile robots with physical constraints, Applied Soft Computing, Volume 85, December 2019, 105880. https://doi.org/10.1016/j.asoc.2019.105880es_CO
    dc.relation.referencesPouya Panahandeh, Khalil Alipour, Bahram Tarvirdizadeh, Alireza Hadi, A kinematic Lyapunov-based controller to posture stabilization of wheeled mobile robots, Mechanical Systems and Signal Processing, Volume 134, 1 December 2019, 106319. https://doi.org/10.1016/j.ymssp.2019.106319es_CO
    dc.relation.referencesLucian Ribeiro da Silva, Rodolfo César Costa Flesch, Julio Elias Normey-Rico, Controlling industrial dead-time systems: When to use a PID or an advanced controller, ISA Transactions, Available online 12 September 2019. https://doi.org/10.1016/j.isatra.2019.09.008es_CO
    dc.relation.referencesMeena E. Girgis, Rania A. Fahmy, Ragia I. Badr, Optimal fractional-order PID control for plasma shape, position, and current in Tokamaks, Fusion Engineering and Design, Available online 15 October 2019, 111361. https://doi.org/10.1016/j.fusengdes.2019.111361es_CO
    dc.relation.referencesAldo Jonathan Muñoz-Vázquez, A fuzzy fractional-order control of robotic manipulators with PID error manifolds, Applied Soft Computing, Volume 83, October 2019, 105646. https://doi.org/10.1016/j.asoc.2019.105646es_CO
    dc.relation.referencesIgnacio Carlucho, Mariano De Paula, Gerardo G. Acosta, Double Q-PID algorithm for mobile robot control, Expert Systems with Applications, Volume 137, 15 December 2019, Pages 292-307. https://doi.org/10.1016/j.eswa.2019.06.066es_CO
    dc.relation.referencesYashan Xing, Jing Na, Ramon Costa-Castelló, Composite PID Control with Unknown Dynamics Estimator for Rotomagnet Plant, IFAC-PapersOnLine, Volume 51, Issue 4, 2018, Pages 817-822. https://doi.org/10.1016/j.ifacol.2018.06.174es_CO
    dc.relation.referencesChinnu Sabua, Christine Rejob, Sabna Kotta, Bioinspired and biomimetic systems for advanced drug and gene delivery, Journal of Controlled Release, Volume 287, 10 October 2018, Pages 142-155. https://doi.org/10.1016/j.jconrel.2018.08.033es_CO
    dc.relation.referencesGianluca Elia, Alessandro Margherita, Digital entrepreneurship ecosystem: How digital technologies and collective intelligence are reshaping the entrepreneurial process, Technological Forecasting and Social Change, Volume 150, January 2020, 119791. https://doi.org/10.1016/j.techfore.2019.119791es_CO
    dc.relation.referencesYu-Lin Jenga, Yong-Ming Huang, Dynamic learning paths framework based on collective intelligence from learners, Computers in Human Behavior, Volume 100, November 2019, Pages 242-251. https://doi.org/10.1016/j.chb.2018.09.012es_CO
    dc.relation.referencesLi Junxiang, Chen Jianqiao, Solving time-variant reliability-based design optimization by PSO-t-IRS: A methodology incorporating a particle swarm optimization algorithm and an enhanced instantaneous response surface, Reliability Engineering & System Safety, Volume 191, November 2019, 106580. https://doi.org/10.1016/j.ress.2019.106580es_CO
    dc.relation.referencesJun Tao, Gang Sun, Xinyu Wang, Robust optimization for a wing at drag divergence Mach number based on an improved PSO algorithm, Aerospace Science and Technology, Volume 92, September 2019, Pages 653-667. https://doi.org/10.1016/j.ast.2019.06.041es_CO
    dc.relation.referencesK. Martin Sagayam, D. Jude Hemanth, ABC algorithm based optimization of 1-D hidden Markov model for hand gesture recognition applications, Computers in Industry, Volume 99, August 2018, Pages 313-323. https://doi.org/10.1016/j.compind.2018.03.035es_CO
    dc.relation.referencesSara Najari, Gyul Gróf, Samrand Saeidi, Modeling and optimization of hydrogenation of CO2: Estimation of kinetic parameters via Artificial Bee Colony (ABC) and 57 Differential Evolution (DE) algorithms, International Journal of Hydrogen Energy, Volume 44, Issue 10, 22 February 2019, Pages 4630-4649. https://doi.org/10.1016/j.ijhydene.2019.01.020es_CO
    dc.relation.referencesMohamed Abd Elaziz, Lin Li, K. P. N. Jayasena, Multiobjective big data optimization based on a hybrid salp swarm algorithm and differential evolution, Applied Mathematical Modelling, Available online 7 November 2019. https://doi.org/10.1016/j.apm.2019.10.069es_CO
    dc.relation.referencesPinar Civicioglu, Erkan Besdok, Bernstain-search differential evolution algorithm for numerical function optimization, Expert Systems with Applications, Volume 138, 30 December 2019, 112831. https://doi.org/10.1016/j.eswa.2019.112831es_CO
    dc.relation.referencesYansong Hao, Liuyang Song, Lingli Cui, A three-dimensional geometric features based SCA algorithm for compound faults diagnosis, Measurement, Volume 134, February 2019, Pages 480-491. https://doi.org/10.1016/j.measurement.2018.10.098es_CO
    dc.relation.referencesSeyedali Mirjalili, SCA: A Sine Cosine Algorithm for solving optimization problems, Knowledge-Based Systems, Volume 96, 15 March 2016, Pages 120-133. https://doi.org/10.1016/j.knosys.2015.12.022es_CO
    dc.relation.referencesYuanhui Xiao, A fast algorithm for two-dimensional Kolmogorov–Smirnov two sample tests, Computational Statistics & Data Analysis, Volume 105, January 2017, Pages 53-58. https://doi.org/10.1016/j.csda.2016.07.014es_CO
    dc.relation.referencesSamuel N. Cohen, Timo Henckel, Gordon D. Menzies, Switching cost models as hypothesis tests, Economics Letters, Volume 175, February 2019, Pages 32-35. https://doi.org/10.1016/j.econlet.2018.11.014es_CO
    dc.relation.referencesHideki Kitamori, Iori Sumida, Evaluation of mouthpiece fixation devices for head and neck radiotherapy patients fabricated in PolyJet photopolymer by a 3D printer, Physica Medica, Volume 58, February 2019, Pages 90-98es_CO
    dc.rights.accessrightshttp://purl.org/coar/access_right/c_abf2es_CO
    dc.type.coarversionhttp://purl.org/coar/resource_type/c_2df8fbb1es_CO
    Aparece en las colecciones: Ingeniería Mecatrónica

    Ficheros en este ítem:
    Fichero Descripción Tamaño Formato  
    Mendoza_2019_TG.pdfMendoza_2019_TG2,46 MBAdobe PDFVisualizar/Abrir


    Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.