Por favor, use este identificador para citar o enlazar este ítem:
http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/3272
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | Suarez Lizarazo, Frank Uriel. | - |
dc.date.accessioned | 2022-10-01T20:56:18Z | - |
dc.date.available | 2021-01-02 | - |
dc.date.available | 2022-10-01T20:56:18Z | - |
dc.date.issued | 2021 | - |
dc.identifier.citation | Suarez Lizarazo, K. U. (2020). Producción de xilitol a partir de la fermentación de la xilosa por Saccharomyces Cerevisiae modificada [Trabajo de Grado Pregrado, Universidad de Pamplona]. Repositorio Hulago Universidad de Pamplona. http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/3272 | es_CO |
dc.identifier.uri | http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/3272 | - |
dc.description | En el presente trabajo de grado se evaluó la capacidad fermentativa en la producción de xilitol a partir de xilosa de la cepa mutante industrial Saccharomyces cerevisiae FMYX. Para ello, se realizó ensayos de fermentación de la xilosa, buscando determinar las mejores condiciones para la producción de xilitol; igualmente se evaluó la influencia de los inhibidores Hidroximetilfurfural (HMF) y Furfural. Los resultados permitieron determinar que dar paso a un crecimiento inicial en presencia de oxigeno hasta alcanzar una aerobiosis, a una temperatura de 30°C, 250 r.p.m y concentración del cultivo de S. cerevisiae de 1 OD; fueron las mejores condiciones para la producción de xilitol a partir de xilosa. También se pudo observar que la presencia de inhibidores en el medio afecta en la producción. Sin embargo, la cepa FMYX se mostró altamente tolerante ya que logro producir xilitol en presencia de diferentes concentraciones de los inhibidores. El posible uso de la cepa FMYX para la producción de xilitol, usando bagazo de caña en presencia de inhibidores puede ser contemplada, ya que, en un proceso totalmente integrado, podría representar un avance hacia la bioproducción, mitigación en costos de producción química e impacto ambiental. | es_CO |
dc.description.abstract | In the present degree work, the fermentative capacity in the production of xylitol from xylose of the industrial mutant strain Saccharomyces cerevisiae FMYX was evaluated. For this, xylose fermentation tests were carried out, seeking to determine the best conditions for the production of xylitol; the influence of the hydroxymethylfurfural (HMF) and Furfural inhibitors was also evaluated. The results allowed determining that, by allowing initial growth in the presence of oxygen until aerobiosis was reached, at a temperature of 30 ° C, 250 r.p.m and reaching 1 OD of S. cerevisiae culture; they were the best conditions in the production of xylitol from xylose. It was also possible to observe that the presence of inhibitors in the medium affects production. However, the FMYX strain was highly tolerant since it managed to produce xylitol in the presence of different concentrations of the inhibitors. The possible use of the FMYX strain for the production of xylitol, using cane bagasse can be seen as a reality, since, in a fully integrated process, it could represent an advance towards bioproduction, mitigation of chemical production costs and environmental impact. | es_CO |
dc.format.extent | 53 | es_CO |
dc.format.mimetype | application/pdf | es_CO |
dc.language.iso | es | es_CO |
dc.publisher | Universidad de Pamplona – Facultad de Ciencias Basicas. | es_CO |
dc.subject | Microbiología. | es_CO |
dc.subject | Industrial. | es_CO |
dc.subject | Levadura | es_CO |
dc.subject | Fermentación. | es_CO |
dc.subject | Xilitol. | es_CO |
dc.subject | Xilosa. | es_CO |
dc.subject | HMF. | es_CO |
dc.subject | Furfural. | es_CO |
dc.title | Producción de xilitol a partir de la fermentación de la xilosa por Saccharomyces Cerevisiae modificada. | es_CO |
dc.type | http://purl.org/coar/resource_type/c_7a1f | es_CO |
dc.date.accepted | 2020-10-02 | - |
dc.relation.references | Acosta, E., Batista de Almeida, J., Giulietti, M., Frade, J. A., & Nápoles, A. (2005). Producción de xilitol en fermentador de 15 litros. ICIDCA. Sobre los Derivados de la Caña de Azúcar, 4551. | es_CO |
dc.relation.references | Amore, R., Kötter, P., Küster, C., Ciriacy, M., & Hollenberg, C. P. (1991). Cloning and Expression in Saccharomyces Cerevisiae of the NAD(P)H-dependent Xylose Reductase-Encoding Gene (XYL1) From the Xylose-Assimilating Yeast Pichia Stipitis. Gene, 89‐97. doi:10.1016/03781119(91)90592-y | es_CO |
dc.relation.references | Arcaño, Y. D., García, O. D., Mandelli, D., Carvalho, W. A., & Pontes, L. A. (2020). Xylitol: A review on the progress and challenges of its production by chemical route. Catalysis Today, 2-14. | es_CO |
dc.relation.references | Ask, M., Bettiga, M., Mapelli, V., & Olsson, L. (2013). The influence of HMF and furfural on redoxbalance and energy-state of xylose-utilizing Saccharomyces cerevisiae. Biotechnology for Biofuels. Obtenido de https://biotechnologyforbiofuels.biomedcentral.com/articles/10.1186/1754-6834-6-22 | es_CO |
dc.relation.references | Baptista, S. L., Cunha, J. T., Romaní, A., & Domingues, L. (2018). Xylitol production from lignocellulosic whole slurry corn cob by engineered industrial Saccharomyces cerevisiae PE-2. Bioresource Technology, 481-491. Obtenido de https://www.sciencedirect.com/science/article/pii/S0960852418309775?via%3Dihub | es_CO |
dc.relation.references | Basso, L. C., de Amorim, H. V., de Oliveira, A. J., & Lopes, M. L. (2008). Yeast Selection for Fuel Ethanol Production in Brazil. FEMS Yeast Res., 1155‐1163. doi:10.1111/j.15671364.2008.00428.x | es_CO |
dc.relation.references | C. Zacharis. (2012). Xylitol, in: Sweeten. Sugar Altern. Food Technol. Oxford, UK: Wiley-Blackwell. doi:10.1002/9781118373941.ch16 | es_CO |
dc.relation.references | Cai, Z., Zhang, B., & Li, Y. (2012). Engineering Saccharomyces cerevisiae for efficient anaerobic xylose fermentation: Reflections and perspectives. Biotechnol. J. 7, 34–46. doi:10.1002/biot.201100053 | es_CO |
dc.relation.references | Cerioni, J. L., Nichio, N. N., & Santori, G. F. (Abril de 2019). Producción de xilitol a partir de la hidrogenación de xilosa en fase acuosa con catalizadores de níquel. Obtenido de SEDICI: http://sedici.unlp.edu.ar/handle/10915/75718 | es_CO |
dc.relation.references | Cheng, K.-K., Wu, J., Lin, Z.-N., & Zhang, J.-A. (2014). Aerobic and sequential anaerobic fermentation to produce xylitol and ethanol using non-detoxified acid pretreated corncob. Biotechnol. Biofuels. doi:10.1186/s13068-014-0166-y | es_CO |
dc.relation.references | Cortivo Dall, R. P. (2017). Produção de etanol e xilitol por linhagens recombinantes de Saccharomyces cerevisiae e novas espécies de Spathaspora a partir de hidrolisados da casca de aveia e soja. Brasil: Universidad Federal de Rio Grande do Sul. Obtenido de https://lume.ufrgs.br/handle/10183/164316 | es_CO |
dc.relation.references | Cunha, J. T., Soares, P. O., Romaní, A., Thevelein, J. M., & Domingues, L. (2019). Xylose fermentation efficiency of industrial Saccharomyces cerevisiae yeast with separate or combined xylose reductase/xylitol dehydrogenase and xylose isomerase pathways. Biotechnology for Biofuels. Obtenido de https://biotechnologyforbiofuels.biomedcentral.com/articles/10.1186/s13068-019-1360-8 | es_CO |
dc.relation.references | Dasgupta, D., Bandhu, S., Adhikari, D., & Ghosh, D. (2017). Challenges and prospects of xylitol production with whole cell bio-catalysis: A review. Microbiol. Res. 197, 9–21. doi:10.1016/j.micres.2016.12.012 | es_CO |
dc.relation.references | Dias, M. O., Filho, R. M., Mantelatto, P. E., Cavalett, O., Rossel, C. E., Bonomi, A., & Leal, M. R. (2015). Sugarcane processing for ethanol and sugar. Environmental Development, 31-51. Obtenido de https://www.sciencedirect.com/science/article/pii/S2211464515000147?via%3Dihub | es_CO |
dc.relation.references | Dijken, J. v., Bauer, J., Brambilla, L., Duboc, P., Francois, J., Gancedo, C., . . . Verr, C. (2000). An interlaboratory comparison of physiological and genetic properties of four Saccharomyces cerevisiae strains. Enzyme Microb. Technol., 706–714. doi:10.1016/S0141-0229(00)001629. | es_CO |
dc.relation.references | Edelstein, S., Smith, K., Worthington, A., Gillis, N., Bruen, D., Kang, S., . . . Guiducci, G. (2008). Comparisons of Six New Artificial Sweetener Gradation Ratios with Sucrose in Conventional-Method Cupcakes Resulting in Best Percentage Substitution Ratios. J. Culin. Sci. Technol, 61-74. doi:10.1300/j385v05n04_05 | es_CO |
dc.relation.references | Estela-Escalante, W. D., Rychtera, M., Melzoch, K., Torres-Ibáñez, F., Calixto-Cotos, R., BravoAraníbar, N., . . . Chávez-Guzmán, Y. M. (2014). Effect of aeration on the production of volatile compounds by mixed culture of Brettanomyces intermedius and Saccharomyces cerevisiae during cider fermentation. TIP. Revista especializada en ciencias químicobiológicas. Obtenido de http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1405-888X2014000100001 | es_CO |
dc.relation.references | Franco, H. C., Pimenta, M. T., Carvalho, J. L., Magalhães, P. S., Rossell, C. E., Braunbeck, O. A., . . . Neto, J. R. (2013). Assessment of sugarcane trash for agronomic and energy purposes in Brazil. Scientia Agricola. Obtenido de https://www.scielo.br/scielo.php?script=sci_arttext&pid=S0103-90162013000500004 | es_CO |
dc.relation.references | Gietz, R., Schiestl, R., Willems, A., & Woods, R. (1995). Studies on the transformation of intact yeast cells by the LiAc/SS-DNA/PEG procedure. Yeast. 11, 355–360. doi:10.1002/yea.320110408 | es_CO |
dc.relation.references | Guirimand, G., Sasaki, K., Inokuma, K., Bamba, T., Hasunuma, T., & Kondo, A. (2016). Cell surface engineering of Saccharomyces cerevisiae combined with membrane separation technology for xylitol production from rice straw hydrolysate. Appl. Microbiol. Biotechnol, 3477–3487. Obtenido de doi:10.1007/s00253-015-7179-8 | es_CO |
dc.relation.references | Hallborn, J., Walfridsson, M., Airaksinen, U., Ojamo, H., Hahn-Hagerdal, B., Penttila, M., & Kerasnen, S. (1991). Xylitol production by recombinant Saccharomyces cerevisiae. Biotechnology. (N. Y)., 1090–1095. | es_CO |
dc.relation.references | Handumrongkul C, M. D. (1998). Cloning and expression of Candida guilliermondii xylose reductase gene (xyl1) in Pichia pastoris. Microbiol Biotechnol | es_CO |
dc.relation.references | Hongzhang, C., & Lan, W. (2017). Chapter 6 - Sugar Strategies for Biomass Biochemical Conversion. Technologies for Biochemical Conversion of Biomass, 137-164. | es_CO |
dc.relation.references | Janakiram, C., Kumar, C. D., & Joseph, J. (2017). Xylitol in preventing dental caries: A systematic review and meta-analyses. J. Nat. Sci. Biol. Med. 8. doi:10.4103/0976-9668.198344. | es_CO |
dc.relation.references | Jin, Y.-S., Laplaza, J. M., & Jeffries, T. W. (2004). Saccharomyces cerevisiae Engineered for Xylose Metabolism Exhibits a Respiratory Response. Appl Environ Microbiol, 6816–6825. doi:10.1128/AEM.70.11.6816-6825.2004 | es_CO |
dc.relation.references | Junior, W. G., Pacheco, T. F., Trichez, D., Almeida, J. R., & Gonçalves, S. B. (2019). Xylitol production on sugarcane biomass hydrolysate by newly identified Candida tropicalis JA2 strain. WILEY Yeast, 349-361. Obtenido de https://onlinelibrary.wiley.com/doi/epdf/10.1002/yea.3394 | es_CO |
dc.relation.references | Kogje, A., & Ghosalkar, A. (2016). Xylitol production by Saccharomyces cerevisiae overexpressing different xylose reductases using non-detoxified hemicellulosic hydrolysate of corncob. 3 Biotech. Obtenido de https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4909029/ | es_CO |
dc.relation.references | Laughery, M., Hunter, T., Brown, A., Hoopes, J., Ostbye, T., Shumaker, T., & Wyrick, J. (2015). New vectors for simple and streamlined CRISPR – Cas9 genome editing in Saccharomyces cerevisiae. 711–720. doi:10.1002/yea. | es_CO |
dc.relation.references | Ledezma-Orozco, E., Ruíz-Salaza, R., Bustos-Vázquez, G., Montes-García, N., Roa-Cordero, V., & Rodríguez-Castillejos, G. (2018). PRODUCCIÓN DE XILITOL A PARTIR DE HIDROLIZADOS ÁCIDOS NO DETOXIFICADOS DE BAGAZO DE SORGO POR Debaryomyces hansenii. AGROCIENCIA, 1095-1106. | es_CO |
dc.relation.references | Mello, F. d., Coradini, A. L., Tizei, P. A., Carazzollea, M. F., Pereira, G. A., & Teixeira, G. S. (2018). Static microplate fermentation and automated growth analysis approaches identified a highly-aldehyde resistant Saccharomyces cerevisiae strain. Biomass and Bioenergy, 49-58. Obtenido de https://www.sciencedirect.com/science/article/pii/S096195341830285X | es_CO |
dc.relation.references | Montes, L. B., Ruiz, O. C., González, R. I., Cano, E. G., & Castillejos, G. C. (2018). Aprovechamiento de bagazo de caña de azúcar para obtención de furfural. Inventio. Obtenido de http://inventio.uaem.mx/index.php/inventio/article/view/567/1230 | es_CO |
dc.relation.references | Moysés, D., Reis, V., Almeida, J. d., Moraes, L. d., & Torres, F. (2016). Xylose fermentation by saccharomyces cerevisiae: Challenges and prospects. Int. J. Mol. Sci. doi:10.3390/ijms17030207 | es_CO |
dc.relation.references | Nuñez Díaz, D. (2017). Estrategias para la producción biotecnológica de xilitol a partir de hidrolizados lignocelulósicos mediante modificación genética de una cepa industrial de Saccharomyces cerevisiae. España: Universidad De Oviedo | es_CO |
dc.relation.references | Rafiqul, I., & Sakinah, A. (2013). Processes for the Production of Xylitol—A Review. Food Rev. Int., 127–156. doi:10.1080/87559129.2012.714434. | es_CO |
dc.relation.references | Ravella, S. R., Gallagher, J., Fish, S., & Prakasham, R. S. (2012). Overview on Commercial Production of Xylitol, Economic Analysis and Market Trends. da Silva S., Chandel A. (eds) D-Xylitol. Springer, Berlin, Heidelberg. | es_CO |
dc.relation.references | S. Kwak, Y. J. (2017). Production of fuels and chemicals from xylose by engineered Saccharomyces cerevisiae: A review and perspective. Microb. Cell Fact. doi:10.1186/s12934-017-0694-9. | es_CO |
dc.relation.references | Santos, F., Borém, A., & Caldas, C. (2015). Sugarcane. Agricultural Production, Bioenergy and Ethanol. Brasil: Elsevier Inc. All rights reserved. | es_CO |
dc.relation.references | Shrotri, A., Kobayashi, H., & Fukuoka, A. (2017). Chapter Two - Catalytic Conversion of Structural Carbohydrates and Lignin to Chemicals. Advances in Catalysis, 59-123. Obtenido de https://www.sciencedirect.com/science/article/abs/pii/S0360056417300020 | es_CO |
dc.relation.references | Silvio Silvério da Silva, A. K. (2012). D-Xylitol: Fermentative Production, Application and Commercialization. Brasil: Springer Science & Business Media. | es_CO |
dc.relation.references | Stoklosa, R. J., Nghiem, N. P., & Latona, R. J. (2019). Xylose-Enriched Ethanol Fermentation Stillage from Sweet Sorghum for Xylitol and Astaxanthin Production. MDPI. Fermentation. doi:10.3390/fermentation5040084 | es_CO |
dc.relation.references | Toivari MH, R. L. (2007). Metabolic engineering of Saccharomyces cerevisiae for conversion of Dglucose to xylitol and other five-carbon sugars and sugar alcohols. Environ Microbiol. | es_CO |
dc.relation.references | Winkelhausen, E., & S. Kuzmanova. (1998). Microbial conversion of d-xylose to xylitol. Ferment. Bioeng, 1–14. doi:10.1016/S0922-338X(98)80026-3. | es_CO |
dc.relation.references | Xu, Y., Chi, P., Bilal, M., & Cheng, H. (2019). Biosynthetic strategies to produce xylitol: an economical venture. Applied Microbiology and Biotechnology, 5143–5160. Obtenido de https://link.springer.com/article/10.1007/s00253-019-09881-1 | es_CO |
dc.relation.references | Yin, S., Kim, H., & Kim, H.-J. (2014). Protective effect of dietary xylitol on influenza A virus infection. PLoS One. doi:10.1371/journal.pone.0084633 | es_CO |
dc.rights.accessrights | http://purl.org/coar/access_right/c_abf2 | es_CO |
dc.type.coarversion | http://purl.org/coar/resource_type/c_2df8fbb1 | es_CO |
Aparece en las colecciones: | Microbiología |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
Suarez_2020_TG.pdf | Suarez_2020_TG | 1,56 MB | Adobe PDF | Visualizar/Abrir |
Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.