Por favor, use este identificador para citar o enlazar este ítem:
http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/10305
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | Macías Villabona, William Augusto. | - |
dc.date.accessioned | 2025-10-09T20:44:52Z | - |
dc.date.available | 2023 | - |
dc.date.available | 2025-10-09T20:44:52Z | - |
dc.date.issued | 2023 | - |
dc.identifier.citation | Macías Villabona, W. A. (2023). Efecto de la translocación de glucosa sobre el metabolismo de EXAIPTASIA DIAPHANA (Phylum: Cnidaria), en estado aposimbiótico y simbiótico. [Trabajo de Grado Pregrado, Universidad de Pamplona]. Repositorio Hulago Universidad de Pamplona. http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/10305 | es_CO |
dc.identifier.uri | http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/10305 | - |
dc.description | Algunos corales, animales del filo Cnidaria, se caracterizan por tener una asociación con microalgas fotosintéticas de la familia Symbiodiniaceae. Esta relación simbiótica es la base fundamental para que estos animales puedan vivir en aguas marinas oligotróficas tropicales y subtropicales, y construir el colorido y biodiverso ecosistema arrecifal coralino. Sin embargo, su lento crecimiento, su dificultad y alto costo de reproducción en cautiverio, han dificultado algunos estudios experimentales que aborden preguntas claves de su relación simbiótica. Por ello, la anémona Exaiptasia diaphana de la clase Anthozoa, es uno de los mejores modelos para el estudio de simbiosis por tener ventajas como realizar estudios a escala genómica. Con el fin de comprender un poco más su interacción simbiótica, esta investigación se basó en el análisis de Modos de Flujo Elemental para evaluar los efectos de la glucosa sobre la red metabólica de la anémona. Se tuvo en cuenta el estado aposimbiótico, bloqueando la entrada de glucosa y amonio, y el simbiótico, con flujo normal de estos metabolitos. Los resultados muestran que la condición aposimbiótica provoca una disminución en las reacciones de biomasa de algunos aminoácidos no esenciales y carbohidratos, en comparación con la condición simbiótica. Esto se debe a que la glucosa translocada por los simbiontes es utilizada por el hospedero para reciclar el amonio y posteriormente incorporarlo a los aminoácidos. Además, la desactivación de algunas reacciones implicadas en el metabolismo de Exaiptasia y la heterotrofia (obtención de nutrientes de fuentes externas) explica la disminución del potencial metabólico de los metabolitos de biomasa, fundamental en procesos como la respiración, el crecimiento y la reproducción del hospedero. | es_CO |
dc.description.abstract | Some corals, animals of the Cnidaria phylum, are characterized by having an association with photosynthetic dinoflagellates of the Symbiodiniaceae family. This symbiotic relationship is the fundamental basis for these animals to be able to live in tropical and subtropical oligotrophic marine waters, and build the colorful and biodiverse coral reef ecosystem. However, its slow growth, its difficulty and high cost of reproduction in captivity, have made it difficult for some experimental studies that address key questions of their symbiotic relationship. For this reason, the Exaiptasia diaphana anemone of the Anthozoa class is one of the best models for the study of symbiosis because it has advantages such as carrying out studies on a genomic scale. In order to better understand their symbiotic interaction, this research relied on Elemental Flow Modes analysis to assess the effects of glucose on the anemone's metabolic network. The aposimbiotic state was taken into account, blocking the entry of glucose and ammonium, and the symbiotic state, with normal flow of these metabolites. The results show that the aposimbiotic condition causes a decrease in the biomass reactions of some non-essential amino acids and carbohydrates, compared to the symbiotic condition. This is due to the fact that the glucose translocated by the symbionts is used by the host to recycle the ammonium and subsequently incorporate it into amino acids. In addition, the deactivation of some reactions involved in the metabolism of Exaiptasia and heterotrophy (obtaining nutrients from external sources) explains the decrease in the metabolic potential of biomass metabolites, essential in processes such as respiration, growth, and reproduction of the host. | es_CO |
dc.format.extent | 39 | es_CO |
dc.format.mimetype | application/pdf | es_CO |
dc.language.iso | es | es_CO |
dc.publisher | Universidad de Pamplona - Facultad de Ciencias Básicas. | es_CO |
dc.subject | Simbiosis. | es_CO |
dc.subject | Modo de flujo elemental (EFM). | es_CO |
dc.subject | Modelo. | es_CO |
dc.subject | Genoma. | es_CO |
dc.subject | Symbiodiniacea. | es_CO |
dc.title | Efecto de la translocación de glucosa sobre el metabolismo de EXAIPTASIA DIAPHANA (Phylum: Cnidaria), en estado aposimbiótico y simbiótico. | es_CO |
dc.type | http://purl.org/coar/resource_type/c_7a1f | es_CO |
dc.date.accepted | 2023 | - |
dc.relation.references | Abrego, D., Willis, B. L., & Oppen, M. J. H. van. (2012). Impact of Light and Temperature on the Uptake of Algal Symbionts by Coral Juveniles. PLOS ONE, 7(11), e50311. https://doi.org/10.1371/journal.pone.0050311 | es_CO |
dc.relation.references | Ahmed, M., Umali, G. M., Chong, C. K., Rull, M. F., & Garcia, M. C. (2007). Valuing recreational and conservation benefits of coral reefs—The case of Bolinao, Philippines. Ocean & Coastal Management, 50(1), 103-118. https://doi.org/10.1016/j.ocecoaman.2006.08.010 | es_CO |
dc.relation.references | Baker, A. C., Glynn, P. W., & Riegl, B. (2008). Climate change and coral reef bleaching: An ecological assessment of long-term impacts, recovery trends and future outlook. Estuarine, Coastal and Shelf Science, 80(4), 435-471. https://doi.org/10.1016/j.ecss.2008.09.003 | es_CO |
dc.relation.references | Baumgarten, S., Simakov, O., Esherick, L. Y., Liew, Y. J., Lehnert, E. M., Michell, C. T., Li, Y., Hambleton, E. A., Guse, A., Oates, M. E., Gough, J., Weis, V. M., Aranda, M., Pringle, J. R., & Voolstra, C. R. (2015). The genome of Aiptasia, a sea anemone model for coral symbiosis. Proceedings of the National Academy of Sciences, 112(38), 11893-11898. https://doi.org/10.1073/pnas.1513318112 | es_CO |
dc.relation.references | Bell, P. R. F., Elmetri, I., & Lapointe, B. E. (2014). Evidence of Large-Scale Chronic Eutrophication in the Great Barrier Reef: Quantification of Chlorophyll a Thresholds for Sustaining Coral Reef Communities. Ambio, 43(3), 361-376. https://doi.org/10.1007/s13280-013-0443-1 | es_CO |
dc.relation.references | Bryce, C. M., Baliga, V. B., De Nesnera, K. L., Fiack, D., & Goetz, K. (2016). Exploring Models in the Biology Classroom. The American Biology Teacher, 78(1), 35-42. | es_CO |
dc.relation.references | Bucher, M., Wolfowicz, I., Voss, P. A., Hambleton, E. A., & Guse, A. (2016). Development and Symbiosis Establishment in the Cnidarian Endosymbiosis Model Aiptasia sp. Scientific Reports, 6(1), Article 1. https://doi.org/10.1038/srep19867 | es_CO |
dc.relation.references | Burkepile, D. E., & Hay, M. E. (2006). Herbivore Vs. Nutrient Control of Marine Primary Producers: Context-Dependent Effects. Ecology, 87(12), 3128-3139. https://doi.org/10.1890/0012-9658(2006)87[3128:HVNCOM]2.0.CO;2 | es_CO |
dc.relation.references | Burriesci, M. S., Raab, T. K., & Pringle, J. R. (2012). Evidence that glucose is the major transferred metabolite in dinoflagellate-cnidarian symbiosis. The Journal of Experimental Biology, 215(Pt 19), 3467-3477. https://doi.org/10.1242/jeb.070946 | es_CO |
dc.relation.references | Carbonero, Z. (1976). Metabolismo de aminoácidos. ETSI Agrónomos. https://oa.upm.es/54762/1/METABOLISMO.pdf | es_CO |
dc.relation.references | Cerqueda-García, D., Martínez-Castilla, L. P., Falcón, L. I., & Delaye, L. (2014). Metabolic analysis of Chlorobium chlorochromatii CaD3 reveals clues of the symbiosis in ‗Chlorochromatium aggregatum‘. The ISME Journal, 8(5), Article 5. https://doi.org/10.1038/ismej.2013.207 | es_CO |
dc.relation.references | Clarke, J. L., Davey, P. A., & Aldred, N. (2020). Sea anemones (Exaiptasia pallida) use a secreted adhesive and complex pedal disc morphology for surface attachment. BMC Zoology, 5(1), 5. https://doi.org/10.1186/s40850-020-00054-6 | es_CO |
dc.relation.references | Colley, N. J., Trench, R. K., & Smith, D. C. (1983). Selectivity in phagocytosis and persistence of symbiotic algae by the scyphistoma stage of the jellyfish Cassiopeia xamachana. Proceedings of the Royal Society of London. Series B. Biological Sciences, 219(1214), 61-82. https://doi.org/10.1098/rspb.1983.0059 | es_CO |
dc.relation.references | Cui, G., Liew, Y. J., Li, Y., Kharbatia, N., Zahran, N. I., Emwas, A.-H., Eguiluz, V. M., & Aranda, M. (2019). Host-dependent nitrogen recycling as a mechanism of symbiont control in Aiptasia. PLOS Genetics, 15(6), e1008189. https://doi.org/10.1371/journal.pgen.1008189 | es_CO |
dc.relation.references | Cui, G., Mi, J., Moret, A., Zhong, H., Hung, S.-H., Al-Babili, S., & Aranda, M. (2022). Nitrogen competition is the general mechanism underlying cnidarian-Symbiodiniaceae symbioses (p. 2022.06.30.498212). bioRxiv. https://doi.org/10.1101/2022.06.30.498212 | es_CO |
dc.relation.references | Cziesielski, M. J., Liew, Y. J., Cui, G., Schmidt-Roach, S., Campana, S., Marondedze, C., & Aranda, M. (2018). Multi-omics analysis of thermal stress response in a zooxanthellate cnidarian reveals the importance of associating with thermotolerant symbionts. Proceedings. Biological Sciences, 285(1877), 20172654. https://doi.org/10.1098/rspb.2017.2654 | es_CO |
dc.relation.references | Davy, S. K., Allemand, D., & Weis, V. M. (2012). Cell Biology of Cnidarian-Dinoflagellate Symbiosis. Microbiology and Molecular Biology Reviews, 76(2), 229-261. https://doi.org/10.1128/MMBR.05014-11 | es_CO |
dc.relation.references | Dearden, P., Bennett, M., & Rollins, R. (2007). Perceptions of Diving Impacts and Implications for Reef Conservation. Coastal Management, 35(2-3), 305-317. https://doi.org/10.1080/08920750601169584 | es_CO |
dc.relation.references | Dellaert, Z., Vargas, P. A., La Riviere, P. J., & Roberson, L. M. (2022). Uncovering the Effects of Symbiosis and Temperature on Coral Calcification. The Biological Bulletin, 242(1), 62-73. https://doi.org/10.1086/716711 | es_CO |
dc.relation.references | Díaz-Almeyda, E., Thomé, P. E., El Hafidi, M., & Iglesias-Prieto, R. (2011). Differential stability of photosynthetic membranes and fatty acid composition at elevated temperature in Symbiodinium. Coral Reefs, 30(1), 217-225. https://doi.org/10.1007/s00338-010- 0691-5 | es_CO |
dc.relation.references | diCenzo, G. C., Tesi, M., Pfau, T., Mengoni, A., & Fondi, M. (2020). Genome-scale metabolic reconstruction of the symbiosis between a leguminous plant and a nitrogen-fixing bacterium. Nature Communications, 11, 2574. https://doi.org/10.1038/s41467-020- 16484-2 | es_CO |
dc.relation.references | Dunn, S. R., Thomas, M. C., Nette, G. W., & Dove, S. G. (2012). A Lipidomic Approach to Understanding Free Fatty Acid Lipogenesis Derived from Dissolved Inorganic Carbon within Cnidarian-Dinoflagellate Symbiosis. PLOS ONE, 7(10), e46801. https://doi.org/10.1371/journal.pone.0046801 | es_CO |
dc.relation.references | Enríquez, S., Méndez, E. R., & -Prieto, R. I. (2005). Multiple scattering on coral skeletons enhances light absorption by symbiotic algae. Limnology and Oceanography, 50(4), 1025-1032. https://doi.org/10.4319/lo.2005.50.4.1025 | es_CO |
dc.relation.references | Fabricius, K., De‘ath, G., McCook, L., Turak, E., & Williams, D. McB. (2005). Changes in algal, coral and fish assemblages along water quality gradients on the inshore Great Barrier Reef. Marine Pollution Bulletin, 51(1), 384-398. https://doi.org/10.1016/j.marpolbul.2004.10.041 | es_CO |
dc.relation.references | Falkowski, P. G., Dubinsky, Z., Muscatine, L., & McCloskey, L. (1993). Population Control in Symbiotic Corals. BioScience, 43(9), 606-611. https://doi.org/10.2307/1312147 | es_CO |
dc.relation.references | Ferrier-Pagès, C., Bednarz, V., Grover, R., Benayahu, Y., Maguer, J.-F., Rottier, C., Wiedenmann, J., & Fine, M. (2022). Symbiotic stony and soft corals: Is their host-algae relationship really mutualistic at lower mesophotic reefs? Limnology and Oceanography, 67(1), 261-271. https://doi.org/10.1002/lno.11990 | es_CO |
dc.relation.references | Fitt, W. K., Brown, B. E., Warner, M. E., & Dunne, R. P. (2001). Coral bleaching: Interpretation of thermal tolerance limits and thermal thresholds in tropical corals. Coral Reefs, 20(1), 51-65. https://doi.org/10.1007/s003380100146 | es_CO |
dc.relation.references | Gao, X., Lee, K., Reid, M. A., Sanderson, S. M., Qiu, C., Li, S., Liu, J., & Locasale, J. W. (2018). Serine Availability Influences Mitochondrial Dynamics and Function through Lipid Metabolism. Cell Reports, 22(13), 3507-3520. https://doi.org/10.1016/j.celrep.2018.03.017 | es_CO |
dc.relation.references | Gates, R. D., Baghdasarian, G., & Muscatine, L. (1992). Temperature Stress Causes Host Cell Detachment in Symbiotic Cnidarians: Implications for Coral Bleaching. The Biological Bulletin, 182(3), 324-332. https://doi.org/10.2307/1542252 | es_CO |
dc.relation.references | Grajales, A., & Rodríguez, E. (2014). Morphological revision of the genus Aiptasia and the family Aiptasiidae (Cnidaria, Actiniaria, Metridioidea). Zootaxa, 3826(1), 55. https://doi.org/10.11646/zootaxa.3826.1.2 | es_CO |
dc.relation.references | Grawunder, D., Hambleton, E. A., Bucher, M., Wolfowicz, I., Bechtoldt, N., & Guse, A. (2015). Induction of Gametogenesis in the Cnidarian Endosymbiosis Model Aiptasia sp. Scientific Reports, 5, 15677. https://doi.org/10.1038/srep15677 | es_CO |
dc.relation.references | Hasler, H., & Ott, J. A. (2008). Diving down the reefs? Intensive diving tourism threatens the reefs of the northern Red Sea. Marine Pollution Bulletin, 56(10), 1788-1794. https://doi.org/10.1016/j.marpolbul.2008.06.002 | es_CO |
dc.relation.references | Hillyer, K. E., Dias, D. A., Lutz, A., Roessner, U., & Davy, S. K. (2017). Mapping carbon fate during bleaching in a model cnidarian symbiosis: The application of 13C metabolomics. New Phytologist, 214(4), 1551-1562. https://doi.org/10.1111/nph.14515 | es_CO |
dc.relation.references | Hillyer, K. E., Tumanov, S., Villas-Bôas, S., & Davy, S. K. (2016). Metabolite profiling of symbiont and host during thermal stress and bleaching in a model cnidarian–dinoflagellate symbiosis. Journal of Experimental Biology, 219(4), 516-527. https://doi.org/10.1242/jeb.128660 | es_CO |
dc.relation.references | Hou, Y., Yin, Y., & Wu, G. (2015). Dietary essentiality of ―nutritionally non-essential amino acids‖ for animals and humans. Experimental Biology and Medicine, 240(8), 997-1007. https://doi.org/10.1177/1535370215587913 | es_CO |
dc.relation.references | Kazandjian, A., Shepherd, V. A., Rodriguez-Lanetty, M., Nordemeier, W., Larkum, A. W. D., & Quinnell, R. G. (2008). Isolation of symbiosomes and the symbiosome membrane complex from the zoanthid Zoanthus robustus. Phycologia, 47(3), 294-306. https://doi.org/10.2216/PH07-23.1 | es_CO |
dc.relation.references | Klamt, S., Regensburger, G., Gerstl, M. P., Jungreuthmayer, C., Schuster, S., Mahadevan, R., Zanghellini, J., & Müller, S. (2017). From elementary flux modes to elementary flux vectors: Metabolic pathway analysis with arbitrary linear flux constraints. PLOS Computational Biology, 13(4), e1005409. https://doi.org/10.1371/journal.pcbi.1005409 | es_CO |
dc.relation.references | Kroeker, K. J., Kordas, R. L., Crim, R. N., & Singh, G. G. (2010). Meta-analysis reveals negative yet variable effects of ocean acidification on marine organisms. Ecology Letters, 13(11), 1419-1434. https://doi.org/10.1111/j.1461-0248.2010.01518.x | es_CO |
dc.relation.references | Kuepfer, L. (2014). Stoichiometric Modelling of Microbial Metabolism. En J. O. Krömer, L. K. Nielsen, & L. M. Blank (Eds.), Metabolic Flux Analysis (Vol. 1191, pp. 3-18). Springer New York. https://doi.org/10.1007/978-1-4939-1170-7_1 | es_CO |
dc.relation.references | Lehnert, E. M., Mouchka, M. E., Burriesci, M. S., Gallo, N. D., Schwarz, J. A., & Pringle, J. R. (2014). Extensive Differences in Gene Expression Between Symbiotic and Aposymbiotic Cnidarians. G3 Genes|Genomes|Genetics, 4(2), 277-295. https://doi.org/10.1534/g3.113.009084 | es_CO |
dc.relation.references | Loh, T.-L., McMurray, S. E., Henkel, T. P., Vicente, J., & Pawlik, J. R. (2015). Indirect effects of overfishing on Caribbean reefs: Sponges overgrow reef-building corals. PeerJ, 3, e901. https://doi.org/10.7717/peerj.901 | es_CO |
dc.relation.references | Maarleveld, T. R., Khandelwal, R. A., Olivier, B. G., Teusink, B., & Bruggeman, F. J. (2013). Basic concepts and principles of stoichiometric modeling of metabolic networks. Biotechnology Journal, 8(9), 997-1008. https://doi.org/10.1002/biot.201200291 | es_CO |
dc.relation.references | Machado, J., & Fernandes, B. L. P. (2021). Model Conceptions in Science Education Research: Features and trends. Ciência & Educação (Bauru), 27, e21014. https://doi.org/10.1590/1516-731320210014 | es_CO |
dc.relation.references | Main, W. P. L., Ross, C., & Bielmyer, G. K. (2010). Copper accumulation and oxidative stress in the sea anemone, Aiptasia pallida, after waterborne copper exposure. Comparative Biochemistry and Physiology. Toxicology & Pharmacology: CBP, 151(2), 216-221. https://doi.org/10.1016/j.cbpc.2009.10.008 | es_CO |
dc.relation.references | Marino, A., Valveri, V., Muià, C., Crupi, R., Rizzo, G., Musci, G., & La Spada, G. (2004). Cytotoxicity of the nematocyst venom from the sea anemone Aiptasia mutabilis. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 139(4), 295-301. https://doi.org/10.1016/j.cca.2004.12.008 | es_CO |
dc.relation.references | Matilla, B., Mauriz, J. L., Culebras, J. M., & González-Gallego, J. (2002). La glicina: Un nutriente antioxidante protector celular. Nutr. Hosp. | es_CO |
dc.relation.references | Matthews, J. L., Oakley, C. A., Lutz, A., Hillyer, K. E., Roessner, U., Grossman, A. R., Weis, V. M., & Davy, S. K. (2018). Partner switching and metabolic flux in a model cnidarian– dinoflagellate symbiosis. Proceedings of the Royal Society B: Biological Sciences, 285(1892), 20182336. https://doi.org/10.1098/rspb.2018.2336 | es_CO |
dc.relation.references | Morais, J., Medeiros, A. P. M., & Santos, B. A. (2018). Research gaps of coral ecology in a changing world. Marine Environmental Research, 140, 243-250. https://doi.org/10.1016/j.marenvres.2018.06.021 | es_CO |
dc.relation.references | Muller-Parker, G., & Davy, S. K. (2001). Temperate and tropical algal-sea anemone symbioses. Invertebrate Biology, 120(2), 104-123. https://doi.org/10.1111/j.1744- 7410.2001.tb00115.x | es_CO |
dc.relation.references | Mumby, P. J. (2016). Stratifying herbivore fisheries by habitat to avoid ecosystem overfishing of coral reefs. Fish and Fisheries, 17(1), 266-278. https://doi.org/10.1111/faf.12078 | es_CO |
dc.relation.references | Muscatine, L., Falkowski, P. G., Porter, J. W., Dubinsky, Z., & Smith, D. C. (1984). Fate of photosynthetic fixed carbon in light- and shade-adapted colonies of the symbiotic coral Stylophora pistillata. Proceedings of the Royal Society of London. Series B. Biological Sciences, 222(1227), 181-202. https://doi.org/10.1098/rspb.1984.0058 | es_CO |
dc.relation.references | Muscatine, L., Goiran, C., Land, L., Jaubert, J., Cuif, J.-P., & Allemand, D. (2005). Stable isotopes (δ13C and δ15N) of organic matrix from coral skeleton. Proceedings of the National Academy of Sciences, 102(5), 1525-1530. https://doi.org/10.1073/pnas.0408921102 | es_CO |
dc.relation.references | Muscatine, L., & Porter, J. W. (1977). Reef Corals: Mutualistic Symbioses Adapted to NutrientPoor Environments. BioScience, 27(7), 454-460. https://doi.org/10.2307/1297526 | es_CO |
dc.relation.references | Newsholme, P., Procopio, J., Lima, M. M. R., Pithon-Curi, T. C., & Curi, R. (2003). Glutamine and glutamate—Their central role in cell metabolism and function. Cell Biochemistry and Function, 21(1), 1-9. https://doi.org/10.1002/cbf.1003 | es_CO |
dc.relation.references | Oakley, C. A., Ameismeier, M. F., Peng, L., Weis, V. M., Grossman, A. R., & Davy, S. K. (2016). Symbiosis induces widespread changes in the proteome of the model cnidarian Aiptasia. Cellular Microbiology, 18(7), 1009-1023. https://doi.org/10.1111/cmi.12564 | es_CO |
dc.relation.references | Oberhardt, M., & Palsson, B. (2009). Applications of genome-scale metabolic reconstructions. Molecular Systems Biology, 5(1), 320. https://doi.org/10.1038/msb.2009.77 | es_CO |
dc.relation.references | Putnam, N. H., Srivastava, M., Hellsten, U., Dirks, B., Chapman, J., Salamov, A., Terry, A., Shapiro, H., Lindquist, E., Kapitonov, V. V., Jurka, J., Genikhovich, G., Grigoriev, I. V., Lucas, S. M., Steele, R. E., Finnerty, J. R., Technau, U., Martindale, M. Q., & Rokhsar, D. S. (2007). Sea anemone genome reveals ancestral eumetazoan gene repertoire and genomic organization. Science (New York, N.Y.), 317(5834), 86-94. https://doi.org/10.1126/science.1139158 | es_CO |
dc.relation.references | Rädecker, N., Raina, J.-B., Pernice, M., Perna, G., Guagliardo, P., Kilburn, M. R., Aranda, M., & Voolstra, C. R. (2017). Aiptasia as a model to study metabolic diversity and specificity in cnidarian-dinoflagellate symbioses (p. 223933). bioRxiv. https://doi.org/10.1101/223933 | es_CO |
dc.relation.references | Rasher, D. B., Engel, S., Bonito, V., Fraser, G. J., Montoya, J. P., & Hay, M. E. (2012). Effects of herbivory, nutrients, and reef protection on algal proliferation and coral growth on a tropical reef. Oecologia, 169(1), 187-198. https://doi.org/10.1007/s00442-011-2174-y | es_CO |
dc.relation.references | Roberts, J. M., Fixter, L. M., & Davies, P. S. (2001). Ammonium metabolism in the symbiotic sea anemone Anemonia viridis. Hydrobiologia, 461(1), 25-35. https://doi.org/10.1023/A:1012752828587 | es_CO |
dc.relation.references | Roth, M. S. (2014). The engine of the reef: Photobiology of the coral-algal symbiosis. Frontiers in Microbiology, 5, 422. https://doi.org/10.3389/fmicb.2014.00422 | es_CO |
dc.relation.references | Sheppard, C., Davy, S., Pilling, G., & Graham, N. (2018). The Biology of Coral Reefs (Vol. 1). Oxford University Press. https://doi.org/10.1093/oso/9780198787341.001.0001 | es_CO |
dc.relation.references | Shinzato, C., Shoguchi, E., Kawashima, T., Hamada, M., Hisata, K., Tanaka, M., Fujie, M., Fujiwara, M., Koyanagi, R., Ikuta, T., Fujiyama, A., Miller, D. J., & Satoh, N. (2011). Using the Acropora digitifera genome to understand coral responses to environmental change. Nature, 476(7360), 320-323. https://doi.org/10.1038/nature10249 | es_CO |
dc.relation.references | Simkiss, K. (1964). PHOSPHATES AS CRYSTAL POISONS OF CALCIFICATION. Biological Reviews, 39(4), 487-504. https://doi.org/10.1111/j.1469-185X.1964.tb01166.x | es_CO |
dc.relation.references | Smith, D. J., Suggett, D. J., & Baker, N. R. (2005). Is photoinhibition of zooxanthellae photosynthesis the primary cause of thermal bleaching in corals? Global Change Biology, 11(1), 1-11. https://doi.org/10.1111/j.1529-8817.2003.00895.x | es_CO |
dc.relation.references | Starzak, D. E., Quinnell, R. G., Cook, C. B., & Davy, S. K. (2020). Influence of Symbiont Species on the Glycerol and Glucose Pools in a Model Cnidarian-Dinoflagellate Symbiosis. The Biological Bulletin, 239(2), 143-151. https://doi.org/10.1086/710349 | es_CO |
dc.relation.references | Suescún-Bolívar, L. P., Iglesias-Prieto, R., & Thomé, P. E. (2012). Induction of Glycerol Synthesis and Release in Cultured Symbiodinium. PLoS ONE, 7(10), e47182. https://doi.org/10.1371/journal.pone.0047182 | es_CO |
dc.relation.references | Suescún-Bolívar, L. P., & Thomé, P. E. (2015). Osmosensing and osmoregulation in unicellular eukaryotes. World Journal of Microbiology and Biotechnology, 31(3), 435-443. https://doi.org/10.1007/s11274-015-1811-8 | es_CO |
dc.relation.references | Svoboda, J., & Passmore, C. (2013). The Strategies of Modeling in Biology Education. Science & Education, 22(1), 119-142. https://doi.org/10.1007/s11191-011-9425-5 | es_CO |
dc.relation.references | Tomascik, T., & Sander, F. (1985). Effects of eutrophication on reef-building corals. Marine Biology, 87(2), 143-155. https://doi.org/10.1007/BF00539422 | es_CO |
dc.relation.references | Trinh, C. T., Wlaschin, A., & Srienc, F. (2009). Elementary Mode Analysis: A Useful Metabolic Pathway Analysis Tool for Characterizing Cellular Metabolism. Applied microbiology and biotechnology, 81(5), 813-826. https://doi.org/10.1007/s00253-008-1770-1 | es_CO |
dc.relation.references | Volkova, S., Matos, M. R. A., Mattanovich, M., & Marín de Mas, I. (2020). Metabolic Modelling as a Framework for Metabolomics Data Integration and Analysis. Metabolites, 10(8), 303. https://doi.org/10.3390/metabo10080303 | es_CO |
dc.relation.references | Voolstra, C. R. (2013). A journey into the wild of the cnidarian model system Aiptasia and its symbionts. Molecular Ecology, 22(17), 4366-4368. https://doi.org/10.1111/mec.12464 | es_CO |
dc.relation.references | Wakefield, T. S., & Kempf, S. C. (2001). Development of Host- and Symbiont-Specific Monoclonal Antibodies and Confirmation of the Origin of the Symbiosome Membrane in a Cnidarian–Dinoflagellate Symbiosis. The Biological Bulletin, 200(2), 127-143. https://doi.org/10.2307/1543306 | es_CO |
dc.relation.references | Wang, J. T., & Douglas, A. E. (1999). Essential amino acid synthesis and nitrogen recycling in an alga–invertebrate symbiosis. Marine Biology, 135(2), 219-222. https://doi.org/10.1007/s002270050619 | es_CO |
dc.relation.references | Weis, V. M., Davy, S. K., Hoegh-Guldberg, O., Rodriguez-Lanetty, M., & Pringle, J. R. (2008). Cell biology in model systems as the key to understanding corals. Trends in Ecology & Evolution, 23(7), 369-376. https://doi.org/10.1016/j.tree.2008.03.004 | es_CO |
dc.relation.references | Whitehead, L. F., & Douglas, A. E. (2003). Metabolite comparisons and the identity of nutrients translocated from symbiotic algae to an animal host. The Journal of Experimental Biology, 206(Pt 18), 3149-3157. https://doi.org/10.1242/jeb.00539 | es_CO |
dc.relation.references | Yellowlees, D., Rees, T. A. V., & Leggat, W. (2008). Metabolic interactions between algal symbionts and invertebrate hosts. Plant, Cell & Environment, 31(5), 679-694. https://doi.org/10.1111/j.1365-3040.2008.01802.x | es_CO |
dc.relation.references | Zanghellini, J., Ruckerbauer, D. E., Hanscho, M., & Jungreuthmayer, C. (2013). Elementary flux modes in a nutshell: Properties, calculation and applications. Biotechnology Journal, 8(9), 1009-1016. https://doi.org/10.1002/biot.201200269 | es_CO |
dc.rights.accessrights | http://purl.org/coar/access_right/c_abf2 | es_CO |
dc.type.coarversion | http://purl.org/coar/resource_type/c_2df8fbb1 | es_CO |
Aparece en las colecciones: | Biología |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
Macías_2023_TG.pdf | 803,87 kB | Adobe PDF | Visualizar/Abrir |
Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.