• Repositorio Institucional Universidad de Pamplona
  • Trabajos de pregrado y especialización
  • Facultad de Ciencias Básicas
  • Biología
  • Por favor, use este identificador para citar o enlazar este ítem: http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/10305
    Registro completo de metadatos
    Campo DC Valor Lengua/Idioma
    dc.contributor.authorMacías Villabona, William Augusto.-
    dc.date.accessioned2025-10-09T20:44:52Z-
    dc.date.available2023-
    dc.date.available2025-10-09T20:44:52Z-
    dc.date.issued2023-
    dc.identifier.citationMacías Villabona, W. A. (2023). Efecto de la translocación de glucosa sobre el metabolismo de EXAIPTASIA DIAPHANA (Phylum: Cnidaria), en estado aposimbiótico y simbiótico. [Trabajo de Grado Pregrado, Universidad de Pamplona]. Repositorio Hulago Universidad de Pamplona. http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/10305es_CO
    dc.identifier.urihttp://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/10305-
    dc.descriptionAlgunos corales, animales del filo Cnidaria, se caracterizan por tener una asociación con microalgas fotosintéticas de la familia Symbiodiniaceae. Esta relación simbiótica es la base fundamental para que estos animales puedan vivir en aguas marinas oligotróficas tropicales y subtropicales, y construir el colorido y biodiverso ecosistema arrecifal coralino. Sin embargo, su lento crecimiento, su dificultad y alto costo de reproducción en cautiverio, han dificultado algunos estudios experimentales que aborden preguntas claves de su relación simbiótica. Por ello, la anémona Exaiptasia diaphana de la clase Anthozoa, es uno de los mejores modelos para el estudio de simbiosis por tener ventajas como realizar estudios a escala genómica. Con el fin de comprender un poco más su interacción simbiótica, esta investigación se basó en el análisis de Modos de Flujo Elemental para evaluar los efectos de la glucosa sobre la red metabólica de la anémona. Se tuvo en cuenta el estado aposimbiótico, bloqueando la entrada de glucosa y amonio, y el simbiótico, con flujo normal de estos metabolitos. Los resultados muestran que la condición aposimbiótica provoca una disminución en las reacciones de biomasa de algunos aminoácidos no esenciales y carbohidratos, en comparación con la condición simbiótica. Esto se debe a que la glucosa translocada por los simbiontes es utilizada por el hospedero para reciclar el amonio y posteriormente incorporarlo a los aminoácidos. Además, la desactivación de algunas reacciones implicadas en el metabolismo de Exaiptasia y la heterotrofia (obtención de nutrientes de fuentes externas) explica la disminución del potencial metabólico de los metabolitos de biomasa, fundamental en procesos como la respiración, el crecimiento y la reproducción del hospedero.es_CO
    dc.description.abstractSome corals, animals of the Cnidaria phylum, are characterized by having an association with photosynthetic dinoflagellates of the Symbiodiniaceae family. This symbiotic relationship is the fundamental basis for these animals to be able to live in tropical and subtropical oligotrophic marine waters, and build the colorful and biodiverse coral reef ecosystem. However, its slow growth, its difficulty and high cost of reproduction in captivity, have made it difficult for some experimental studies that address key questions of their symbiotic relationship. For this reason, the Exaiptasia diaphana anemone of the Anthozoa class is one of the best models for the study of symbiosis because it has advantages such as carrying out studies on a genomic scale. In order to better understand their symbiotic interaction, this research relied on Elemental Flow Modes analysis to assess the effects of glucose on the anemone's metabolic network. The aposimbiotic state was taken into account, blocking the entry of glucose and ammonium, and the symbiotic state, with normal flow of these metabolites. The results show that the aposimbiotic condition causes a decrease in the biomass reactions of some non-essential amino acids and carbohydrates, compared to the symbiotic condition. This is due to the fact that the glucose translocated by the symbionts is used by the host to recycle the ammonium and subsequently incorporate it into amino acids. In addition, the deactivation of some reactions involved in the metabolism of Exaiptasia and heterotrophy (obtaining nutrients from external sources) explains the decrease in the metabolic potential of biomass metabolites, essential in processes such as respiration, growth, and reproduction of the host.es_CO
    dc.format.extent39es_CO
    dc.format.mimetypeapplication/pdfes_CO
    dc.language.isoeses_CO
    dc.publisherUniversidad de Pamplona - Facultad de Ciencias Básicas.es_CO
    dc.subjectSimbiosis.es_CO
    dc.subjectModo de flujo elemental (EFM).es_CO
    dc.subjectModelo.es_CO
    dc.subjectGenoma.es_CO
    dc.subjectSymbiodiniacea.es_CO
    dc.titleEfecto de la translocación de glucosa sobre el metabolismo de EXAIPTASIA DIAPHANA (Phylum: Cnidaria), en estado aposimbiótico y simbiótico.es_CO
    dc.typehttp://purl.org/coar/resource_type/c_7a1fes_CO
    dc.date.accepted2023-
    dc.relation.referencesAbrego, D., Willis, B. L., & Oppen, M. J. H. van. (2012). Impact of Light and Temperature on the Uptake of Algal Symbionts by Coral Juveniles. PLOS ONE, 7(11), e50311. https://doi.org/10.1371/journal.pone.0050311es_CO
    dc.relation.referencesAhmed, M., Umali, G. M., Chong, C. K., Rull, M. F., & Garcia, M. C. (2007). Valuing recreational and conservation benefits of coral reefs—The case of Bolinao, Philippines. Ocean & Coastal Management, 50(1), 103-118. https://doi.org/10.1016/j.ocecoaman.2006.08.010es_CO
    dc.relation.referencesBaker, A. C., Glynn, P. W., & Riegl, B. (2008). Climate change and coral reef bleaching: An ecological assessment of long-term impacts, recovery trends and future outlook. Estuarine, Coastal and Shelf Science, 80(4), 435-471. https://doi.org/10.1016/j.ecss.2008.09.003es_CO
    dc.relation.referencesBaumgarten, S., Simakov, O., Esherick, L. Y., Liew, Y. J., Lehnert, E. M., Michell, C. T., Li, Y., Hambleton, E. A., Guse, A., Oates, M. E., Gough, J., Weis, V. M., Aranda, M., Pringle, J. R., & Voolstra, C. R. (2015). The genome of Aiptasia, a sea anemone model for coral symbiosis. Proceedings of the National Academy of Sciences, 112(38), 11893-11898. https://doi.org/10.1073/pnas.1513318112es_CO
    dc.relation.referencesBell, P. R. F., Elmetri, I., & Lapointe, B. E. (2014). Evidence of Large-Scale Chronic Eutrophication in the Great Barrier Reef: Quantification of Chlorophyll a Thresholds for Sustaining Coral Reef Communities. Ambio, 43(3), 361-376. https://doi.org/10.1007/s13280-013-0443-1es_CO
    dc.relation.referencesBryce, C. M., Baliga, V. B., De Nesnera, K. L., Fiack, D., & Goetz, K. (2016). Exploring Models in the Biology Classroom. The American Biology Teacher, 78(1), 35-42.es_CO
    dc.relation.referencesBucher, M., Wolfowicz, I., Voss, P. A., Hambleton, E. A., & Guse, A. (2016). Development and Symbiosis Establishment in the Cnidarian Endosymbiosis Model Aiptasia sp. Scientific Reports, 6(1), Article 1. https://doi.org/10.1038/srep19867es_CO
    dc.relation.referencesBurkepile, D. E., & Hay, M. E. (2006). Herbivore Vs. Nutrient Control of Marine Primary Producers: Context-Dependent Effects. Ecology, 87(12), 3128-3139. https://doi.org/10.1890/0012-9658(2006)87[3128:HVNCOM]2.0.CO;2es_CO
    dc.relation.referencesBurriesci, M. S., Raab, T. K., & Pringle, J. R. (2012). Evidence that glucose is the major transferred metabolite in dinoflagellate-cnidarian symbiosis. The Journal of Experimental Biology, 215(Pt 19), 3467-3477. https://doi.org/10.1242/jeb.070946es_CO
    dc.relation.referencesCarbonero, Z. (1976). Metabolismo de aminoácidos. ETSI Agrónomos. https://oa.upm.es/54762/1/METABOLISMO.pdfes_CO
    dc.relation.referencesCerqueda-García, D., Martínez-Castilla, L. P., Falcón, L. I., & Delaye, L. (2014). Metabolic analysis of Chlorobium chlorochromatii CaD3 reveals clues of the symbiosis in ‗Chlorochromatium aggregatum‘. The ISME Journal, 8(5), Article 5. https://doi.org/10.1038/ismej.2013.207es_CO
    dc.relation.referencesClarke, J. L., Davey, P. A., & Aldred, N. (2020). Sea anemones (Exaiptasia pallida) use a secreted adhesive and complex pedal disc morphology for surface attachment. BMC Zoology, 5(1), 5. https://doi.org/10.1186/s40850-020-00054-6es_CO
    dc.relation.referencesColley, N. J., Trench, R. K., & Smith, D. C. (1983). Selectivity in phagocytosis and persistence of symbiotic algae by the scyphistoma stage of the jellyfish Cassiopeia xamachana. Proceedings of the Royal Society of London. Series B. Biological Sciences, 219(1214), 61-82. https://doi.org/10.1098/rspb.1983.0059es_CO
    dc.relation.referencesCui, G., Liew, Y. J., Li, Y., Kharbatia, N., Zahran, N. I., Emwas, A.-H., Eguiluz, V. M., & Aranda, M. (2019). Host-dependent nitrogen recycling as a mechanism of symbiont control in Aiptasia. PLOS Genetics, 15(6), e1008189. https://doi.org/10.1371/journal.pgen.1008189es_CO
    dc.relation.referencesCui, G., Mi, J., Moret, A., Zhong, H., Hung, S.-H., Al-Babili, S., & Aranda, M. (2022). Nitrogen competition is the general mechanism underlying cnidarian-Symbiodiniaceae symbioses (p. 2022.06.30.498212). bioRxiv. https://doi.org/10.1101/2022.06.30.498212es_CO
    dc.relation.referencesCziesielski, M. J., Liew, Y. J., Cui, G., Schmidt-Roach, S., Campana, S., Marondedze, C., & Aranda, M. (2018). Multi-omics analysis of thermal stress response in a zooxanthellate cnidarian reveals the importance of associating with thermotolerant symbionts. Proceedings. Biological Sciences, 285(1877), 20172654. https://doi.org/10.1098/rspb.2017.2654es_CO
    dc.relation.referencesDavy, S. K., Allemand, D., & Weis, V. M. (2012). Cell Biology of Cnidarian-Dinoflagellate Symbiosis. Microbiology and Molecular Biology Reviews, 76(2), 229-261. https://doi.org/10.1128/MMBR.05014-11es_CO
    dc.relation.referencesDearden, P., Bennett, M., & Rollins, R. (2007). Perceptions of Diving Impacts and Implications for Reef Conservation. Coastal Management, 35(2-3), 305-317. https://doi.org/10.1080/08920750601169584es_CO
    dc.relation.referencesDellaert, Z., Vargas, P. A., La Riviere, P. J., & Roberson, L. M. (2022). Uncovering the Effects of Symbiosis and Temperature on Coral Calcification. The Biological Bulletin, 242(1), 62-73. https://doi.org/10.1086/716711es_CO
    dc.relation.referencesDíaz-Almeyda, E., Thomé, P. E., El Hafidi, M., & Iglesias-Prieto, R. (2011). Differential stability of photosynthetic membranes and fatty acid composition at elevated temperature in Symbiodinium. Coral Reefs, 30(1), 217-225. https://doi.org/10.1007/s00338-010- 0691-5es_CO
    dc.relation.referencesdiCenzo, G. C., Tesi, M., Pfau, T., Mengoni, A., & Fondi, M. (2020). Genome-scale metabolic reconstruction of the symbiosis between a leguminous plant and a nitrogen-fixing bacterium. Nature Communications, 11, 2574. https://doi.org/10.1038/s41467-020- 16484-2es_CO
    dc.relation.referencesDunn, S. R., Thomas, M. C., Nette, G. W., & Dove, S. G. (2012). A Lipidomic Approach to Understanding Free Fatty Acid Lipogenesis Derived from Dissolved Inorganic Carbon within Cnidarian-Dinoflagellate Symbiosis. PLOS ONE, 7(10), e46801. https://doi.org/10.1371/journal.pone.0046801es_CO
    dc.relation.referencesEnríquez, S., Méndez, E. R., & -Prieto, R. I. (2005). Multiple scattering on coral skeletons enhances light absorption by symbiotic algae. Limnology and Oceanography, 50(4), 1025-1032. https://doi.org/10.4319/lo.2005.50.4.1025es_CO
    dc.relation.referencesFabricius, K., De‘ath, G., McCook, L., Turak, E., & Williams, D. McB. (2005). Changes in algal, coral and fish assemblages along water quality gradients on the inshore Great Barrier Reef. Marine Pollution Bulletin, 51(1), 384-398. https://doi.org/10.1016/j.marpolbul.2004.10.041es_CO
    dc.relation.referencesFalkowski, P. G., Dubinsky, Z., Muscatine, L., & McCloskey, L. (1993). Population Control in Symbiotic Corals. BioScience, 43(9), 606-611. https://doi.org/10.2307/1312147es_CO
    dc.relation.referencesFerrier-Pagès, C., Bednarz, V., Grover, R., Benayahu, Y., Maguer, J.-F., Rottier, C., Wiedenmann, J., & Fine, M. (2022). Symbiotic stony and soft corals: Is their host-algae relationship really mutualistic at lower mesophotic reefs? Limnology and Oceanography, 67(1), 261-271. https://doi.org/10.1002/lno.11990es_CO
    dc.relation.referencesFitt, W. K., Brown, B. E., Warner, M. E., & Dunne, R. P. (2001). Coral bleaching: Interpretation of thermal tolerance limits and thermal thresholds in tropical corals. Coral Reefs, 20(1), 51-65. https://doi.org/10.1007/s003380100146es_CO
    dc.relation.referencesGao, X., Lee, K., Reid, M. A., Sanderson, S. M., Qiu, C., Li, S., Liu, J., & Locasale, J. W. (2018). Serine Availability Influences Mitochondrial Dynamics and Function through Lipid Metabolism. Cell Reports, 22(13), 3507-3520. https://doi.org/10.1016/j.celrep.2018.03.017es_CO
    dc.relation.referencesGates, R. D., Baghdasarian, G., & Muscatine, L. (1992). Temperature Stress Causes Host Cell Detachment in Symbiotic Cnidarians: Implications for Coral Bleaching. The Biological Bulletin, 182(3), 324-332. https://doi.org/10.2307/1542252es_CO
    dc.relation.referencesGrajales, A., & Rodríguez, E. (2014). Morphological revision of the genus Aiptasia and the family Aiptasiidae (Cnidaria, Actiniaria, Metridioidea). Zootaxa, 3826(1), 55. https://doi.org/10.11646/zootaxa.3826.1.2es_CO
    dc.relation.referencesGrawunder, D., Hambleton, E. A., Bucher, M., Wolfowicz, I., Bechtoldt, N., & Guse, A. (2015). Induction of Gametogenesis in the Cnidarian Endosymbiosis Model Aiptasia sp. Scientific Reports, 5, 15677. https://doi.org/10.1038/srep15677es_CO
    dc.relation.referencesHasler, H., & Ott, J. A. (2008). Diving down the reefs? Intensive diving tourism threatens the reefs of the northern Red Sea. Marine Pollution Bulletin, 56(10), 1788-1794. https://doi.org/10.1016/j.marpolbul.2008.06.002es_CO
    dc.relation.referencesHillyer, K. E., Dias, D. A., Lutz, A., Roessner, U., & Davy, S. K. (2017). Mapping carbon fate during bleaching in a model cnidarian symbiosis: The application of 13C metabolomics. New Phytologist, 214(4), 1551-1562. https://doi.org/10.1111/nph.14515es_CO
    dc.relation.referencesHillyer, K. E., Tumanov, S., Villas-Bôas, S., & Davy, S. K. (2016). Metabolite profiling of symbiont and host during thermal stress and bleaching in a model cnidarian–dinoflagellate symbiosis. Journal of Experimental Biology, 219(4), 516-527. https://doi.org/10.1242/jeb.128660es_CO
    dc.relation.referencesHou, Y., Yin, Y., & Wu, G. (2015). Dietary essentiality of ―nutritionally non-essential amino acids‖ for animals and humans. Experimental Biology and Medicine, 240(8), 997-1007. https://doi.org/10.1177/1535370215587913es_CO
    dc.relation.referencesKazandjian, A., Shepherd, V. A., Rodriguez-Lanetty, M., Nordemeier, W., Larkum, A. W. D., & Quinnell, R. G. (2008). Isolation of symbiosomes and the symbiosome membrane complex from the zoanthid Zoanthus robustus. Phycologia, 47(3), 294-306. https://doi.org/10.2216/PH07-23.1es_CO
    dc.relation.referencesKlamt, S., Regensburger, G., Gerstl, M. P., Jungreuthmayer, C., Schuster, S., Mahadevan, R., Zanghellini, J., & Müller, S. (2017). From elementary flux modes to elementary flux vectors: Metabolic pathway analysis with arbitrary linear flux constraints. PLOS Computational Biology, 13(4), e1005409. https://doi.org/10.1371/journal.pcbi.1005409es_CO
    dc.relation.referencesKroeker, K. J., Kordas, R. L., Crim, R. N., & Singh, G. G. (2010). Meta-analysis reveals negative yet variable effects of ocean acidification on marine organisms. Ecology Letters, 13(11), 1419-1434. https://doi.org/10.1111/j.1461-0248.2010.01518.xes_CO
    dc.relation.referencesKuepfer, L. (2014). Stoichiometric Modelling of Microbial Metabolism. En J. O. Krömer, L. K. Nielsen, & L. M. Blank (Eds.), Metabolic Flux Analysis (Vol. 1191, pp. 3-18). Springer New York. https://doi.org/10.1007/978-1-4939-1170-7_1es_CO
    dc.relation.referencesLehnert, E. M., Mouchka, M. E., Burriesci, M. S., Gallo, N. D., Schwarz, J. A., & Pringle, J. R. (2014). Extensive Differences in Gene Expression Between Symbiotic and Aposymbiotic Cnidarians. G3 Genes|Genomes|Genetics, 4(2), 277-295. https://doi.org/10.1534/g3.113.009084es_CO
    dc.relation.referencesLoh, T.-L., McMurray, S. E., Henkel, T. P., Vicente, J., & Pawlik, J. R. (2015). Indirect effects of overfishing on Caribbean reefs: Sponges overgrow reef-building corals. PeerJ, 3, e901. https://doi.org/10.7717/peerj.901es_CO
    dc.relation.referencesMaarleveld, T. R., Khandelwal, R. A., Olivier, B. G., Teusink, B., & Bruggeman, F. J. (2013). Basic concepts and principles of stoichiometric modeling of metabolic networks. Biotechnology Journal, 8(9), 997-1008. https://doi.org/10.1002/biot.201200291es_CO
    dc.relation.referencesMachado, J., & Fernandes, B. L. P. (2021). Model Conceptions in Science Education Research: Features and trends. Ciência & Educação (Bauru), 27, e21014. https://doi.org/10.1590/1516-731320210014es_CO
    dc.relation.referencesMain, W. P. L., Ross, C., & Bielmyer, G. K. (2010). Copper accumulation and oxidative stress in the sea anemone, Aiptasia pallida, after waterborne copper exposure. Comparative Biochemistry and Physiology. Toxicology & Pharmacology: CBP, 151(2), 216-221. https://doi.org/10.1016/j.cbpc.2009.10.008es_CO
    dc.relation.referencesMarino, A., Valveri, V., Muià, C., Crupi, R., Rizzo, G., Musci, G., & La Spada, G. (2004). Cytotoxicity of the nematocyst venom from the sea anemone Aiptasia mutabilis. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 139(4), 295-301. https://doi.org/10.1016/j.cca.2004.12.008es_CO
    dc.relation.referencesMatilla, B., Mauriz, J. L., Culebras, J. M., & González-Gallego, J. (2002). La glicina: Un nutriente antioxidante protector celular. Nutr. Hosp.es_CO
    dc.relation.referencesMatthews, J. L., Oakley, C. A., Lutz, A., Hillyer, K. E., Roessner, U., Grossman, A. R., Weis, V. M., & Davy, S. K. (2018). Partner switching and metabolic flux in a model cnidarian– dinoflagellate symbiosis. Proceedings of the Royal Society B: Biological Sciences, 285(1892), 20182336. https://doi.org/10.1098/rspb.2018.2336es_CO
    dc.relation.referencesMorais, J., Medeiros, A. P. M., & Santos, B. A. (2018). Research gaps of coral ecology in a changing world. Marine Environmental Research, 140, 243-250. https://doi.org/10.1016/j.marenvres.2018.06.021es_CO
    dc.relation.referencesMuller-Parker, G., & Davy, S. K. (2001). Temperate and tropical algal-sea anemone symbioses. Invertebrate Biology, 120(2), 104-123. https://doi.org/10.1111/j.1744- 7410.2001.tb00115.xes_CO
    dc.relation.referencesMumby, P. J. (2016). Stratifying herbivore fisheries by habitat to avoid ecosystem overfishing of coral reefs. Fish and Fisheries, 17(1), 266-278. https://doi.org/10.1111/faf.12078es_CO
    dc.relation.referencesMuscatine, L., Falkowski, P. G., Porter, J. W., Dubinsky, Z., & Smith, D. C. (1984). Fate of photosynthetic fixed carbon in light- and shade-adapted colonies of the symbiotic coral Stylophora pistillata. Proceedings of the Royal Society of London. Series B. Biological Sciences, 222(1227), 181-202. https://doi.org/10.1098/rspb.1984.0058es_CO
    dc.relation.referencesMuscatine, L., Goiran, C., Land, L., Jaubert, J., Cuif, J.-P., & Allemand, D. (2005). Stable isotopes (δ13C and δ15N) of organic matrix from coral skeleton. Proceedings of the National Academy of Sciences, 102(5), 1525-1530. https://doi.org/10.1073/pnas.0408921102es_CO
    dc.relation.referencesMuscatine, L., & Porter, J. W. (1977). Reef Corals: Mutualistic Symbioses Adapted to NutrientPoor Environments. BioScience, 27(7), 454-460. https://doi.org/10.2307/1297526es_CO
    dc.relation.referencesNewsholme, P., Procopio, J., Lima, M. M. R., Pithon-Curi, T. C., & Curi, R. (2003). Glutamine and glutamate—Their central role in cell metabolism and function. Cell Biochemistry and Function, 21(1), 1-9. https://doi.org/10.1002/cbf.1003es_CO
    dc.relation.referencesOakley, C. A., Ameismeier, M. F., Peng, L., Weis, V. M., Grossman, A. R., & Davy, S. K. (2016). Symbiosis induces widespread changes in the proteome of the model cnidarian Aiptasia. Cellular Microbiology, 18(7), 1009-1023. https://doi.org/10.1111/cmi.12564es_CO
    dc.relation.referencesOberhardt, M., & Palsson, B. (2009). Applications of genome-scale metabolic reconstructions. Molecular Systems Biology, 5(1), 320. https://doi.org/10.1038/msb.2009.77es_CO
    dc.relation.referencesPutnam, N. H., Srivastava, M., Hellsten, U., Dirks, B., Chapman, J., Salamov, A., Terry, A., Shapiro, H., Lindquist, E., Kapitonov, V. V., Jurka, J., Genikhovich, G., Grigoriev, I. V., Lucas, S. M., Steele, R. E., Finnerty, J. R., Technau, U., Martindale, M. Q., & Rokhsar, D. S. (2007). Sea anemone genome reveals ancestral eumetazoan gene repertoire and genomic organization. Science (New York, N.Y.), 317(5834), 86-94. https://doi.org/10.1126/science.1139158es_CO
    dc.relation.referencesRädecker, N., Raina, J.-B., Pernice, M., Perna, G., Guagliardo, P., Kilburn, M. R., Aranda, M., & Voolstra, C. R. (2017). Aiptasia as a model to study metabolic diversity and specificity in cnidarian-dinoflagellate symbioses (p. 223933). bioRxiv. https://doi.org/10.1101/223933es_CO
    dc.relation.referencesRasher, D. B., Engel, S., Bonito, V., Fraser, G. J., Montoya, J. P., & Hay, M. E. (2012). Effects of herbivory, nutrients, and reef protection on algal proliferation and coral growth on a tropical reef. Oecologia, 169(1), 187-198. https://doi.org/10.1007/s00442-011-2174-yes_CO
    dc.relation.referencesRoberts, J. M., Fixter, L. M., & Davies, P. S. (2001). Ammonium metabolism in the symbiotic sea anemone Anemonia viridis. Hydrobiologia, 461(1), 25-35. https://doi.org/10.1023/A:1012752828587es_CO
    dc.relation.referencesRoth, M. S. (2014). The engine of the reef: Photobiology of the coral-algal symbiosis. Frontiers in Microbiology, 5, 422. https://doi.org/10.3389/fmicb.2014.00422es_CO
    dc.relation.referencesSheppard, C., Davy, S., Pilling, G., & Graham, N. (2018). The Biology of Coral Reefs (Vol. 1). Oxford University Press. https://doi.org/10.1093/oso/9780198787341.001.0001es_CO
    dc.relation.referencesShinzato, C., Shoguchi, E., Kawashima, T., Hamada, M., Hisata, K., Tanaka, M., Fujie, M., Fujiwara, M., Koyanagi, R., Ikuta, T., Fujiyama, A., Miller, D. J., & Satoh, N. (2011). Using the Acropora digitifera genome to understand coral responses to environmental change. Nature, 476(7360), 320-323. https://doi.org/10.1038/nature10249es_CO
    dc.relation.referencesSimkiss, K. (1964). PHOSPHATES AS CRYSTAL POISONS OF CALCIFICATION. Biological Reviews, 39(4), 487-504. https://doi.org/10.1111/j.1469-185X.1964.tb01166.xes_CO
    dc.relation.referencesSmith, D. J., Suggett, D. J., & Baker, N. R. (2005). Is photoinhibition of zooxanthellae photosynthesis the primary cause of thermal bleaching in corals? Global Change Biology, 11(1), 1-11. https://doi.org/10.1111/j.1529-8817.2003.00895.xes_CO
    dc.relation.referencesStarzak, D. E., Quinnell, R. G., Cook, C. B., & Davy, S. K. (2020). Influence of Symbiont Species on the Glycerol and Glucose Pools in a Model Cnidarian-Dinoflagellate Symbiosis. The Biological Bulletin, 239(2), 143-151. https://doi.org/10.1086/710349es_CO
    dc.relation.referencesSuescún-Bolívar, L. P., Iglesias-Prieto, R., & Thomé, P. E. (2012). Induction of Glycerol Synthesis and Release in Cultured Symbiodinium. PLoS ONE, 7(10), e47182. https://doi.org/10.1371/journal.pone.0047182es_CO
    dc.relation.referencesSuescún-Bolívar, L. P., & Thomé, P. E. (2015). Osmosensing and osmoregulation in unicellular eukaryotes. World Journal of Microbiology and Biotechnology, 31(3), 435-443. https://doi.org/10.1007/s11274-015-1811-8es_CO
    dc.relation.referencesSvoboda, J., & Passmore, C. (2013). The Strategies of Modeling in Biology Education. Science & Education, 22(1), 119-142. https://doi.org/10.1007/s11191-011-9425-5es_CO
    dc.relation.referencesTomascik, T., & Sander, F. (1985). Effects of eutrophication on reef-building corals. Marine Biology, 87(2), 143-155. https://doi.org/10.1007/BF00539422es_CO
    dc.relation.referencesTrinh, C. T., Wlaschin, A., & Srienc, F. (2009). Elementary Mode Analysis: A Useful Metabolic Pathway Analysis Tool for Characterizing Cellular Metabolism. Applied microbiology and biotechnology, 81(5), 813-826. https://doi.org/10.1007/s00253-008-1770-1es_CO
    dc.relation.referencesVolkova, S., Matos, M. R. A., Mattanovich, M., & Marín de Mas, I. (2020). Metabolic Modelling as a Framework for Metabolomics Data Integration and Analysis. Metabolites, 10(8), 303. https://doi.org/10.3390/metabo10080303es_CO
    dc.relation.referencesVoolstra, C. R. (2013). A journey into the wild of the cnidarian model system Aiptasia and its symbionts. Molecular Ecology, 22(17), 4366-4368. https://doi.org/10.1111/mec.12464es_CO
    dc.relation.referencesWakefield, T. S., & Kempf, S. C. (2001). Development of Host- and Symbiont-Specific Monoclonal Antibodies and Confirmation of the Origin of the Symbiosome Membrane in a Cnidarian–Dinoflagellate Symbiosis. The Biological Bulletin, 200(2), 127-143. https://doi.org/10.2307/1543306es_CO
    dc.relation.referencesWang, J. T., & Douglas, A. E. (1999). Essential amino acid synthesis and nitrogen recycling in an alga–invertebrate symbiosis. Marine Biology, 135(2), 219-222. https://doi.org/10.1007/s002270050619es_CO
    dc.relation.referencesWeis, V. M., Davy, S. K., Hoegh-Guldberg, O., Rodriguez-Lanetty, M., & Pringle, J. R. (2008). Cell biology in model systems as the key to understanding corals. Trends in Ecology & Evolution, 23(7), 369-376. https://doi.org/10.1016/j.tree.2008.03.004es_CO
    dc.relation.referencesWhitehead, L. F., & Douglas, A. E. (2003). Metabolite comparisons and the identity of nutrients translocated from symbiotic algae to an animal host. The Journal of Experimental Biology, 206(Pt 18), 3149-3157. https://doi.org/10.1242/jeb.00539es_CO
    dc.relation.referencesYellowlees, D., Rees, T. A. V., & Leggat, W. (2008). Metabolic interactions between algal symbionts and invertebrate hosts. Plant, Cell & Environment, 31(5), 679-694. https://doi.org/10.1111/j.1365-3040.2008.01802.xes_CO
    dc.relation.referencesZanghellini, J., Ruckerbauer, D. E., Hanscho, M., & Jungreuthmayer, C. (2013). Elementary flux modes in a nutshell: Properties, calculation and applications. Biotechnology Journal, 8(9), 1009-1016. https://doi.org/10.1002/biot.201200269es_CO
    dc.rights.accessrightshttp://purl.org/coar/access_right/c_abf2es_CO
    dc.type.coarversionhttp://purl.org/coar/resource_type/c_2df8fbb1es_CO
    Aparece en las colecciones: Biología

    Ficheros en este ítem:
    Fichero Descripción Tamaño Formato  
    Macías_2023_TG.pdf803,87 kBAdobe PDFVisualizar/Abrir


    Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.