• Repositorio Institucional Universidad de Pamplona
  • Trabajos de pregrado y especialización
  • Facultad de Ciencias Básicas
  • Biología
  • Por favor, use este identificador para citar o enlazar este ítem: http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/968
    Registro completo de metadatos
    Campo DC Valor Lengua/Idioma
    dc.contributor.authorMendoza Daza, Yiseth María.-
    dc.date.accessioned2022-05-21T17:10:13Z-
    dc.date.available2019-11-01-
    dc.date.available2022-05-21T17:10:13Z-
    dc.date.issued2020-
    dc.identifier.citationMendoza Daza, Y. M. (2019). Evaluación de la actividad antihelmíntica de tres especies de plantas con propiedades medicinales sobre huevos de nematodos gastrointestinales en caprinos [Trabajo de Grado Pregrado, Universidad de Pamplona]. Repositorio Hulago Universidad de Pamplona. http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/968es_CO
    dc.identifier.urihttp://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/968-
    dc.descriptionLos nematodos gastrointestinales son los parásitos más frecuentes en los rumiantes del mundo. Estas parasitosis causan gastroenteritis parasitaria con un impacto negativo sobre la productividad. El control de nematodos se ha basado en el uso de antihelmínticos químicos ante los cuales los nematodos han desarrollado resistencia. Para contrarrestar los perjuicios ocasionados por los parásitos gastrointestinales y a la resistencia ante fármacos antihelmínticos, se propone el estudio y la aplicación de componentes activos de las plantas con metabolitos secundarios con propiedades antihelmínticas, como una alternativa sostenible para el control de la nematodosis caprina. Se evaluaron las propiedades antihelmínticas de 3 plantas con propiedades medicinales, sobre huevos de nematodos gastrointestinales de la familia Trichostrongylidae, mediante la obtención de extractos vegetales metalónicos, para los cuales se utilizó el ensayo de eclosión de huevos (EHA). La comparación de las medias rechazó la hipótesis nula, mostrando diferencias significativas (P≤ 0.05) por extracto y por concentración. Todos los extractos mostraron una inhibición significativa en la eclosión huevos dependiente de las concentraciones evaluadas. Artemisia absinthium obtuvo el mejor rendimiento en inhibicion (87.3%) A una concentración de 10mg/ml. Estos resultados sugieren que las especies A. absinhtium, P. alliacea y T. parthenium poseen actividad antihelmíntica contra huevos de la familia Trichostrongylidae. Los principios activos responsables de la actividad podrían ser los terpenoides, flavonoides, compuestos fenólicos y taninos condensados presentes en las hojases_CO
    dc.description.abstractLa autora no proporciona información sobre este Ítem.es_CO
    dc.format.extent58es_CO
    dc.format.mimetypeapplication/pdfes_CO
    dc.language.isoeses_CO
    dc.publisherUniversidad de Pamplona-.Facultad de Ciencias Básicas.es_CO
    dc.subjectLa autora no proporciona información sobre este ítem.es_CO
    dc.titleEvaluación de la actividad antihelmíntica de tres especies de plantas con propiedades medicinales sobre huevos de nematodos gastrointestinales en caprinos.es_CO
    dc.typehttp://purl.org/coar/resource_type/c_7a1fes_CO
    dc.date.accepted2019-08-01-
    dc.relation.referencesAcharya, J., Hildreth, M. B., & Reese, R. N. (2014). In vitro screening of forty medicinal plant extracts from the United States Northern Great Plains for anthelmintic activity against Haemonchus contortus. Veterinary Parasitology, 201(1–2), 75–81. https://doi.org/10.1016/j.vetpar.2014.01.008es_CO
    dc.relation.referencesAgency, E. M., Papyrus, E., Greek, T., Greek, T., Naturalis, H., Ages, M., & Historiae, T. S. (2010). Journal of Ethnopharmacology, 131, 224–227. https://doi.org/10.1016/j.jep.2010.05.062es_CO
    dc.relation.referencesAlberti, E. G., Zanzani, S. A., Gazzonis, A. L., Zanatta, G., Bruni, G., Villa, M., … Manfredi, M. T. (2014). Effects of gastrointestinal infections caused by nematodes on milk production in goats in a mountain ecosystem: Comparison between a cosmopolite and a local breed. Small Ruminant Research, 120(1), 155–163. https://doi.org/10.1016/j.smallrumres.2014.04.017es_CO
    dc.relation.referencesAlonso-Díaz, M. A., Torres-Acosta, J. F. J., Sandoval-Castro, C. A., Aguilar-Caballero, A. J., & Hoste, H. (2008). In vitro larval migration and kinetics of exsheathment of Haemonchus contortus larvae exposed to four tropical tanniniferous plant extracts. Veterinary Parasitology, 153(3–4), 313–319. https://doi.org/10.1016/j.vetpar.2008.01.042es_CO
    dc.relation.referencesAnthony, J. P., Fyfe, L., & Smith, H. (2005). Plant active components - A resource for antiparasitic agents? Trends in Parasitology, 21(10), 462–468. https://doi.org/10.1016/j.pt.2005.08.004es_CO
    dc.relation.referencesAréchiga, C. F., Aguilera, J. I., Rincón, R. M., Méndez De Lara, S., Bañuelos, V. R., & Meza-Herrera, C. A. (2008). Situación Actual Y Perspectivas De La Producción Caprina Ante El Reto De La Globalización [Role and Perspectives of Goat Production in a Global World]. Tropical and Subtropical Agroecosystems, 9, 1–14. Retrieved from http://www.redalyc.org/articulo.oa?id=93911227001es_CO
    dc.relation.referencesArmenteras, D., Gast, F., & Villareal, H. (2003). Andean forest fragmentation and the representativeness of protected natural areas in the eastern Andes , Colombia, 113, 245–256. https://doi.org/10.1016/S0006-3207(02)00359-2es_CO
    dc.relation.referencesAziz, A. T., Alshehri, M. A., Panneerselvam, C., Murugan, K., Trivedi, S., Mahyoub, J. A., … Benelli, G. (2018). The desert wormwood (Artemisia herba-alba) – From Arabian folk medicine to a source of green and effective nanoinsecticides against mosquito vectors. Journal of Photochemistry and Photobiology B: Biology, 180(2017), 225–234. https://doi.org/10.1016/j.jphotobiol.2018.02.012es_CO
    dc.relation.referencesBach, B., Cleroux, M., Saillen, M., Schönenberger, P., & Burgos, S. (2016). A new chemical tool for absinthe producers , quantification of a / b -thujone and the bitter components in Artemisia absinthium. Food Chemistry. https://doi.org/10.1016/j.foodchem.2016.06.045es_CO
    dc.relation.referencesBachaya, H. A., Iqbal, Z., Khan, M. N., Sindhu, Z. ud D., & Jabbar, A. (2009). Anthelmintic activity of Ziziphus nummularia (bark) and Acacia nilotica (fruit) against Trichostrongylid nematodes of sheep. Journal of Ethnopharmacology, 123(2), 325–329. https://doi.org/10.1016/j.jep.2009.02.043es_CO
    dc.relation.referencesBelemlilga, M. B., Traoré, A., Ouédraogo, S., Kaboré, A., Tamboura, H. H., & Guissou, I. P. (2016). Anthelmintic activity of Saba senegalensis (A.DC.) Pichon (Apocynaceae) extract against adult worms and eggs of Haemonchus contortus. Asian Pacific Journal of Tropical Biomedicine, 6(11), 945–949. https://doi.org/10.1016/j.apjtb.2016.07.015es_CO
    dc.relation.referencesBlackburn, H. D., Rocha, J. L., Figueiredo, E. P., Berne, M. E., Vieira, L. S., Cavalcante, A. R., & Rosa, J. S. (1992). Interaction of parasitism and nutrition in goats: effects on haematological parameters, correlations, and other statistical associations. Veterinary Parasitology, 44(3–4), 183–197. https://doi.org/10.1016/0304-4017(92)90116-Qes_CO
    dc.relation.referencesBotura, M. B., Silva, G. D., Lima, H. G., Oliveira, J. V. A., Souza, T. S., Santos, J. D. G., … Batatinha, M. J. M. (2011). In vivo anthelmintic activity of an aqueous extract from sisal waste (Agave sisalana Perr.) against gastrointestinal nematodes in goats. Veterinary Parasitology, 177(1–2), 104–110. https://doi.org/10.1016/j.vetpar.2010.11.039es_CO
    dc.relation.referencesBotura, Mariana B, Almeida, G. N., Domingues, L. F., & Costa, S. L. (2003). EFEITOS DOS EXTRATOS AQUOSOS DE FOLHAS DE Cymbopogon citratus ( DC .) STAPF ( CAPIM-SANTO ) E DE Digitaria insularis ( L .) FEDDE ( CAPIM-AÇU ) SOBRE. Medicina, 129, 125–129es_CO
    dc.relation.referencesBurgunder, A. J., & Petrˇ, J. (2018). Fractal measures in activity patterns: do gastrointestinal parasites affect the complexity of sheep behaviour? Applied Animal Behaviour Science. https://doi.org/10.1016/j.applanim.2018.05.014es_CO
    dc.relation.referencesCalvete, C., Ferrer, L. M., Lacasta, D., Calavia, R., Ramos, J. J., Ruiz-de-arkaute, M., & Uriarte,J. (2014). Veterinary Parasitology Variability of the egg hatch assay to survey benzimidazole resistance in nematodes of small ruminants under field conditions. Veterinary Parasitology, 203(1–2), 102–113. https://doi.org/10.1016/j.vetpar.2014.03.002es_CO
    dc.relation.referencesCárdenas, J., Reyes-Pérez, V., Hernández-Navarro, M. D., Dorantes-Barrón, A. M., Almazán, S., & Estrada-Reyes, R. (2017). Anxiolytic- and antidepressant-like effects of an aqueous extract of Tanacetum parthenium L. Schultz-Bip (Asteraceae) in mice. Journal of Ethnopharmacology, 200, 22–30. https://doi.org/10.1016/j.jep.2017.02.023es_CO
    dc.relation.referencesCarolina, A., Chagas, D. S., & Chagas, A. C. S. (2016). Medicinal plant extracts and nematode control Medicinal plant extracts and nematode control, (MARCH 2015). https://doi.org/10.1079/PAVSNNR201510008es_CO
    dc.relation.referencesColes, G. C., Bauer, C., Borgsteede, F. H. M., Geerts, S., Klei, T. R., & Taylor, M. A. (2000). World Association for the Advancement of Veterinary Parasitology ( W . A . A . V . P .) methods for the detection of anthelmintic resistance in nematodes of veterinary importance, 44(1992), 35–44.es_CO
    dc.relation.referencesCortes López Hector. (2009). SITUACIÓN DEL RECURSO OVINO Y CAPRINO EN COLOMBIA. Retrieved June 18, 2018, from https://sioc.minagricultura.gov.co/OvinoCaprina/Documentos/005 - Documentos Técnicos/Situacion Recursos Ovino - Caprino.pdfes_CO
    dc.relation.referencesDasilveira, R. (2002). Vademecum colombiano de plantas medicinales. Ministerio de la protección social. Mycological Research, 106(11), 1323–1330.es_CO
    dc.relation.referencesDemeler, J., Kleinschmidt, N., Küttler, U., Koopmann, R., & Samson-himmelstjerna, G. Von. (2012). Parasitology International Evaluation of the Egg Hatch Assay and the Larval Migration Inhibition Assay to detect anthelmintic resistance in cattle parasitic nematodes on farms. Parasitology International, 61(4), 614–618. https://doi.org/10.1016/j.parint.2012.06.003es_CO
    dc.relation.referencesEguale, T., Tadesse, D., & Giday, M. (2011). In vitro anthelmintic activity of crude extracts of five medicinal plants against egg-hatching and larval development of Haemonchus contortus. Journal of Ethnopharmacology, 137(1), 108–113. https://doi.org/10.1016/j.jep.2011.04.063es_CO
    dc.relation.referencesEspinosa-Moreno, J., Centurión-Hidalgo, D., Vera y Cuspinera, G. G., Pérez-Castañeda, E., Zaragoza-Vera, C. V., Martínez-Martínez, S., … González-Cortázar, M. (2016). Actividad antihelmíntica in vitro de tres especies vegetales utilizadas tradicionalmente en Tabasco, México. Polibotánica, 0(41), 91–100. https://doi.org/10.18387/polibotanica.41.6es_CO
    dc.relation.referencesFaculdade, F.-, Medicas, C., Estadual, U., & Brazil, C.-. (2000). ORALLY WITH PETIVERIA ALLIACEA EXTRACT ., 22(3).es_CO
    dc.relation.referencesFalcone Ferreyra, M. L., Rius, S. P., & Casati, P. (2012). Flavonoids: biosynthesis, biological functions, and biotechnological applications. Frontiers in Plant Science, 3(September), 1–16. https://doi.org/10.3389/fpls.2012.00222es_CO
    dc.relation.referencesFthenakis, G. C., & Papadopoulos, E. (2018). Impact of parasitism in goat production. Small Ruminant Research, 163, 21–23. https://doi.org/10.1016/j.smallrumres.2017.04.001es_CO
    dc.relation.referencesGarcía-Pérez, M. E., Alfonso-Castillo, A., Lores, O. F., Batista-Duharte, A., & Lemus-Rodríguez, Z. (2018). Toxicological evaluation of an aqueous suspension from leaves and stems of Petiveria alliacea L. (Phytolaccaceae). Journal of Ethnopharmacology, 211, 29–37. https://doi.org/10.1016/j.jep.2017.09.022es_CO
    dc.relation.referencesHammond, G. B., Fernández, I. D., Villegas, L. F., & Vaisberg, a J. (1998). A survey of traditional medicinal plants from the Callejón de Huaylas, Department of Ancash, Perú. Journal of Ethnopharmacology, 61, 17–30. https://doi.org/10.1016/S0378-8741(98)00009-9es_CO
    dc.relation.referencesHammond, J. A., Fielding, D., & Bishop, S. C. (1997). Prospects for plant anthelmintics in tropical veterinary medicine. Veterinary Research Communications, 21(3), 213–228. https://doi.org/10.1023/A:1005884429253es_CO
    dc.relation.referencesHerb, A. P. (1995). Artemisia absinthium , wormwood, 105–121. https://doi.org/10.1016/B978-0-443-10344-5.00016-1es_CO
    dc.relation.referencesHerrera O, L., Ríos O, L., & Zapata S, R. (2013). Frecuencia de la infección por nemátodos gastrointestinales en ovinos y caprinos de cinco municipios de Antioquia. Revista MVZ Cordoba, 18(3), 3851–3860es_CO
    dc.relation.referencesInstituto nacional de vigilancia de medicamentos y alimentos. (2019). Listados de plantas medicinales aceptadas con fines terapéuticos - Instituto Nacional de Vigilancia de Medicamentos y Alimentos. Retrieved July 9, 2019, from https://www.invima.gov.co/web/guest/listados-de-plantas-medicinales-aceptadas-con-fines-terapéuticos?inheritRedirect=truees_CO
    dc.relation.referencesIqbal, Z., Lateef, M., Ashraf, M., & Jabbar, A. (2004). Anthelmintic activity of Artemisia brevifolia in sheep, 93, 265–268. https://doi.org/10.1016/j.jep.2004.03.046es_CO
    dc.relation.referencesIs, E. (2013). Optimisation of ultrasonic-assisted extraction of antioxidant compounds from Artemisia absinthium using response surface methodology, 141, 1361–1368. https://doi.org/10.1016/j.foodchem.2013.04.003es_CO
    dc.relation.referencesJudžentiene, A. (2015). Wormwood (Artemisia absinthium L.) oils. Essential Oils in Food Preservation, Flavor and Safety, 849–856. https://doi.org/10.1016/B978-0-12-416641-7.00097-3es_CO
    dc.relation.referencesKalarickal, D. C., Samraj, S., Udayan, D., Narayanan, P. M., Ramachandran, S., & Gouri, S. S. (2015). Effect of various extracts of Ocimum sanctum and Mallotus phillipensis on Setaria digitata. Pharmacognosy Journal, 7, 344–347. https://doi.org/10.5530/pj.2015.6.5es_CO
    dc.relation.referencesKaplan, R. M. (2004). Drug resistance in nematodes of veterinary importance : a status report, 20(10). https://doi.org/10.1016/j.pt.2004.08.001es_CO
    dc.relation.referencesKaplan, R. M., & Vidyashankar, A. N. (2012). An inconvenient truth: Global worming and anthelmintic resistance. Veterinary Parasitology, 186(1–2), 70–78. https://doi.org/10.1016/j.vetpar.2011.11.048es_CO
    dc.relation.referencesKhan, A., Tak, H., Nazir, R., & Lone, B. A. (2016). In vitro and in vivo anthelmintic activities of Iris kashmiriana Linn. Journal of the Saudi Society of Agricultural Sciences. https://doi.org/10.1016/j.jssas.2016.05.001es_CO
    dc.relation.referencesKotze, A. C., Ruffell, A., Lamb, J., & Elliott, T. P. (2018). Response of drug-susceptible and -resistant Haemonchus contortus larvae to monepantel and abamectin alone or in combination in vitro. Veterinary Parasitology, 249(November 2017), 57–62. https://doi.org/10.1016/j.vetpar.2017.11.007es_CO
    dc.relation.referencesKozan, E., Küpeli Akkol, E., & Süntar, I. (2016). Potential anthelmintic activity of Pelargonium endlicherianum Fenzl. Journal of Ethnopharmacology, 187, 183–186. https://doi.org/10.1016/j.jep.2016.04.044es_CO
    dc.relation.referencesLa, D. D. E., Antihelmintico, A., & Ajenjo, A. L. (n.d.). Universidad de cuenca facultad de ciencias químicas escuela de bioquímica y farmacia.es_CO
    dc.relation.referencesLanusse, C., Canton, C., Virkel, G., Alvarez, L., Costa-Junior, L., & Lifschitz, A. (2018). Strategies to Optimize the Efficacy of Anthelmintic Drugs in Ruminants. Trends in Parasitology, xx. https://doi.org/10.1016/j.pt.2018.05.005es_CO
    dc.relation.referencesLong, C., Sauleau, P., David, B., Lavaud, C., Cassabois, V., Ausseil, F., & Massiot, G. (2003). Bioactive flavonoids of Tanacetum parthenium revisited. Phytochemistry, 64(2), 567–569. https://doi.org/10.1016/S0031-9422(03)00208-5es_CO
    dc.relation.referencesLopes-Lutz, D., Alviano, D. S., Alviano, C. S., & Kolodziejczyk, P. P. (2008). Screening of chemical composition, antimicrobial and antioxidant activities of Artemisia essential oils. Phytochemistry, 69(8), 1732–1738. https://doi.org/10.1016/j.phytochem.2008.02.014es_CO
    dc.relation.referencesLuz, D. A., Pinheiro, A. M., Silva, M. L., Monteiro, M. C., Prediger, R. D., Ferraz Maia, C. S., & Fontes-Júnior, E. A. (2016). Ethnobotany, phytochemistry and neuropharmacological effects of Petiveria alliacea L. (Phytolaccaceae): A review. Journal of Ethnopharmacology, 185(01), 182–201. https://doi.org/10.1016/j.jep.2016.02.053es_CO
    dc.relation.referencesLv, W., Piao, J.-H., & Jiang, J.-G. (2012). Typical toxic components in traditional Chinese medicine. Expert Opinion on Drug Safety, 11(6), 985–1002. https://doi.org/10.1517/14740338.2012.726610es_CO
    dc.relation.referencesMacedo, I. T. F., Bevilaqua, C. M. L., de Oliveira, L. M. B., Camurça-Vasconcelos, A. L. F., Vieira, L. da S., Oliveira, F. R., … Nascimento, N. R. F. (2010). Anthelmintic effect of Eucalyptus staigeriana essential oil against goat gastrointestinal nematodes. Veterinary Parasitology, 173(1–2), 93–98. https://doi.org/10.1016/j.vetpar.2010.06.004es_CO
    dc.relation.referencesMarie-Magdeleine, C., Udino, L., Philibert, L., Bocage, B., & Archimede, H. (2010). In vitro effects of Cassava (Manihot esculenta) leaf extracts on four development stages of Haemonchus contortus. Veterinary Parasitology, 173(1–2), 85–92. https://doi.org/10.1016/j.vetpar.2010.06.017es_CO
    dc.relation.referencesMarie-Magdeleine, C., Udino, L., Philibert, L., Bocage, B., & Archimede, H. (2014). In vitro effects of Musa x paradisiaca extracts on four developmental stages of Haemonchus contortus. Research in Veterinary Science, 96(1), 127–132. https://doi.org/10.1016/j.rvsc.2013.12.004es_CO
    dc.relation.referencesMolan, A. L., Waghorn, G. C., Min, B. R., & McNabb, W. C. (2000). The effect of condensed tannins from seven herbages on Trichostrongylus colubriformis larval migration in vitro. Folia Parasitologica, 47(1), 39–44. https://doi.org/10.14411/fp.2000.007es_CO
    dc.relation.referencesMoreno, F. C., Gordon, I. J., Wright, A. D., Benvenutti, M. A., & Saumell, C. A. (2010). Efecto antihelmíntico in vitro de extractos de plantas sobre larvas infectantes de nematodos gastrointestinales de rumiantes. Archivos de Medicina Veterinaria, 42(3), 155–163. https://doi.org/10.4067/S0301-732X2010000300006es_CO
    dc.relation.referencesNaß, J., & Efferth, T. (2018). PT US CR. Phytomedicine. https://doi.org/10.1016/j.phymed.2018.06.002es_CO
    dc.relation.referencesNguyen, H. T., & Németh, Z. É. (2016). Sources of variability of wormwood (Artemisia absinthium L.) essential oil. Journal of Dermatological Science. https://doi.org/10.1016/j.jarmap.2016.07.005es_CO
    dc.relation.referencesNiu, Y., Zhang, X., Xiao, Z., Song, S., Eric, K., Jia, C., … Zhu, J. (2011). Characterization of odor-active compounds of various cherry wines by gas chromatography – mass spectrometry , gas chromatography – olfactometry and their correlation with sensory attributes. Journal of Chromatography B, 879(23), 2287–2293. https://doi.org/10.1016/j.jchromb.2011.06.015es_CO
    dc.relation.referencesOliveira, A. F., Costa Junior, L. M., Lima, A. S., Silva, C. R., Ribeiro, M. N. S., Mesquista, J. W. C., … Vilegas, W. (2017). Anthelmintic activity of plant extracts from Brazilian savanna. Veterinary Parasitology, 236, 121–127. https://doi.org/10.1016/j.vetpar.2017.02.005es_CO
    dc.relation.referencesQi, H., Wang, W. X., Dai, J. L., & Zhu, L. (2015). In vitro anthelmintic activity of Zanthoxylum simulans essential oil against Haemonchus contortus. Veterinary Parasitology, 211(3–4), 223–227. https://doi.org/10.1016/j.vetpar.2015.05.029es_CO
    dc.relation.referencesRabel, B., Mcgregor, R., & Douch, P. G. C. (1994). Improved bioassay for estimation of inhibitory effects of ovine gastrointestinal mucus and anthelmintics on nematode larval migration. International Journal for Parasitology, 24(5), 671–676. https://doi.org/10.1016/0020-7519(94)90119-8es_CO
    dc.relation.referencesRamos, F., Portella, L. P., Rodrigues, F. S., Reginato, C. Z., Cezar, A. S., Sangioni, L. A., & Vogel, F. S. F. (2018). Anthelminthic resistance of gastrointestinal nematodes in sheep to monepantel treatment in central region of Rio Grande do Sul, Brazil. Pesquisa Veterinaria Brasileira, 38(1), 48–52. https://doi.org/10.1590/1678-5150-pvb-5188es_CO
    dc.relation.referencesRobles-pérez, D., Martínez-pérez, J. M., & Rojo-vázquez, F. A. (2014). Veterinary Parasitology Development of an egg hatch assay for the detection of anthelmintic resistance to albendazole in Fasciola hepatica isolated from sheep. Veterinary Parasitology, 203(1–2), 217–221. https://doi.org/10.1016/j.vetpar.2013.11.020es_CO
    dc.relation.referencesRomero-Benavides, J. C., Ruano, A. L., Silva-Rivas, R., Castillo-Veintimilla, P., Vivanco-Jaramillo, S., & Bailon-Moscoso, N. (2017). Medicinal plants used as anthelmintics: Ethnomedical, pharmacological, and phytochemical studies. European Journal of Medicinal Chemistry, 129, 209–217. https://doi.org/10.1016/j.ejmech.2017.02.005es_CO
    dc.relation.referencesSagbo Idowu Jonas, M. O. W. (2018). Plants Used for Cosmetics in the Eastern Cape Province of South. Pharmacognosy Review, 12(24), 139–156. https://doi.org/10.4103/phrev.phreves_CO
    dc.relation.referencesSantos, F. O., de Lima, H. G., de Souza Santos, N. S., Serra, T. M., Uzeda, R. S., Reis, I. M. A., … Batatinha, M. J. M. (2017). In vitro anthelmintic and cytotoxicity activities the Digitaria insularis (Poaceae). Veterinary Parasitology, 245, 48–54. https://doi.org/10.1016/j.vetpar.2017.08.007es_CO
    dc.relation.referencesSoldera-Silva, A., Seyfried, M., Campestrini, L. H., Zawadzki-Baggio, S. F., Minho, A. P., Molento, M. B., & Maurer, J. B. B. (2018). Assessment of anthelmintic activity and bio-guided chemical analysis of Persea americana seed extracts. Veterinary Parasitology, 251(December 2017), 34–43. https://doi.org/10.1016/j.vetpar.2017.12.019.es_CO
    dc.relation.referencesSotiraki, S., Landau, S. Y., Jackson, F., & Beveridge, I. (2010). Goat – Nematode interactions : think differently, 26(May 2000), 376–381. https://doi.org/10.1016/j.pt.2010.04.007es_CO
    dc.relation.referencesTariku, Y., Hymete, A., Hailu, A., & Rohloff, J. (2011). In vitro evaluation of antileishmanial activity and toxicity of essential oils of Artemisia absinthium and Echinops kebericho. Chemistry and Biodiversity, 8(4), 614–623. https://doi.org/10.1002/cbdv.201000331es_CO
    dc.relation.referencesTariq, K. A., Chishti, M. Z., Ahmad, F., & Shawl, A. S. (2009). Anthelmintic activity of extracts of Artemisia absinthium against ovine nematodes. Veterinary Parasitology, 160(1–2), 83–88. https://doi.org/10.1016/j.vetpar.2008.10.084es_CO
    dc.relation.referencesTurak, A., Shi, S. P., Jiang, Y., & Tu, P. F. (2014). Dimeric guaianolides from Artemisia absinthium. Phytochemistry, 105, 109–114. https://doi.org/10.1016/j.phytochem.2014.06.016es_CO
    dc.relation.referencesVeterinary Parasitology Anthelminthic activity of methanol extracts of Diospyros anisandra and Petiveria alliacea on cyathostomin ( Nematoda : Cyathostominae ) larval development and egg hatching. (2017). Veterinary Parasitology, 248(October), 74–79. https://doi.org/10.1016/j.vetpar.2017.10.016es_CO
    dc.rights.accessrightshttp://purl.org/coar/access_right/c_abf2es_CO
    dc.type.coarversionhttp://purl.org/coar/resource_type/c_2df8fbb1es_CO
    Aparece en las colecciones: Biología

    Ficheros en este ítem:
    Fichero Descripción Tamaño Formato  
    Mendoza_2019_TG.pdfMensoza_2019_TG1,01 MBAdobe PDFVisualizar/Abrir


    Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.