Por favor, use este identificador para citar o enlazar este ítem:
http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/968
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | Mendoza Daza, Yiseth María. | - |
dc.date.accessioned | 2022-05-21T17:10:13Z | - |
dc.date.available | 2019-11-01 | - |
dc.date.available | 2022-05-21T17:10:13Z | - |
dc.date.issued | 2020 | - |
dc.identifier.citation | Mendoza Daza, Y. M. (2019). Evaluación de la actividad antihelmíntica de tres especies de plantas con propiedades medicinales sobre huevos de nematodos gastrointestinales en caprinos [Trabajo de Grado Pregrado, Universidad de Pamplona]. Repositorio Hulago Universidad de Pamplona. http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/968 | es_CO |
dc.identifier.uri | http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/968 | - |
dc.description | Los nematodos gastrointestinales son los parásitos más frecuentes en los rumiantes del mundo. Estas parasitosis causan gastroenteritis parasitaria con un impacto negativo sobre la productividad. El control de nematodos se ha basado en el uso de antihelmínticos químicos ante los cuales los nematodos han desarrollado resistencia. Para contrarrestar los perjuicios ocasionados por los parásitos gastrointestinales y a la resistencia ante fármacos antihelmínticos, se propone el estudio y la aplicación de componentes activos de las plantas con metabolitos secundarios con propiedades antihelmínticas, como una alternativa sostenible para el control de la nematodosis caprina. Se evaluaron las propiedades antihelmínticas de 3 plantas con propiedades medicinales, sobre huevos de nematodos gastrointestinales de la familia Trichostrongylidae, mediante la obtención de extractos vegetales metalónicos, para los cuales se utilizó el ensayo de eclosión de huevos (EHA). La comparación de las medias rechazó la hipótesis nula, mostrando diferencias significativas (P≤ 0.05) por extracto y por concentración. Todos los extractos mostraron una inhibición significativa en la eclosión huevos dependiente de las concentraciones evaluadas. Artemisia absinthium obtuvo el mejor rendimiento en inhibicion (87.3%) A una concentración de 10mg/ml. Estos resultados sugieren que las especies A. absinhtium, P. alliacea y T. parthenium poseen actividad antihelmíntica contra huevos de la familia Trichostrongylidae. Los principios activos responsables de la actividad podrían ser los terpenoides, flavonoides, compuestos fenólicos y taninos condensados presentes en las hojas | es_CO |
dc.description.abstract | La autora no proporciona información sobre este Ítem. | es_CO |
dc.format.extent | 58 | es_CO |
dc.format.mimetype | application/pdf | es_CO |
dc.language.iso | es | es_CO |
dc.publisher | Universidad de Pamplona-.Facultad de Ciencias Básicas. | es_CO |
dc.subject | La autora no proporciona información sobre este ítem. | es_CO |
dc.title | Evaluación de la actividad antihelmíntica de tres especies de plantas con propiedades medicinales sobre huevos de nematodos gastrointestinales en caprinos. | es_CO |
dc.type | http://purl.org/coar/resource_type/c_7a1f | es_CO |
dc.date.accepted | 2019-08-01 | - |
dc.relation.references | Acharya, J., Hildreth, M. B., & Reese, R. N. (2014). In vitro screening of forty medicinal plant extracts from the United States Northern Great Plains for anthelmintic activity against Haemonchus contortus. Veterinary Parasitology, 201(1–2), 75–81. https://doi.org/10.1016/j.vetpar.2014.01.008 | es_CO |
dc.relation.references | Agency, E. M., Papyrus, E., Greek, T., Greek, T., Naturalis, H., Ages, M., & Historiae, T. S. (2010). Journal of Ethnopharmacology, 131, 224–227. https://doi.org/10.1016/j.jep.2010.05.062 | es_CO |
dc.relation.references | Alberti, E. G., Zanzani, S. A., Gazzonis, A. L., Zanatta, G., Bruni, G., Villa, M., … Manfredi, M. T. (2014). Effects of gastrointestinal infections caused by nematodes on milk production in goats in a mountain ecosystem: Comparison between a cosmopolite and a local breed. Small Ruminant Research, 120(1), 155–163. https://doi.org/10.1016/j.smallrumres.2014.04.017 | es_CO |
dc.relation.references | Alonso-Díaz, M. A., Torres-Acosta, J. F. J., Sandoval-Castro, C. A., Aguilar-Caballero, A. J., & Hoste, H. (2008). In vitro larval migration and kinetics of exsheathment of Haemonchus contortus larvae exposed to four tropical tanniniferous plant extracts. Veterinary Parasitology, 153(3–4), 313–319. https://doi.org/10.1016/j.vetpar.2008.01.042 | es_CO |
dc.relation.references | Anthony, J. P., Fyfe, L., & Smith, H. (2005). Plant active components - A resource for antiparasitic agents? Trends in Parasitology, 21(10), 462–468. https://doi.org/10.1016/j.pt.2005.08.004 | es_CO |
dc.relation.references | Aréchiga, C. F., Aguilera, J. I., Rincón, R. M., Méndez De Lara, S., Bañuelos, V. R., & Meza-Herrera, C. A. (2008). Situación Actual Y Perspectivas De La Producción Caprina Ante El Reto De La Globalización [Role and Perspectives of Goat Production in a Global World]. Tropical and Subtropical Agroecosystems, 9, 1–14. Retrieved from http://www.redalyc.org/articulo.oa?id=93911227001 | es_CO |
dc.relation.references | Armenteras, D., Gast, F., & Villareal, H. (2003). Andean forest fragmentation and the representativeness of protected natural areas in the eastern Andes , Colombia, 113, 245–256. https://doi.org/10.1016/S0006-3207(02)00359-2 | es_CO |
dc.relation.references | Aziz, A. T., Alshehri, M. A., Panneerselvam, C., Murugan, K., Trivedi, S., Mahyoub, J. A., … Benelli, G. (2018). The desert wormwood (Artemisia herba-alba) – From Arabian folk medicine to a source of green and effective nanoinsecticides against mosquito vectors. Journal of Photochemistry and Photobiology B: Biology, 180(2017), 225–234. https://doi.org/10.1016/j.jphotobiol.2018.02.012 | es_CO |
dc.relation.references | Bach, B., Cleroux, M., Saillen, M., Schönenberger, P., & Burgos, S. (2016). A new chemical tool for absinthe producers , quantification of a / b -thujone and the bitter components in Artemisia absinthium. Food Chemistry. https://doi.org/10.1016/j.foodchem.2016.06.045 | es_CO |
dc.relation.references | Bachaya, H. A., Iqbal, Z., Khan, M. N., Sindhu, Z. ud D., & Jabbar, A. (2009). Anthelmintic activity of Ziziphus nummularia (bark) and Acacia nilotica (fruit) against Trichostrongylid nematodes of sheep. Journal of Ethnopharmacology, 123(2), 325–329. https://doi.org/10.1016/j.jep.2009.02.043 | es_CO |
dc.relation.references | Belemlilga, M. B., Traoré, A., Ouédraogo, S., Kaboré, A., Tamboura, H. H., & Guissou, I. P. (2016). Anthelmintic activity of Saba senegalensis (A.DC.) Pichon (Apocynaceae) extract against adult worms and eggs of Haemonchus contortus. Asian Pacific Journal of Tropical Biomedicine, 6(11), 945–949. https://doi.org/10.1016/j.apjtb.2016.07.015 | es_CO |
dc.relation.references | Blackburn, H. D., Rocha, J. L., Figueiredo, E. P., Berne, M. E., Vieira, L. S., Cavalcante, A. R., & Rosa, J. S. (1992). Interaction of parasitism and nutrition in goats: effects on haematological parameters, correlations, and other statistical associations. Veterinary Parasitology, 44(3–4), 183–197. https://doi.org/10.1016/0304-4017(92)90116-Q | es_CO |
dc.relation.references | Botura, M. B., Silva, G. D., Lima, H. G., Oliveira, J. V. A., Souza, T. S., Santos, J. D. G., … Batatinha, M. J. M. (2011). In vivo anthelmintic activity of an aqueous extract from sisal waste (Agave sisalana Perr.) against gastrointestinal nematodes in goats. Veterinary Parasitology, 177(1–2), 104–110. https://doi.org/10.1016/j.vetpar.2010.11.039 | es_CO |
dc.relation.references | Botura, Mariana B, Almeida, G. N., Domingues, L. F., & Costa, S. L. (2003). EFEITOS DOS EXTRATOS AQUOSOS DE FOLHAS DE Cymbopogon citratus ( DC .) STAPF ( CAPIM-SANTO ) E DE Digitaria insularis ( L .) FEDDE ( CAPIM-AÇU ) SOBRE. Medicina, 129, 125–129 | es_CO |
dc.relation.references | Burgunder, A. J., & Petrˇ, J. (2018). Fractal measures in activity patterns: do gastrointestinal parasites affect the complexity of sheep behaviour? Applied Animal Behaviour Science. https://doi.org/10.1016/j.applanim.2018.05.014 | es_CO |
dc.relation.references | Calvete, C., Ferrer, L. M., Lacasta, D., Calavia, R., Ramos, J. J., Ruiz-de-arkaute, M., & Uriarte,J. (2014). Veterinary Parasitology Variability of the egg hatch assay to survey benzimidazole resistance in nematodes of small ruminants under field conditions. Veterinary Parasitology, 203(1–2), 102–113. https://doi.org/10.1016/j.vetpar.2014.03.002 | es_CO |
dc.relation.references | Cárdenas, J., Reyes-Pérez, V., Hernández-Navarro, M. D., Dorantes-Barrón, A. M., Almazán, S., & Estrada-Reyes, R. (2017). Anxiolytic- and antidepressant-like effects of an aqueous extract of Tanacetum parthenium L. Schultz-Bip (Asteraceae) in mice. Journal of Ethnopharmacology, 200, 22–30. https://doi.org/10.1016/j.jep.2017.02.023 | es_CO |
dc.relation.references | Carolina, A., Chagas, D. S., & Chagas, A. C. S. (2016). Medicinal plant extracts and nematode control Medicinal plant extracts and nematode control, (MARCH 2015). https://doi.org/10.1079/PAVSNNR201510008 | es_CO |
dc.relation.references | Coles, G. C., Bauer, C., Borgsteede, F. H. M., Geerts, S., Klei, T. R., & Taylor, M. A. (2000). World Association for the Advancement of Veterinary Parasitology ( W . A . A . V . P .) methods for the detection of anthelmintic resistance in nematodes of veterinary importance, 44(1992), 35–44. | es_CO |
dc.relation.references | Cortes López Hector. (2009). SITUACIÓN DEL RECURSO OVINO Y CAPRINO EN COLOMBIA. Retrieved June 18, 2018, from https://sioc.minagricultura.gov.co/OvinoCaprina/Documentos/005 - Documentos Técnicos/Situacion Recursos Ovino - Caprino.pdf | es_CO |
dc.relation.references | Dasilveira, R. (2002). Vademecum colombiano de plantas medicinales. Ministerio de la protección social. Mycological Research, 106(11), 1323–1330. | es_CO |
dc.relation.references | Demeler, J., Kleinschmidt, N., Küttler, U., Koopmann, R., & Samson-himmelstjerna, G. Von. (2012). Parasitology International Evaluation of the Egg Hatch Assay and the Larval Migration Inhibition Assay to detect anthelmintic resistance in cattle parasitic nematodes on farms. Parasitology International, 61(4), 614–618. https://doi.org/10.1016/j.parint.2012.06.003 | es_CO |
dc.relation.references | Eguale, T., Tadesse, D., & Giday, M. (2011). In vitro anthelmintic activity of crude extracts of five medicinal plants against egg-hatching and larval development of Haemonchus contortus. Journal of Ethnopharmacology, 137(1), 108–113. https://doi.org/10.1016/j.jep.2011.04.063 | es_CO |
dc.relation.references | Espinosa-Moreno, J., Centurión-Hidalgo, D., Vera y Cuspinera, G. G., Pérez-Castañeda, E., Zaragoza-Vera, C. V., Martínez-Martínez, S., … González-Cortázar, M. (2016). Actividad antihelmíntica in vitro de tres especies vegetales utilizadas tradicionalmente en Tabasco, México. Polibotánica, 0(41), 91–100. https://doi.org/10.18387/polibotanica.41.6 | es_CO |
dc.relation.references | Faculdade, F.-, Medicas, C., Estadual, U., & Brazil, C.-. (2000). ORALLY WITH PETIVERIA ALLIACEA EXTRACT ., 22(3). | es_CO |
dc.relation.references | Falcone Ferreyra, M. L., Rius, S. P., & Casati, P. (2012). Flavonoids: biosynthesis, biological functions, and biotechnological applications. Frontiers in Plant Science, 3(September), 1–16. https://doi.org/10.3389/fpls.2012.00222 | es_CO |
dc.relation.references | Fthenakis, G. C., & Papadopoulos, E. (2018). Impact of parasitism in goat production. Small Ruminant Research, 163, 21–23. https://doi.org/10.1016/j.smallrumres.2017.04.001 | es_CO |
dc.relation.references | García-Pérez, M. E., Alfonso-Castillo, A., Lores, O. F., Batista-Duharte, A., & Lemus-Rodríguez, Z. (2018). Toxicological evaluation of an aqueous suspension from leaves and stems of Petiveria alliacea L. (Phytolaccaceae). Journal of Ethnopharmacology, 211, 29–37. https://doi.org/10.1016/j.jep.2017.09.022 | es_CO |
dc.relation.references | Hammond, G. B., Fernández, I. D., Villegas, L. F., & Vaisberg, a J. (1998). A survey of traditional medicinal plants from the Callejón de Huaylas, Department of Ancash, Perú. Journal of Ethnopharmacology, 61, 17–30. https://doi.org/10.1016/S0378-8741(98)00009-9 | es_CO |
dc.relation.references | Hammond, J. A., Fielding, D., & Bishop, S. C. (1997). Prospects for plant anthelmintics in tropical veterinary medicine. Veterinary Research Communications, 21(3), 213–228. https://doi.org/10.1023/A:1005884429253 | es_CO |
dc.relation.references | Herb, A. P. (1995). Artemisia absinthium , wormwood, 105–121. https://doi.org/10.1016/B978-0-443-10344-5.00016-1 | es_CO |
dc.relation.references | Herrera O, L., Ríos O, L., & Zapata S, R. (2013). Frecuencia de la infección por nemátodos gastrointestinales en ovinos y caprinos de cinco municipios de Antioquia. Revista MVZ Cordoba, 18(3), 3851–3860 | es_CO |
dc.relation.references | Instituto nacional de vigilancia de medicamentos y alimentos. (2019). Listados de plantas medicinales aceptadas con fines terapéuticos - Instituto Nacional de Vigilancia de Medicamentos y Alimentos. Retrieved July 9, 2019, from https://www.invima.gov.co/web/guest/listados-de-plantas-medicinales-aceptadas-con-fines-terapéuticos?inheritRedirect=true | es_CO |
dc.relation.references | Iqbal, Z., Lateef, M., Ashraf, M., & Jabbar, A. (2004). Anthelmintic activity of Artemisia brevifolia in sheep, 93, 265–268. https://doi.org/10.1016/j.jep.2004.03.046 | es_CO |
dc.relation.references | Is, E. (2013). Optimisation of ultrasonic-assisted extraction of antioxidant compounds from Artemisia absinthium using response surface methodology, 141, 1361–1368. https://doi.org/10.1016/j.foodchem.2013.04.003 | es_CO |
dc.relation.references | Judžentiene, A. (2015). Wormwood (Artemisia absinthium L.) oils. Essential Oils in Food Preservation, Flavor and Safety, 849–856. https://doi.org/10.1016/B978-0-12-416641-7.00097-3 | es_CO |
dc.relation.references | Kalarickal, D. C., Samraj, S., Udayan, D., Narayanan, P. M., Ramachandran, S., & Gouri, S. S. (2015). Effect of various extracts of Ocimum sanctum and Mallotus phillipensis on Setaria digitata. Pharmacognosy Journal, 7, 344–347. https://doi.org/10.5530/pj.2015.6.5 | es_CO |
dc.relation.references | Kaplan, R. M. (2004). Drug resistance in nematodes of veterinary importance : a status report, 20(10). https://doi.org/10.1016/j.pt.2004.08.001 | es_CO |
dc.relation.references | Kaplan, R. M., & Vidyashankar, A. N. (2012). An inconvenient truth: Global worming and anthelmintic resistance. Veterinary Parasitology, 186(1–2), 70–78. https://doi.org/10.1016/j.vetpar.2011.11.048 | es_CO |
dc.relation.references | Khan, A., Tak, H., Nazir, R., & Lone, B. A. (2016). In vitro and in vivo anthelmintic activities of Iris kashmiriana Linn. Journal of the Saudi Society of Agricultural Sciences. https://doi.org/10.1016/j.jssas.2016.05.001 | es_CO |
dc.relation.references | Kotze, A. C., Ruffell, A., Lamb, J., & Elliott, T. P. (2018). Response of drug-susceptible and -resistant Haemonchus contortus larvae to monepantel and abamectin alone or in combination in vitro. Veterinary Parasitology, 249(November 2017), 57–62. https://doi.org/10.1016/j.vetpar.2017.11.007 | es_CO |
dc.relation.references | Kozan, E., Küpeli Akkol, E., & Süntar, I. (2016). Potential anthelmintic activity of Pelargonium endlicherianum Fenzl. Journal of Ethnopharmacology, 187, 183–186. https://doi.org/10.1016/j.jep.2016.04.044 | es_CO |
dc.relation.references | La, D. D. E., Antihelmintico, A., & Ajenjo, A. L. (n.d.). Universidad de cuenca facultad de ciencias químicas escuela de bioquímica y farmacia. | es_CO |
dc.relation.references | Lanusse, C., Canton, C., Virkel, G., Alvarez, L., Costa-Junior, L., & Lifschitz, A. (2018). Strategies to Optimize the Efficacy of Anthelmintic Drugs in Ruminants. Trends in Parasitology, xx. https://doi.org/10.1016/j.pt.2018.05.005 | es_CO |
dc.relation.references | Long, C., Sauleau, P., David, B., Lavaud, C., Cassabois, V., Ausseil, F., & Massiot, G. (2003). Bioactive flavonoids of Tanacetum parthenium revisited. Phytochemistry, 64(2), 567–569. https://doi.org/10.1016/S0031-9422(03)00208-5 | es_CO |
dc.relation.references | Lopes-Lutz, D., Alviano, D. S., Alviano, C. S., & Kolodziejczyk, P. P. (2008). Screening of chemical composition, antimicrobial and antioxidant activities of Artemisia essential oils. Phytochemistry, 69(8), 1732–1738. https://doi.org/10.1016/j.phytochem.2008.02.014 | es_CO |
dc.relation.references | Luz, D. A., Pinheiro, A. M., Silva, M. L., Monteiro, M. C., Prediger, R. D., Ferraz Maia, C. S., & Fontes-Júnior, E. A. (2016). Ethnobotany, phytochemistry and neuropharmacological effects of Petiveria alliacea L. (Phytolaccaceae): A review. Journal of Ethnopharmacology, 185(01), 182–201. https://doi.org/10.1016/j.jep.2016.02.053 | es_CO |
dc.relation.references | Lv, W., Piao, J.-H., & Jiang, J.-G. (2012). Typical toxic components in traditional Chinese medicine. Expert Opinion on Drug Safety, 11(6), 985–1002. https://doi.org/10.1517/14740338.2012.726610 | es_CO |
dc.relation.references | Macedo, I. T. F., Bevilaqua, C. M. L., de Oliveira, L. M. B., Camurça-Vasconcelos, A. L. F., Vieira, L. da S., Oliveira, F. R., … Nascimento, N. R. F. (2010). Anthelmintic effect of Eucalyptus staigeriana essential oil against goat gastrointestinal nematodes. Veterinary Parasitology, 173(1–2), 93–98. https://doi.org/10.1016/j.vetpar.2010.06.004 | es_CO |
dc.relation.references | Marie-Magdeleine, C., Udino, L., Philibert, L., Bocage, B., & Archimede, H. (2010). In vitro effects of Cassava (Manihot esculenta) leaf extracts on four development stages of Haemonchus contortus. Veterinary Parasitology, 173(1–2), 85–92. https://doi.org/10.1016/j.vetpar.2010.06.017 | es_CO |
dc.relation.references | Marie-Magdeleine, C., Udino, L., Philibert, L., Bocage, B., & Archimede, H. (2014). In vitro effects of Musa x paradisiaca extracts on four developmental stages of Haemonchus contortus. Research in Veterinary Science, 96(1), 127–132. https://doi.org/10.1016/j.rvsc.2013.12.004 | es_CO |
dc.relation.references | Molan, A. L., Waghorn, G. C., Min, B. R., & McNabb, W. C. (2000). The effect of condensed tannins from seven herbages on Trichostrongylus colubriformis larval migration in vitro. Folia Parasitologica, 47(1), 39–44. https://doi.org/10.14411/fp.2000.007 | es_CO |
dc.relation.references | Moreno, F. C., Gordon, I. J., Wright, A. D., Benvenutti, M. A., & Saumell, C. A. (2010). Efecto antihelmíntico in vitro de extractos de plantas sobre larvas infectantes de nematodos gastrointestinales de rumiantes. Archivos de Medicina Veterinaria, 42(3), 155–163. https://doi.org/10.4067/S0301-732X2010000300006 | es_CO |
dc.relation.references | Naß, J., & Efferth, T. (2018). PT US CR. Phytomedicine. https://doi.org/10.1016/j.phymed.2018.06.002 | es_CO |
dc.relation.references | Nguyen, H. T., & Németh, Z. É. (2016). Sources of variability of wormwood (Artemisia absinthium L.) essential oil. Journal of Dermatological Science. https://doi.org/10.1016/j.jarmap.2016.07.005 | es_CO |
dc.relation.references | Niu, Y., Zhang, X., Xiao, Z., Song, S., Eric, K., Jia, C., … Zhu, J. (2011). Characterization of odor-active compounds of various cherry wines by gas chromatography – mass spectrometry , gas chromatography – olfactometry and their correlation with sensory attributes. Journal of Chromatography B, 879(23), 2287–2293. https://doi.org/10.1016/j.jchromb.2011.06.015 | es_CO |
dc.relation.references | Oliveira, A. F., Costa Junior, L. M., Lima, A. S., Silva, C. R., Ribeiro, M. N. S., Mesquista, J. W. C., … Vilegas, W. (2017). Anthelmintic activity of plant extracts from Brazilian savanna. Veterinary Parasitology, 236, 121–127. https://doi.org/10.1016/j.vetpar.2017.02.005 | es_CO |
dc.relation.references | Qi, H., Wang, W. X., Dai, J. L., & Zhu, L. (2015). In vitro anthelmintic activity of Zanthoxylum simulans essential oil against Haemonchus contortus. Veterinary Parasitology, 211(3–4), 223–227. https://doi.org/10.1016/j.vetpar.2015.05.029 | es_CO |
dc.relation.references | Rabel, B., Mcgregor, R., & Douch, P. G. C. (1994). Improved bioassay for estimation of inhibitory effects of ovine gastrointestinal mucus and anthelmintics on nematode larval migration. International Journal for Parasitology, 24(5), 671–676. https://doi.org/10.1016/0020-7519(94)90119-8 | es_CO |
dc.relation.references | Ramos, F., Portella, L. P., Rodrigues, F. S., Reginato, C. Z., Cezar, A. S., Sangioni, L. A., & Vogel, F. S. F. (2018). Anthelminthic resistance of gastrointestinal nematodes in sheep to monepantel treatment in central region of Rio Grande do Sul, Brazil. Pesquisa Veterinaria Brasileira, 38(1), 48–52. https://doi.org/10.1590/1678-5150-pvb-5188 | es_CO |
dc.relation.references | Robles-pérez, D., Martínez-pérez, J. M., & Rojo-vázquez, F. A. (2014). Veterinary Parasitology Development of an egg hatch assay for the detection of anthelmintic resistance to albendazole in Fasciola hepatica isolated from sheep. Veterinary Parasitology, 203(1–2), 217–221. https://doi.org/10.1016/j.vetpar.2013.11.020 | es_CO |
dc.relation.references | Romero-Benavides, J. C., Ruano, A. L., Silva-Rivas, R., Castillo-Veintimilla, P., Vivanco-Jaramillo, S., & Bailon-Moscoso, N. (2017). Medicinal plants used as anthelmintics: Ethnomedical, pharmacological, and phytochemical studies. European Journal of Medicinal Chemistry, 129, 209–217. https://doi.org/10.1016/j.ejmech.2017.02.005 | es_CO |
dc.relation.references | Sagbo Idowu Jonas, M. O. W. (2018). Plants Used for Cosmetics in the Eastern Cape Province of South. Pharmacognosy Review, 12(24), 139–156. https://doi.org/10.4103/phrev.phrev | es_CO |
dc.relation.references | Santos, F. O., de Lima, H. G., de Souza Santos, N. S., Serra, T. M., Uzeda, R. S., Reis, I. M. A., … Batatinha, M. J. M. (2017). In vitro anthelmintic and cytotoxicity activities the Digitaria insularis (Poaceae). Veterinary Parasitology, 245, 48–54. https://doi.org/10.1016/j.vetpar.2017.08.007 | es_CO |
dc.relation.references | Soldera-Silva, A., Seyfried, M., Campestrini, L. H., Zawadzki-Baggio, S. F., Minho, A. P., Molento, M. B., & Maurer, J. B. B. (2018). Assessment of anthelmintic activity and bio-guided chemical analysis of Persea americana seed extracts. Veterinary Parasitology, 251(December 2017), 34–43. https://doi.org/10.1016/j.vetpar.2017.12.019. | es_CO |
dc.relation.references | Sotiraki, S., Landau, S. Y., Jackson, F., & Beveridge, I. (2010). Goat – Nematode interactions : think differently, 26(May 2000), 376–381. https://doi.org/10.1016/j.pt.2010.04.007 | es_CO |
dc.relation.references | Tariku, Y., Hymete, A., Hailu, A., & Rohloff, J. (2011). In vitro evaluation of antileishmanial activity and toxicity of essential oils of Artemisia absinthium and Echinops kebericho. Chemistry and Biodiversity, 8(4), 614–623. https://doi.org/10.1002/cbdv.201000331 | es_CO |
dc.relation.references | Tariq, K. A., Chishti, M. Z., Ahmad, F., & Shawl, A. S. (2009). Anthelmintic activity of extracts of Artemisia absinthium against ovine nematodes. Veterinary Parasitology, 160(1–2), 83–88. https://doi.org/10.1016/j.vetpar.2008.10.084 | es_CO |
dc.relation.references | Turak, A., Shi, S. P., Jiang, Y., & Tu, P. F. (2014). Dimeric guaianolides from Artemisia absinthium. Phytochemistry, 105, 109–114. https://doi.org/10.1016/j.phytochem.2014.06.016 | es_CO |
dc.relation.references | Veterinary Parasitology Anthelminthic activity of methanol extracts of Diospyros anisandra and Petiveria alliacea on cyathostomin ( Nematoda : Cyathostominae ) larval development and egg hatching. (2017). Veterinary Parasitology, 248(October), 74–79. https://doi.org/10.1016/j.vetpar.2017.10.016 | es_CO |
dc.rights.accessrights | http://purl.org/coar/access_right/c_abf2 | es_CO |
dc.type.coarversion | http://purl.org/coar/resource_type/c_2df8fbb1 | es_CO |
Aparece en las colecciones: | Biología |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
Mendoza_2019_TG.pdf | Mensoza_2019_TG | 1,01 MB | Adobe PDF | Visualizar/Abrir |
Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.