• Repositorio Institucional Universidad de Pamplona
  • Tesis de maestría y doctorado
  • Facultad de Ingenierías y Arquitectura
  • Maestría en Controles Industriales
  • Por favor, use este identificador para citar o enlazar este ítem: http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/9448
    Registro completo de metadatos
    Campo DC Valor Lengua/Idioma
    dc.contributor.authorArévalo Monroy, Edinson Armando.-
    dc.date.accessioned2025-04-29T13:28:34Z-
    dc.date.available2022-
    dc.date.available2025-04-29T13:28:34Z-
    dc.date.issued2022-
    dc.identifier.citationArévalo Monroy, E. A. (2022). Diseño de Sistema de detección y alarma de incendios con Lógica Difusa para determinación de rutas de evacuación y activación de sistemas de rociadores en edificio [Trabajo de Grado Maestría, Universidad de Pamplona]. Repositorio Hulago Universidad de Pamplona. http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/9448es_CO
    dc.identifier.urihttp://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/9448-
    dc.descriptionEl presente trabajo describe el diseño de un sistema de detección y alarma de incendios para una edificación educativa fundamentado en la NFPA 72 aplicado mediante la inferencia de incendio empleando sensores de humo y lógica difusa, que adicionalmente determina las rutas de evacuación ante una diversidad de eventos probables de incendio basados en un escenario real y los diferentes eventos estimados basados en los riesgos de cada área contemplada. Así mismo el sistema cuenta con la capacidad de realizar acciones de control sobre un subsistema definido para la simulación de la extinción de incendio en el área objeto de la protección. Todo lo anterior esta comandado desde una interfaz general tipo HMI donde se podrá encontrar la totalidad de los instrumentos en una pantalla con la capacidad de simular la activación y pruebas de la instrumentación indicada.es_CO
    dc.description.abstractThis work describes the design of a fire detection and alarm system for an educational building based on NFPA 72 applied by means of fire inference using smoke sensors and fuzzy logic, which additionally determines the evacuation routes in the event of a variety of events. Probable base based on a real scenario and the different estimated events based on the risks of each contemplated area. Likewise, the system has the ability to perform control actions on a defined subsystem for the simulation of fire extinguishing in the area under protection. All the above is commanded from a general HMI-type interface where all the instruments can be found on a screen with the ability to simulate the activation and tests of the indicated instrumentation.es_CO
    dc.format.extent104es_CO
    dc.format.mimetypeapplication/pdfes_CO
    dc.language.isoeses_CO
    dc.publisherUniversidad de Pamplona - Facultad de Ingenierías y Arquitectura.es_CO
    dc.subjectDetección y alarma.es_CO
    dc.subjectLógica difusa.es_CO
    dc.subjectSistema.es_CO
    dc.subjectExtinción.es_CO
    dc.titleDiseño de Sistema de detección y alarma de incendios con Lógica Difusa para determinación de rutas de evacuación y activación de sistemas de rociadores en edificio.es_CO
    dc.typehttp://purl.org/coar/resource_type/c_bdcces_CO
    dc.date.accepted2022-
    dc.relation.referencesL. J. Fennelly and M. A. Perry, “Part 4 - Fire Protection, Emergency Management, and Safety,” in Physical Security: 150 Things You Should Know (Second Edition), Second Edi., L. J. Fennelly and M. A. Perry, Eds. ButterworthHeinemann, 2017, pp. 115–157.es_CO
    dc.relation.referencesJ. H. Lilly, Fuzzy Control and Identification. 2010.es_CO
    dc.relation.referencesJ. Rodríguez, “Instalaciones de Protección contra Incendios,” pp. 215–216, 2008.es_CO
    dc.relation.referencesH. C. Mueller and A. Fischer, “Robust fire detection algorithm for temperature and optical smoke density using fuzzy logic,” 1995, doi: 10.1109/ccst.1995.524912.es_CO
    dc.relation.referencesJ. Vicente and P. Guillemant, “An image processing technique for automatically detecting forest fire,” Int. J. Therm. Sci., 2002, doi: 10.1016/S1290- 0729(02)01397-2.es_CO
    dc.relation.referencesT. Çelik and H. Demirel, “Fire detection in video sequences using a generic color model,” Fire Saf. J., vol. 44, no. 2, pp. 147–158, 2009, doi: https://doi.org/10.1016/j.firesaf.2008.05.005.es_CO
    dc.relation.referencesX. Li, H. K. Lam, F. Liu, and X. Zhao, “Stability and Stabilization Analysis of Positive Polynomial Fuzzy Systems With Time Delay Considering Piecewise Membership Functions,” IEEE Trans. Fuzzy Syst., 2017, doi: 10.1109/TFUZZ.2016.2593494.es_CO
    dc.relation.referencesS. Saha, S. Bhattacharya, and A. Konar, “Comparison between type-1 fuzzy membership functions for sign language applications,” 2016, doi: 10.1109/MicroCom.2016.7522584.es_CO
    dc.relation.referencesL. I. Qiang, “Estimation of Fire Detection Time,” Procedia Eng., vol. 11, pp. 233–241, 2011, doi: https://doi.org/10.1016/j.proeng.2011.04.652.es_CO
    dc.relation.referencesO. Duarte Velasco, “Sistemas de lógica difusa: fundamentos,” Ing. e Investig., 1999.es_CO
    dc.relation.referencesJ. Oliver, “Redes Neuronales y Sistemas Difusos,” J. Chem. Inf. Model., 2013.es_CO
    dc.relation.referencesP. P. Purpura, “13 - Life Safety, Fire Protection, and Emergencies,” in Security and Loss Prevention (Fifth Edition), Fifth Edit., P. P. Purpura, Ed. Boston: Butterworth-Heinemann, 2008, pp. 295–327.es_CO
    dc.relation.referencesZ. Tang, W. Shuai, and L. jun, “Remote Alarm Monitor System Based On GSM and ARM,” Procedia Eng., vol. 15, pp. 65–69, 2011, doi: https://doi.org/10.1016/j.proeng.2011.08.014.es_CO
    dc.relation.referencesH. Ying, Fuzzy control and modeling: Analytical foundations and applications. 2000.es_CO
    dc.relation.referencesP. I. Brooker, “Irrigation equipment selection to match spatial variability of soils,” Math. Comput. Model., vol. 33, no. 6, pp. 619–623, 2001, doi: https://doi.org/10.1016/S0895-7177(00)00266-1 .es_CO
    dc.relation.referencesE. S. Manolakos, E. Logaras, and F. Paschos, “Wireless Sensor Network Application for Fire Hazard Detection and Monitoring,” in Sensor Applications, Experimentation, and Logistics, 2010, pp. 1 –15.es_CO
    dc.relation.referencesB. C., “FUZZY BASED CONTROL USING LABVIEW FOR MISO TEMPERATURE PROCESS,” Int. J. Res. Eng. Technol., 2012, doi: 10.15623/ijret.2012.0102005.es_CO
    dc.relation.referencesL. Poon, “Assessing the Reliance of Sprinklers for Active Protection of Structures,” Procedia Eng., vol. 62, pp. 618–628, 2013, doi: https://doi.org/10.1016/j.proeng.2013.08.107.es_CO
    dc.relation.referencesA. Bemani-N. and M. R. Akbarzadeh-T., “A hybrid adaptive granular approach to Takagi–Sugeno–Kang fuzzy rule discovery,” Appl. Soft Comput. J., 2019, doi: 10.1016/j.asoc.2019.105491.es_CO
    dc.relation.referencesK. Kumar, N. Sen, S. Azid, and U. Mehta, “A Fuzzy Decision in Smart Fire and Home Security System,” Procedia Comput. Sci., vol. 105, no. C, pp. 93–98, 2017, doi: 10.1016/j.procs.2017.01.207.es_CO
    dc.relation.referencesH. Soliman, K. Sudan, and A. Mishra, “A smart forest-fire early detection sensory system: Another approach of utilizing wireless sensor and neural networks,” 2010, doi: 10.1109/ICSENS.2010.5690033.es_CO
    dc.relation.referencesM. Iftekharul, M. Abid-Ar-Rafi, M. Neamul, and M. Rifat, “An Intelligent Fire Detection and Mitigation System Safe from Fire (SFF),” Int. J. Comput. Appl., 2016, doi: 10.5120/ijca2016907858.es_CO
    dc.relation.referencesZ. Anming, “An Intrusion Detection Algorithm Based On NFPA,” Phys. Procedia, 2012, doi: 10.1016/j.phpro.2012.05.094.es_CO
    dc.relation.referencesJ. M. Leski, “TSK-fuzzy modeling based on ε-insensitive learning,” IEEE Trans. Fuzzy Syst., 2005, doi: 10.1109/TFUZZ.2004.840094.es_CO
    dc.relation.referencesK. Vikshant and K. C. Rupinder, “Fire Detection Mechanism using Fuzzy Logic,” Int. J. Comput. Appl., vol. 65, no. 0975–8887, 2013.es_CO
    dc.relation.referencesG. Chen, T. T. Pham, and N. Boustany, “Introduction to Fuzzy Sets, Fuzzy Logic, and Fuzzy Control Systems,” Appl. Mech. Rev., 2001, doi: 10.1115/1.1421114.es_CO
    dc.relation.referencesA. Esfahanipour and W. Aghamiri, “Adapted Neuro-Fuzzy Inference System on indirect approach TSK fuzzy rule base for stock market analysis,” Expert Syst. Appl., 2010, doi: 10.1016/j.eswa.2009.11.020.es_CO
    dc.relation.referencesP. Přibyl and O. Přibyl, “Calibration of a fuzzy model estimating fire response time in a tunnel,” Tunn. Undergr. Sp. Technol., 2017, doi: 10.1016/j.tust.2017.06.009.es_CO
    dc.relation.referencesY.-W. Bai, C.-C. Cheng, and Z.-L. Xie, “Use of ultrasonic signal coding and PIR sensors to enhance the sensing reliability of an embedded surveillance system,” Canadian Conference on Electrical and Computer Engineering. pp. 287–291, 2013.es_CO
    dc.relation.referencesA. ur Rahman, M. T. Zahura, and A. Rezwan, “Simplified Design and Fabrication of Water Sprinkler System: A Survey Based Analysis,” Procedia Eng., vol. 90, pp. 692–697, 2014, doi: https://doi.org/10.1016/j.proeng.2014.11.796.es_CO
    dc.relation.referencesJ. Hou, C. Wu, Z. Yuan, J. Tan, Q. Wang, and Y. Zhou, “Research of Intelligent Home Security Surveillance System Based on ZigBee.” pp. 554–557, 2008.es_CO
    dc.relation.referencesL.-X. Wang, “A COURSE IN ’ FUZZY A Course in Fuzzy Systems and Control,” Design, 1997.es_CO
    dc.relation.referencesL. Muduli, D. P. Mishra, and P. K. Jana, “Optimized Fuzzy Logic-Based Fire Monitoring in Underground Coal Mines: Binary Particle Swarm Optimization Approach,” IEEE Syst. J., 2020, doi: 10.1109/JSYST.2019.2939235.es_CO
    dc.relation.referencesR. A. Sowah, A. R. Ofoli, S. N. Krakani, and S. Y. Fiawoo, “Hardware design and web-based communication modules of a real-time multisensor fire detection and notification system using fuzzy logic,” IEEE Trans. Ind. Appl., 2017, doi: 10.1109/TIA.2016.2613075.es_CO
    dc.relation.referencesB. E. Z. Leal, A. R. Hirakawa, and T. D. Pereira, “Onboard fuzzy logic approach to active fire detection in Brazilian amazon forest,” IEEE Trans. Aerosp. Electron. Syst., 2016, doi: 10.1109/TAES.2015.140766.es_CO
    dc.relation.referencesM. Iftekharul, M. Abid-Ar-Rafi, M. Neamul, and M. Rifat, “An Intelligent Fire Detection and Mitigation System Safe from Fire (SFF),” Int. J. Comput. Appl., 2016, doi: 10.5120/ijca2016907858.es_CO
    dc.relation.referencesB. Ko, J. H. Jung, and J. Y. Nam, “Fire detection and 3D surface reconstruction based on stereoscopic pictures and probabilistic fuzzy logic,” Fire Saf. J., 2014, doi: 10.1016/j.firesaf.2014.05.015.es_CO
    dc.relation.referencesS. Garg, B. R. Sharma, K. Cohen, and M. Kumar, “A Fuzzy Logic based image processing method for automated fire and smoke detection,” 2013, doi: 1 0.2514/6.2013-879.es_CO
    dc.relation.referencesR. Sowah, K. O. Ampadu, A. Ofoli, K. Koumadi, G. A. Mills, and J. Nortey, “Design and implementation of a fire detection and control system for automobiles using fuzzy logic,” 2016, doi: 10.1109/IAS.2016.7731880.es_CO
    dc.relation.referencesR. Malanga, “Fire protection systems development to protect subway system token booth clerks from incendiary attack,” J. Fire Prot. Eng., 1991, doi: 10.1177/104239159100300401.es_CO
    dc.relation.referencesH. Z. Yu and X. Liu, “An Efficacy Evaluation of Water Mist Protection Against Solid Combustible Fires in Open Environment,” Fire Technol., 2019, doi: 10.1007/s10694-018-0793-0.es_CO
    dc.relation.referencesS. J. Chen, D. C. Hovde, K. A. Peterson, and A. W. Marshall, “Fire detection using smoke and gas sensors,” Fire Saf. J., 2007, doi: 10.1016/j.firesaf.2007.01.006.es_CO
    dc.relation.referencesX. Han and X. Kong, “The designing of serial communication based on RS232,” 2010, doi: 10.1109/CDEE.2010.80.es_CO
    dc.relation.references“Perancangan RS 232 to RS 485 Converter Sistem Network Multidrop,” J. Tek. Elektro, 2004, doi: 10.9744/jte.1.1.es_CO
    dc.relation.referencesT. H. Morris, B. A. Jones, R. B. Vaughn, and Y. S. Dandass, “Deterministic intrusion detection rules for MODBUS protocols,” 2013, doi: 10.1109/HICSS.2013.174.es_CO
    dc.rights.accessrightshttp://purl.org/coar/access_right/c_abf2es_CO
    dc.type.coarversionhttp://purl.org/coar/resource_type/c_2df8fbb1es_CO
    Aparece en las colecciones: Maestría en Controles Industriales

    Ficheros en este ítem:
    Fichero Descripción Tamaño Formato  
    Arévalo_2022_TG.pdfArévalo_2022_TG3,67 MBAdobe PDFVisualizar/Abrir


    Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.