Por favor, use este identificador para citar o enlazar este ítem:
http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/9448
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | Arévalo Monroy, Edinson Armando. | - |
dc.date.accessioned | 2025-04-29T13:28:34Z | - |
dc.date.available | 2022 | - |
dc.date.available | 2025-04-29T13:28:34Z | - |
dc.date.issued | 2022 | - |
dc.identifier.citation | Arévalo Monroy, E. A. (2022). Diseño de Sistema de detección y alarma de incendios con Lógica Difusa para determinación de rutas de evacuación y activación de sistemas de rociadores en edificio [Trabajo de Grado Maestría, Universidad de Pamplona]. Repositorio Hulago Universidad de Pamplona. http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/9448 | es_CO |
dc.identifier.uri | http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/9448 | - |
dc.description | El presente trabajo describe el diseño de un sistema de detección y alarma de incendios para una edificación educativa fundamentado en la NFPA 72 aplicado mediante la inferencia de incendio empleando sensores de humo y lógica difusa, que adicionalmente determina las rutas de evacuación ante una diversidad de eventos probables de incendio basados en un escenario real y los diferentes eventos estimados basados en los riesgos de cada área contemplada. Así mismo el sistema cuenta con la capacidad de realizar acciones de control sobre un subsistema definido para la simulación de la extinción de incendio en el área objeto de la protección. Todo lo anterior esta comandado desde una interfaz general tipo HMI donde se podrá encontrar la totalidad de los instrumentos en una pantalla con la capacidad de simular la activación y pruebas de la instrumentación indicada. | es_CO |
dc.description.abstract | This work describes the design of a fire detection and alarm system for an educational building based on NFPA 72 applied by means of fire inference using smoke sensors and fuzzy logic, which additionally determines the evacuation routes in the event of a variety of events. Probable base based on a real scenario and the different estimated events based on the risks of each contemplated area. Likewise, the system has the ability to perform control actions on a defined subsystem for the simulation of fire extinguishing in the area under protection. All the above is commanded from a general HMI-type interface where all the instruments can be found on a screen with the ability to simulate the activation and tests of the indicated instrumentation. | es_CO |
dc.format.extent | 104 | es_CO |
dc.format.mimetype | application/pdf | es_CO |
dc.language.iso | es | es_CO |
dc.publisher | Universidad de Pamplona - Facultad de Ingenierías y Arquitectura. | es_CO |
dc.subject | Detección y alarma. | es_CO |
dc.subject | Lógica difusa. | es_CO |
dc.subject | Sistema. | es_CO |
dc.subject | Extinción. | es_CO |
dc.title | Diseño de Sistema de detección y alarma de incendios con Lógica Difusa para determinación de rutas de evacuación y activación de sistemas de rociadores en edificio. | es_CO |
dc.type | http://purl.org/coar/resource_type/c_bdcc | es_CO |
dc.date.accepted | 2022 | - |
dc.relation.references | L. J. Fennelly and M. A. Perry, “Part 4 - Fire Protection, Emergency Management, and Safety,” in Physical Security: 150 Things You Should Know (Second Edition), Second Edi., L. J. Fennelly and M. A. Perry, Eds. ButterworthHeinemann, 2017, pp. 115–157. | es_CO |
dc.relation.references | J. H. Lilly, Fuzzy Control and Identification. 2010. | es_CO |
dc.relation.references | J. Rodríguez, “Instalaciones de Protección contra Incendios,” pp. 215–216, 2008. | es_CO |
dc.relation.references | H. C. Mueller and A. Fischer, “Robust fire detection algorithm for temperature and optical smoke density using fuzzy logic,” 1995, doi: 10.1109/ccst.1995.524912. | es_CO |
dc.relation.references | J. Vicente and P. Guillemant, “An image processing technique for automatically detecting forest fire,” Int. J. Therm. Sci., 2002, doi: 10.1016/S1290- 0729(02)01397-2. | es_CO |
dc.relation.references | T. Çelik and H. Demirel, “Fire detection in video sequences using a generic color model,” Fire Saf. J., vol. 44, no. 2, pp. 147–158, 2009, doi: https://doi.org/10.1016/j.firesaf.2008.05.005. | es_CO |
dc.relation.references | X. Li, H. K. Lam, F. Liu, and X. Zhao, “Stability and Stabilization Analysis of Positive Polynomial Fuzzy Systems With Time Delay Considering Piecewise Membership Functions,” IEEE Trans. Fuzzy Syst., 2017, doi: 10.1109/TFUZZ.2016.2593494. | es_CO |
dc.relation.references | S. Saha, S. Bhattacharya, and A. Konar, “Comparison between type-1 fuzzy membership functions for sign language applications,” 2016, doi: 10.1109/MicroCom.2016.7522584. | es_CO |
dc.relation.references | L. I. Qiang, “Estimation of Fire Detection Time,” Procedia Eng., vol. 11, pp. 233–241, 2011, doi: https://doi.org/10.1016/j.proeng.2011.04.652. | es_CO |
dc.relation.references | O. Duarte Velasco, “Sistemas de lógica difusa: fundamentos,” Ing. e Investig., 1999. | es_CO |
dc.relation.references | J. Oliver, “Redes Neuronales y Sistemas Difusos,” J. Chem. Inf. Model., 2013. | es_CO |
dc.relation.references | P. P. Purpura, “13 - Life Safety, Fire Protection, and Emergencies,” in Security and Loss Prevention (Fifth Edition), Fifth Edit., P. P. Purpura, Ed. Boston: Butterworth-Heinemann, 2008, pp. 295–327. | es_CO |
dc.relation.references | Z. Tang, W. Shuai, and L. jun, “Remote Alarm Monitor System Based On GSM and ARM,” Procedia Eng., vol. 15, pp. 65–69, 2011, doi: https://doi.org/10.1016/j.proeng.2011.08.014. | es_CO |
dc.relation.references | H. Ying, Fuzzy control and modeling: Analytical foundations and applications. 2000. | es_CO |
dc.relation.references | P. I. Brooker, “Irrigation equipment selection to match spatial variability of soils,” Math. Comput. Model., vol. 33, no. 6, pp. 619–623, 2001, doi: https://doi.org/10.1016/S0895-7177(00)00266-1 . | es_CO |
dc.relation.references | E. S. Manolakos, E. Logaras, and F. Paschos, “Wireless Sensor Network Application for Fire Hazard Detection and Monitoring,” in Sensor Applications, Experimentation, and Logistics, 2010, pp. 1 –15. | es_CO |
dc.relation.references | B. C., “FUZZY BASED CONTROL USING LABVIEW FOR MISO TEMPERATURE PROCESS,” Int. J. Res. Eng. Technol., 2012, doi: 10.15623/ijret.2012.0102005. | es_CO |
dc.relation.references | L. Poon, “Assessing the Reliance of Sprinklers for Active Protection of Structures,” Procedia Eng., vol. 62, pp. 618–628, 2013, doi: https://doi.org/10.1016/j.proeng.2013.08.107. | es_CO |
dc.relation.references | A. Bemani-N. and M. R. Akbarzadeh-T., “A hybrid adaptive granular approach to Takagi–Sugeno–Kang fuzzy rule discovery,” Appl. Soft Comput. J., 2019, doi: 10.1016/j.asoc.2019.105491. | es_CO |
dc.relation.references | K. Kumar, N. Sen, S. Azid, and U. Mehta, “A Fuzzy Decision in Smart Fire and Home Security System,” Procedia Comput. Sci., vol. 105, no. C, pp. 93–98, 2017, doi: 10.1016/j.procs.2017.01.207. | es_CO |
dc.relation.references | H. Soliman, K. Sudan, and A. Mishra, “A smart forest-fire early detection sensory system: Another approach of utilizing wireless sensor and neural networks,” 2010, doi: 10.1109/ICSENS.2010.5690033. | es_CO |
dc.relation.references | M. Iftekharul, M. Abid-Ar-Rafi, M. Neamul, and M. Rifat, “An Intelligent Fire Detection and Mitigation System Safe from Fire (SFF),” Int. J. Comput. Appl., 2016, doi: 10.5120/ijca2016907858. | es_CO |
dc.relation.references | Z. Anming, “An Intrusion Detection Algorithm Based On NFPA,” Phys. Procedia, 2012, doi: 10.1016/j.phpro.2012.05.094. | es_CO |
dc.relation.references | J. M. Leski, “TSK-fuzzy modeling based on ε-insensitive learning,” IEEE Trans. Fuzzy Syst., 2005, doi: 10.1109/TFUZZ.2004.840094. | es_CO |
dc.relation.references | K. Vikshant and K. C. Rupinder, “Fire Detection Mechanism using Fuzzy Logic,” Int. J. Comput. Appl., vol. 65, no. 0975–8887, 2013. | es_CO |
dc.relation.references | G. Chen, T. T. Pham, and N. Boustany, “Introduction to Fuzzy Sets, Fuzzy Logic, and Fuzzy Control Systems,” Appl. Mech. Rev., 2001, doi: 10.1115/1.1421114. | es_CO |
dc.relation.references | A. Esfahanipour and W. Aghamiri, “Adapted Neuro-Fuzzy Inference System on indirect approach TSK fuzzy rule base for stock market analysis,” Expert Syst. Appl., 2010, doi: 10.1016/j.eswa.2009.11.020. | es_CO |
dc.relation.references | P. Přibyl and O. Přibyl, “Calibration of a fuzzy model estimating fire response time in a tunnel,” Tunn. Undergr. Sp. Technol., 2017, doi: 10.1016/j.tust.2017.06.009. | es_CO |
dc.relation.references | Y.-W. Bai, C.-C. Cheng, and Z.-L. Xie, “Use of ultrasonic signal coding and PIR sensors to enhance the sensing reliability of an embedded surveillance system,” Canadian Conference on Electrical and Computer Engineering. pp. 287–291, 2013. | es_CO |
dc.relation.references | A. ur Rahman, M. T. Zahura, and A. Rezwan, “Simplified Design and Fabrication of Water Sprinkler System: A Survey Based Analysis,” Procedia Eng., vol. 90, pp. 692–697, 2014, doi: https://doi.org/10.1016/j.proeng.2014.11.796. | es_CO |
dc.relation.references | J. Hou, C. Wu, Z. Yuan, J. Tan, Q. Wang, and Y. Zhou, “Research of Intelligent Home Security Surveillance System Based on ZigBee.” pp. 554–557, 2008. | es_CO |
dc.relation.references | L.-X. Wang, “A COURSE IN ’ FUZZY A Course in Fuzzy Systems and Control,” Design, 1997. | es_CO |
dc.relation.references | L. Muduli, D. P. Mishra, and P. K. Jana, “Optimized Fuzzy Logic-Based Fire Monitoring in Underground Coal Mines: Binary Particle Swarm Optimization Approach,” IEEE Syst. J., 2020, doi: 10.1109/JSYST.2019.2939235. | es_CO |
dc.relation.references | R. A. Sowah, A. R. Ofoli, S. N. Krakani, and S. Y. Fiawoo, “Hardware design and web-based communication modules of a real-time multisensor fire detection and notification system using fuzzy logic,” IEEE Trans. Ind. Appl., 2017, doi: 10.1109/TIA.2016.2613075. | es_CO |
dc.relation.references | B. E. Z. Leal, A. R. Hirakawa, and T. D. Pereira, “Onboard fuzzy logic approach to active fire detection in Brazilian amazon forest,” IEEE Trans. Aerosp. Electron. Syst., 2016, doi: 10.1109/TAES.2015.140766. | es_CO |
dc.relation.references | M. Iftekharul, M. Abid-Ar-Rafi, M. Neamul, and M. Rifat, “An Intelligent Fire Detection and Mitigation System Safe from Fire (SFF),” Int. J. Comput. Appl., 2016, doi: 10.5120/ijca2016907858. | es_CO |
dc.relation.references | B. Ko, J. H. Jung, and J. Y. Nam, “Fire detection and 3D surface reconstruction based on stereoscopic pictures and probabilistic fuzzy logic,” Fire Saf. J., 2014, doi: 10.1016/j.firesaf.2014.05.015. | es_CO |
dc.relation.references | S. Garg, B. R. Sharma, K. Cohen, and M. Kumar, “A Fuzzy Logic based image processing method for automated fire and smoke detection,” 2013, doi: 1 0.2514/6.2013-879. | es_CO |
dc.relation.references | R. Sowah, K. O. Ampadu, A. Ofoli, K. Koumadi, G. A. Mills, and J. Nortey, “Design and implementation of a fire detection and control system for automobiles using fuzzy logic,” 2016, doi: 10.1109/IAS.2016.7731880. | es_CO |
dc.relation.references | R. Malanga, “Fire protection systems development to protect subway system token booth clerks from incendiary attack,” J. Fire Prot. Eng., 1991, doi: 10.1177/104239159100300401. | es_CO |
dc.relation.references | H. Z. Yu and X. Liu, “An Efficacy Evaluation of Water Mist Protection Against Solid Combustible Fires in Open Environment,” Fire Technol., 2019, doi: 10.1007/s10694-018-0793-0. | es_CO |
dc.relation.references | S. J. Chen, D. C. Hovde, K. A. Peterson, and A. W. Marshall, “Fire detection using smoke and gas sensors,” Fire Saf. J., 2007, doi: 10.1016/j.firesaf.2007.01.006. | es_CO |
dc.relation.references | X. Han and X. Kong, “The designing of serial communication based on RS232,” 2010, doi: 10.1109/CDEE.2010.80. | es_CO |
dc.relation.references | “Perancangan RS 232 to RS 485 Converter Sistem Network Multidrop,” J. Tek. Elektro, 2004, doi: 10.9744/jte.1.1. | es_CO |
dc.relation.references | T. H. Morris, B. A. Jones, R. B. Vaughn, and Y. S. Dandass, “Deterministic intrusion detection rules for MODBUS protocols,” 2013, doi: 10.1109/HICSS.2013.174. | es_CO |
dc.rights.accessrights | http://purl.org/coar/access_right/c_abf2 | es_CO |
dc.type.coarversion | http://purl.org/coar/resource_type/c_2df8fbb1 | es_CO |
Aparece en las colecciones: | Maestría en Controles Industriales |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
Arévalo_2022_TG.pdf | Arévalo_2022_TG | 3,67 MB | Adobe PDF | Visualizar/Abrir |
Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.