Por favor, use este identificador para citar o enlazar este ítem:
http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/926
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | Castellanos Méndez, Helifonso. | - |
dc.date.accessioned | 2022-05-19T20:13:08Z | - |
dc.date.available | 2022-03-13 | - |
dc.date.available | 2022-05-19T20:13:08Z | - |
dc.date.issued | 2022 | - |
dc.identifier.citation | Castellanos Méndez, H. (2021). Meta-análisis de genes asociados a la disfunción endotelial inducida por virus -relación con la plasticidad celular Santander [Trabajo de Grado Pregrado, Universidad de Pamplona]. Repositorio Hulago Universidad de Pamplona. http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/926 | es_CO |
dc.identifier.uri | http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/926 | - |
dc.description | La disfunción endotelial es una de las causas más importantes en numerosas patologías, como aterosclerosis e hipertensión arterial, entre otras. Se caracteriza por la pérdida de uniones intercelulares en la barrera endotelial de los vasos sanguíneos, en algunos casos a raíz de infecciones virales. Investigaciones recientes muestran que los cambios fenotípicos y de expresión génica en la disfunción endotelial, tienen cierta similitud con el proceso de transición endotelial a mesenquimal (EndMT). Surge por tanto la hipótesis de que, si existe una alta asociación entre los genes y rutas de expresión génica entre los dos fenómenos, entonces la disfunción endotelial podría ser estudiada desde la perspectiva de la EndMT, particularmente en un contexto de infección viral. Esta declaración requiere del establecimiento de (i) modelos teóricos desde la literatura existente y (ii) su posterior experimentación en laboratorio. En este sentido, esta investigación se enfoca en el primer aspecto (punto i), y busca determinar los genes y/o moléculas relevantes de la disfunción y la transición endotelial. Para ello, se partió de un enfoque computacional que consideró la realización de una revisión sistemática, un metaanálisis, la descripción de categorías, análisis de redes de correlación y de interacción génica. Desde un cribado de literatura de 124 mil documentos, se hallaron 122 genes determinantes en la disfunción, 63 para la EndMT y 6 comunes. La comparación estadística de 2 datasets de ARNm, en disfunción endotelial, dio como resultado 42 transcritos diferencialmente expresados. En tanto que, para el análisis del único dataset de EndMT arrojó 4 y 87 genes comunes respectivamente con los datasets 1 y 2 de la disfunción. La suma de los genes del meta-análisis fue de 133. El enfoque metodológico de esta investigación permitió el establecimiento de un protocolo para metaanálisis, disponible para su aplicación y validación por la comunidad académica que trabaja en el área. Los hallazgos presentados conducen a generar conocimiento para el entendimiento de la disfunción y la transición en términos de infección viral, así como su posterior ampliación en investigaciones experimentales. En este aspecto, esta propuesta es la base de una investigación traslacional con miras a la generación e implementación de metodologías y estrategias para la apropiación, transferencia y uso de nuestros resultados a nivel glocal. | es_CO |
dc.description.abstract | El autor no proporciona la información sobre este ítem. | es_CO |
dc.format.extent | 90 | es_CO |
dc.format.mimetype | application/pdf | es_CO |
dc.language.iso | es | es_CO |
dc.publisher | Universidad de Pamplona–Facultad de Ciencias Básicas | es_CO |
dc.subject | El autor no proporciona la información sobre este ítem. | es_CO |
dc.title | Meta-análisis de genes asociados a la disfunción endotelial inducida por virus -relación con la plasticidad celular. | es_CO |
dc.type | http://purl.org/coar/resource_type/c_7a1f | es_CO |
dc.date.accepted | 2021-12-13 | - |
dc.relation.references | Qué es la secuenciación de ADN de próxima generación? | Genómica funcional II. (s/f). | es_CO |
dc.relation.references | Aguilar-Bultet, L. & Falquet, L. (2015). Secuenciación y ensamblaje de novo de genomas bacterianos: una alternativa para el estudio de nuevos patógenos. Revista de Salud Animal, 37(2), 125–132. | es_CO |
dc.relation.references | Ahn, E. & Kang, H. (2018). Introduction to systematic review and meta-analysis. Korean Journal of Anesthesiology, 71(2), 103. https://doi.org/10.4097/KJAE.2018.71.2.103 | es_CO |
dc.relation.references | Álvarez-Díaz, D. A., Gutiérrez-Díaz, A. A., Orozco-García, E., Puerta-González, A., Bermúdez- Santana, C. I. & Gallego-Gómez, J. C. (2019). Dengue virus potentially promotes migratory responses on endothelial cells by enhancing pro-migratory soluble factors and miRNAs. En Virus Research (Vol. 259). https://doi.org/10.1016/j.virusres.2018.10.018 | es_CO |
dc.relation.references | Arciniegas, E., Sutton, A. B., Allen, T. D. & Schor, A. M. (1992). Transforming growth factor beta 1 promotes the differentiation of endothelial cells into smooth muscle-like cells in vitro. Journal of Cell Science, 103(2), 521–529. | es_CO |
dc.relation.references | Armstrong, S. M., Darwish, I. & Lee, W. L. (2013). Endothelial activation and dysfunction in the pathogenesis of influenza A virus infection. Virulence, 4(6). https://doi.org/10.4161/viru.25779 | es_CO |
dc.relation.references | Badr, M. T. & Häcker, G. (2019). Gene expression profiling meta-analysis reveals novel gene signatures and pathways shared between tuberculosis and rheumatoid arthritis. PLoS ONE, 14(3), 1–16. https://doi.org/10.1371/journal.pone.0213470 | es_CO |
dc.relation.references | Barbachano-Guerrero, A., Endy, T. P. & King, C. A. (2020). Dengue virus non-structural protein 1 activates the p38 MAPK pathway to decrease barrier integrity in primary human endothelial cells. Journal of General Virology, 101(5), 484–496. https://doi.org/10.1099/jgv.0.001401 | es_CO |
dc.relation.references | Castro Ávalos, M. A. (2020). Efecto de la Vacuna del Papiloma Humano en la prevención del cáncer cervicouterino: Metaanálisis. Archives of Nursing Research, 3(1), 89.https://doi.org/10.24253/anr.3.89 | es_CO |
dc.relation.references | Chen, G., Yang, X., Wang, B., Cheng, Z. & Zhao, R. (2019). Human cytomegalovirus promotes the activation of TGF-β1 in human umbilical vein endothelial cells by MMP-2 after endothelial mesenchymal transition. Advances in Clinical and Experimental Medicine, 28(11), 1441–1445. https://doi.org/10.17219/acem/109199 | es_CO |
dc.relation.references | Chen, P. Y., Qin, L., Barnes, C., Charisse, K., Yi, T., Zhang, X., Ali, R., Medina, P. P., Yu, J., Slack, F. J., Anderson, D. G., Kotelianski, V., Wang, F., Tellides, G. & Simons, M. (2012). FGF Regulates TGF-β Signaling and Endothelial-to-Mesenchymal Transition via Control of let-7 miRNA Expression. Cell Reports, 2(6), 1684–1696. https://doi.org/10.1016/j.celrep.2012.10.021 | es_CO |
dc.relation.references | Cheng, F., Pekkonen, P., Laurinavicius, S., Sugiyama, N., Henderson, S., Günther, T., Rantanen, V., Kaivanto, E., Aavikko, M., Sarek, G., Hautaniemi, S., Biberfeld, P., Aaltonen, L., Grundhoff, A., Boshoff, C., Alitalo, K., Lehti, K. & Ojala, P. M. (2011). KSHV-initiated notch activation leads to membrane-type-1 matrix metalloproteinase-dependent lymphatic endothelial-to-mesenchymal transition. Cell Host and Microbe, 10(6), 577–590. https://doi.org/10.1016/j.chom.2011.10.011 | es_CO |
dc.relation.references | Collí-Dulá, R. C., Martyniuk, C. J., Streets, S., Denslow, N. D. & Lehr, R. (2016). Molecular impacts of perfluorinated chemicals (PFASs) in the liver and testis of male largemouth bass (Micropterus salmoides) in Minnesota Lakes. Comparative Biochemistry and Physiology - Part D: Genomics and Proteomics, 19, 129–139. https://doi.org/10.1016/j.cbd.2016.02.001 | es_CO |
dc.relation.references | Costa-Silva, J., Domingues, D. & Lopes, F. M. (2017). RNA-Seq differential expression analysis: An extended review and a software tool. PLoS ONE, 12(12), 1–18.https://doi.org/10.1371/journal.pone.0190152 | es_CO |
dc.relation.references | Dalrymple, N. A. & Mackow, E. R. (2012). Endothelial Cells Elicit Immune-Enhancing Responses to Dengue Virus Infection. Journal of Virology, 86(12), 6408–6415. https://doi.org/10.1128/jvi.00213-12 | es_CO |
dc.relation.references | Endemann, D. H. & Schiffrin, E. L. (2004). Endothelial dysfunction. Journal of the American Society of Nephrology, 15(8), 1983–1992. https://doi.org/10.1097/01.ASN.0000132474.50966.DA | es_CO |
dc.relation.references | Fernandez Chinguel, J. E., Zafra Tanaka, J. H., Goicochea Lugo, S., Peralta, C. I., Taype Rondan, A., Huo, Z., Tang, S., Park, Y., Tseng, G. C., Tejera-Vaquerizo, A., Descalzo- Gallego, M. A., Otero-Rivas, M. M., Posada-García, C., Rodríguez-Pazos, L., Pastushenko, I., Marcos-Gragera, R., García-Doval, I., Siddaway, A. P., Wood, A. M., … García-Doval, I. (2019). Meta-analyses in mental health research . A practical guide. Bioinformatics, 3(3), 19–22. https://doi.org/10.1093/nar/gkz240 | es_CO |
dc.relation.references | Frustaci, A., Petrosillo, N., Vizza, D., Francone, M., Badagliacca, R., Verardo, R., Fedele, F., Ippolito, G. & Chimenti, C. (2014). Myocardial and microvascular inflammation/infection in patients with HIV-associated pulmonary artery hypertension. Aids, 28(17), 2541–2549. https://doi.org/10.1097/QAD.0000000000000426 | es_CO |
dc.relation.references | Gasperini, P., Espigol-Frigole, G., McCormick, P. J., Salvucci, O., Maric, D., Uldrick, T. S., Polizzotto, M. N., Yarchoan, R. & Tosato, G. (2012). Kaposi sarcoma herpesvirus promotes endothelial-to-mesenchymal transition through notch-dependent signaling. Cancer Research, 72(5), 1157–1169. https://doi.org/10.1158/0008-5472.CAN-11-3067 | es_CO |
dc.relation.references | Goumans, M. J., van Zonneveld, A. J. & ten Dijke, P. (2008). Transforming Growth Factor β- Induced Endothelial-to-Mesenchymal Transition: A Switch to Cardiac Fibrosis? Trends in Cardiovascular Medicine, 18(8), 293–298. https://doi.org/10.1016/j.tcm.2009.01.001 | es_CO |
dc.relation.references | Goumans, M. J., van Zonneveld, A. J., Ten Dijke, P., Gasperini, P., Espigol-Frigole, G., McCormick, P. J., Salvucci, O., Maric, D., Uldrick, T. S., Polizzotto, M. N., Yarchoan, R., Tosato, G., Rieder, F., Kessler, S. P., West, G. A., Bhilocha, S., De La Motte, C., Sadler, T. M., Gopalan, B., … Manasek, F. J. (2012). Molecular mechanisms of endothelial to mesenchymal cell transition (EndoMT) in experimentally induced fibrotic diseases. American Journal of Pathology, 103(2), 177–186. https://doi.org/10.1016/j.ceb.2016.07.005 | es_CO |
dc.relation.references | Gupta, S. K., Liu, Z., Sims, E. C., Repass, M. J., Haneline, L. S. & Yoder, M. C. (2019). Endothelial colony-forming cell function is reduced during HIV infection. Journal of Infectious Diseases, 219(7), 1076–1083. https://doi.org/10.1093/infdis/jiy550 | es_CO |
dc.relation.references | Heller, M. J. (2002). DNA Microarray Technology: Devices, Systems, and Applications. Annual Review of Biomedical Engineering, 4(1), 129–153. https://doi.org/10.1146/annurev.bioeng.4.020702.153438 | es_CO |
dc.relation.references | Hincapíe-Monsalve, V. & Gallego-Gómez, J. . (2020). Transición Epitelio-Mesénquima Inducida por Virus. Revista Acta Biológica Colombiana. Manuscrito N° 7935. Aceptado . | es_CO |
dc.relation.references | Immenschuh, S., Rahayu, P., Bayat, B., Saragih, H., Rachman, A. & Santoso, S. (2013). Antibodies against dengue virus nonstructural protein-1 induce heme oxygenase-1 via a redox-dependent pathway in human endothelial cells. Free Radical Biology and Medicine,54, 85–92. https://doi.org/10.1016/j.freeradbiomed.2012.10.551 | es_CO |
dc.relation.references | Kim, W. U., Yoo, S. A. & Kwok, S. K. (2008). Proinflammatory role of vascular endothelial growth factor in the pathogenesis of rheumatoid arthritis: Prospects for therapeutic intervention. Mediators of Inflammation, 2008. https://doi.org/10.1155/2008/129873 | es_CO |
dc.relation.references | Krautkrämer, E., Nusshag, C., Baumann, A., Schäfer, J., Hofmann, J., Schnitzler, P., Klempa, B., Witkowski, P. T., Krüger, D. H. & Zeier, M. (2016). Clinical characterization of two severe cases of hemorrhagic fever with renal syndrome (HFRS) caused by hantaviruses Puumala and Dobrava-Belgrade genotype Sochi. BMC Infectious Diseases, 16(1), 1–8. https://doi.org/10.1186/s12879-016-2012-2 | es_CO |
dc.relation.references | Lovén, J., Orlando, D. A., Sigova, A. A., Lin, C. Y., Rahl, P. B., Burge, C. B., Levens, D. L., Lee, T. I. & Young, R. A. (2012). Revisiting global gene expression analysis. Cell, 151(3), 476–482. https://doi.org/10.1016/j.cell.2012.10.012 | es_CO |
dc.relation.references | Lusa, L., Cappelletti, V., Gariboldi, M., Ferrario, C., De Cecco, L., Reid, J. F., Toffanin, S., Gallus, G., McShane, L. M., Daidone, M. G. & Pierotti, M. A. (2006). Questioning the utility of pooling samples in microarray experiments with cell lines. International Journal of Biological Markers, 21(2), 67–73. https://doi.org/10.5301/JBM.2008.2616 | es_CO |
dc.relation.references | Ma, R., González, A. & Uk, A. (2008). UNIVERSIDAD DE ALCALÁ FACULTAD DE MEDICINA Tesis Doctoral CORE View metadata, citation and similar papers at core. | es_CO |
dc.relation.references | Maleszewska, M., Moonen, J. R. A. J., Huijkman, N., van de Sluis, B., Krenning, G. & Harmsen, M. C. (2013). IL-1β and TGFβ2 synergistically induce endothelial to mesenchymal transition in an NFκB-dependent manner. Immunobiology, 218(4), 443–454. https://doi.org/10.1016/j.imbio.2012.05.026 | es_CO |
dc.relation.references | Mihira, H., Suzuki, H. I., Akatsu, Y., Yoshimatsu, Y., Igarashi, T., Miyazono, K. & Watabe, T. (2012). TGF-β-induced mesenchymal transition of MS-1 endothelial cells requires Smaddependent cooperative activation of Rho signals and MRTF-A. Journal of Biochemistry, 151(2), 145–156. https://doi.org/10.1093/jb/mvr121 | es_CO |
dc.relation.references | Monier, B., McDermaid, A., Wang, C., Zhao, J., Miller, A., Fennell, A. & Ma, Q. (2019). IRISEDA: An integrated RNA-seq interpretation system for gene expression data analysis. PLoS Computational Biology, 15(2), 1–15. https://doi.org/10.1371/journal.pcbi.1006792 | es_CO |
dc.relation.references | Moradifard, S., Hoseinbeyki, M., Ganji, S. M. & Minuchehr, Z. (2018). Analysis of microRNA and Gene Expression Profiles in Alzheimer’s Disease: A Meta-Analysis Approach. Scientific Reports, 8(1), 1–17. https://doi.org/10.1038/s41598-018-20959-0 | es_CO |
dc.relation.references | Mudau, M., Genis, A., Lochner, A. & Strijdom, H. (2012). Endothelial dysfunction: The early predictor of atherosclerosis. Cardiovascular Journal of Africa, 23(4), 222–231. https://doi.org/10.5830/CVJA-2011-068 | es_CO |
dc.relation.references | Muñoz-Hernández, R., Ampuero, J., Millán, R., Gil-Gómez, A., Rojas, Á., Macher, H. C., Gallego-Durán, R., Gato, S., Montero-Vallejo, R., Rico, M. C., Maya-Miles, D., Sánchez- Torrijos, Y., Soria, I. C., Stiefel, P. & Romero-Gómez, M. (2020). Hepatitis C Virus Clearance by Direct-Acting Antivirals Agents Improves Endothelial Dysfunction and Subclinical Atherosclerosis: HEPCAR Study. Clinical and translational gastroenterology, 11(8), e00203. https://doi.org/10.14309/ctg.0000000000000203 | es_CO |
dc.relation.references | Ortigosa, J. & Cañas, R. (2020). Métodos de secuenciación de ácidos nucleicos : Primera generación Método de escisión química ( Ma- xam y Gilbert ). Encuentros en la Biología.iología., XIII(173), 19–25. | es_CO |
dc.relation.references | Ozsolak, F. & Milos, P. M. (2011). RNA sequencing: Advances, challenges and opportunities. Nature Reviews Genetics, 12(2), 87–98. https://doi.org/10.1038/nrg2934 | es_CO |
dc.relation.references | Patkar, C., Giaya, K. & Libraty, D. H. (2013). Dengue virus type 2 modulates endothelial barrier function through CD73. American Journal of Tropical Medicine and Hygiene, 88(1), 89– 94. https://doi.org/10.4269/ajtmh.2012.12-0474 | es_CO |
dc.relation.references | Piera-Velazquez, S. & Jimenez, S. A. (2019). Endothelial to mesenchymal transition: Role in physiology and in the pathogenesis of human diseases. Physiological Reviews, 99(2), 1281– 1324. https://doi.org/10.1152/physrev.00021.2018 | es_CO |
dc.relation.references | Piras, I. S., Manchia, M., Huentelman, M. J., Pinna, F., Zai, C. C., Kennedy, J. L. & Carpiniello, B. (2018). Peripheral Biomarkers in Schizophrenia: A Meta-Analysis of Microarray Gene Expression Datasets. International Journal of Neuropsychopharmacology, 22(3), 186–193. https://doi.org/10.1093/ijnp/pyy103 | es_CO |
dc.relation.references | Puerta-Guardo, H., Glasner, D. R., Espinosa, D. A., Biering, S. B., Patana, M., Ratnasiri, K., Wang, C., Beatty, P. R. & Harris, E. (2019). Flavivirus NS1 Triggers Tissue-Specific Vascular Endothelial Dysfunction Reflecting Disease Tropism. Cell Reports, 26(6), 1598- 1613.e8. https://doi.org/10.1016/j.celrep.2019.01.036 | es_CO |
dc.relation.references | Quirino-Teixeira, A. C., Rozini, S. V., Barbosa-Lima, G., Coelho, D. R., Carneiro, P. H., Mohana-Borges, R., Bozza, P. T. & Hottz, E. D. (2020). Inflammatory signaling in dengueinfected platelets requires translation and secretion of nonstructural protein 1. Blood Advances, 4(9), 2018–2031. https://doi.org/10.1182/bloodadvances.2019001169 | es_CO |
dc.relation.references | Raekiansyah, M., Espada-Murao, L. A., Okamoto, K., Kubo, T. & Morita, K. (2014). Dengue virus neither directly mediates hyperpermeabi lity nor enhances tumor necrosis factor-α- induced permeability in vitro. Japanese Journal of Infectious Diseases, 67(2), 86–94. https://doi.org/10.7883/yoken.67.86 | es_CO |
dc.relation.references | Rapaport, F., Khanin, R., Liang, Y., Pirun, M., Krek, A., Zumbo, P., Mason, C. E., Socci, N. D. & Betel, D. (2013). Comprehensive evaluation of differential gene expression analysis methods for RNA-seq data. Genome Biology, 14(9). https://doi.org/10.1186/gb-2013-14-9- r95 | es_CO |
dc.relation.references | Rieder, F., Kessler, S. P., West, G. A., Bhilocha, S., De La Motte, C., Sadler, T. M., Gopalan, B., Stylianou, E. & Fiocchi, C. (2011a). Inflammation-induced endothelial-to-mesenchymal transition: A novel mechanism of intestinal fibrosis. American Journal of Pathology, 179(5), 2660–2673. https://doi.org/10.1016/j.ajpath.2011.07.042 | es_CO |
dc.relation.references | Rieder, F., Kessler, S. P., West, G. A., Bhilocha, S., De La Motte, C., Sadler, T. M., Gopalan, B., Stylianou, E. & Fiocchi, C. (2011b). Inflammation-induced endothelial-to-mesenchymal transition: A novel mechanism of intestinal fibrosis. American Journal of Pathology, 179(5), 2660–2673. https://doi.org/10.1016/j.ajpath.2011.07.042 | es_CO |
dc.relation.references | Sena, C. M., Pereira, A. M. & Seiça, R. (2013a). Endothelial dysfunction - A major mediator of diabetic vascular disease. Biochimica et Biophysica Acta - Molecular Basis of Disease, 1832(12), 2216–2231. https://doi.org/10.1016/j.bbadis.2013.08.006 | es_CO |
dc.relation.references | Sena, C. M., Pereira, A. M. & Seiça, R. (2013b). Endothelial dysfunction - A major mediator of diabetic vascular disease. Biochimica et Biophysica Acta - Molecular Basis of Disease, 1832(12), 2216–2231. https://doi.org/10.1016/j.bbadis.2013.08.006 | es_CO |
dc.relation.references | Sharov, A. A., Schlessinger, D. & Ko, M. S. H. (2016). ExAtlas: An interactive online tool for meta-analysis of gene expression data. http://dx.doi.org/10.1142/S0219720015500195, 13(6). https://doi.org/10.1142/S0219720015500195 | es_CO |
dc.relation.references | Singh, S., Anupriya, M. G., Modak, A. & Sreekumar, E. (2018). Dengue virus or NS1 protein induces trans-endothelial cell permeability associated with VE-Cadherin and RhoA phosphorylation in HMEC-1 cells preventable by angiopoietin-1. Journal of General Virology, 99(12), 1658–1670. https://doi.org/10.1099/jgv.0.001163 | es_CO |
dc.relation.references | Soe, H. J., Khan, A. M., Manikam, R., Raju, C. S., Vanhoutte, P. & Sekaran, S. D. (2017). High dengue virus load differentially modulates human microvascular endothelial barrier function during early infection. Journal of General Virology, 98(12), 2993–3007. https://doi.org/10.1099/jgv.0.000981 | es_CO |
dc.relation.references | Srivastava, S. P., Koya, D. & Kanasaki, K. (2013). MicroRNAs in kidney fibrosis and diabetic nephropathy: Roles on EMT and EndMT. BioMed Research International, 2013. https://doi.org/10.1155/2013/125469 | es_CO |
dc.relation.references | Steyers, C. M. & Miller, F. J. (2014). Endothelial dysfunction in chronic inflammatory diseases. International Journal of Molecular Sciences, 15(7), 11324–11349. https://doi.org/10.3390/ijms150711324 | es_CO |
dc.relation.references | Sweeney, T. E., Haynes, W. A., Vallania, F., Ioannidis, J. P. & Khatri, P. (2017). Methods to increase reproducibility in differential gene expression via meta-analysis. Nucleic Acids Research, 45(1), 1–14. https://doi.org/10.1093/nar/gkw797 | es_CO |
dc.relation.references | Tata, P. R. & Rajagopal, J. (2016). Cellular plasticity: 1712 to the present day. Current Opinion in Cell Biology, 43, 46–54. https://doi.org/10.1016/j.ceb.2016.07.005 | es_CO |
dc.relation.references | Tejera-Vaquerizo, A., Descalzo-Gallego, M. A., Otero-Rivas, M. M., Posada-García, C., Rodríguez-Pazos, L., Pastushenko, I., Marcos-Gragera, R. & García-Doval, I. (2016). Cancer Incidence and Mortality in Spain: A Systematic Review and Meta-Analysis. Actas Dermo-Sifiliograficas, 107(4), 318–328. https://doi.org/10.1016/j.ad.2015.12.008 | es_CO |
dc.relation.references | Tian, D., Zeng, X., Wang, W., Wang, Z., Zhang, Y. & Wang, Y. (2019). Protective effect of rapamycin on endothelial-to-mesenchymal transition in HUVECs through the Notch signaling pathway. Vascular Pharmacology, 113, 20–26. https://doi.org/10.1016/j.vph.2018.10.004 | es_CO |
dc.relation.references | Toro-Domínguez, D., Martorell-Marugán, J., López-Domínguez, R., García-Moreno, A., González-Rumayor, V., Alarcón-Riquelme, M. E. & Carmona-Sáez, P. (2019). ImaGEO: Integrative gene expression meta-analysis from GEO database. Bioinformatics, 35(5), 880– 882. https://doi.org/10.1093/BIOINFORMATICS/BTY721 | es_CO |
dc.relation.references | Valle, U., Teresa, M. & Valle, U. (2003). Colombia Médica. | es_CO |
dc.relation.references | van de Weg, C. A. M., van den Ham, H. J., Bijl, M. A., Anfasa, F., Zaaraoui-Boutahar, F., Dewi, B. E., Nainggolan, L., van IJcken, W. F. J., Osterhaus, A. D. M. E., Martina, B. E. E., van Gorp, E. C. M. & Andeweg, A. C. (2015). Time since Onset of Disease and Individual Clinical Markers Associate with Transcriptional Changes in Uncomplicated Dengue. PLoS Neglected Tropical Diseases, 9(3), 1–20. https://doi.org/10.1371/journal.pntd.0003522 | es_CO |
dc.relation.references | Wertz, M. S., Kyriss, T., Paranjape, S. & Glantz, S. A. (2011). The toxic effects of cigarette additives. Philip Morris’ project mix reconsidered: An analysis of documents released through litigation. PLoS Medicine, 8(12). https://doi.org/10.1371/journal.pmed.1001145 | es_CO |
dc.relation.references | Yacoub, S., Lam, P. K., Vu, L. H. M., Le, T. L., Ha, N. T., Toan, T. T., Thu Van, N., Quyen, N.T. H., Duyen, H. T. Le, Kinh, N. Van, Fox, A., Mongkolspaya, J., Wolbers, M., Simmons, C. P., Screaton, G. R., Wertheim, H. & Wills, B. (2016). Association of microvascular function and endothelial biomarkers with clinical outcome in dengue: An observational study. Journal of Infectious Diseases, 214(5), 697–706. https://doi.org/10.1093/infdis/jiw220 | es_CO |
dc.relation.references | Yaiw, K. C., Mohammad, A. A., Taher, C., Wilhelmi, V., Davoudi, B., Strååt, K., Assinger, A., Ovchinnikova, O., Shlyakhto, E., Rahbar, A., Koutonguk, O., Religa, P., Butler, L., Khan, Z., Streblow, D., Pernow, J. & Söderberg-Nauclér, C. (2014). Human cytomegalovirus induces upregulation of arginase II: Possible implications for vasculopathies. Basic Research in Cardiology, 109(2). https://doi.org/10.1007/s00395-014-0401-5 | es_CO |
dc.relation.references | Zhang, X., Tang, N., Xi, D., Feng, Q., Liu, Y., Wang, L., Tang, Y., Zhong, H. & He, F. (2020). Human cytomegalovirus promoting endothelial cell proliferation by targeting regulator of G-protein signaling 5 hypermethylation and downregulation. Scientific Reports, 10(1). https://doi.org/10.1038/S41598-020-58680-6 | es_CO |
dc.relation.references | Zhou, G., Soufan, O., Ewald, J., Hancock, R. E. W., Basu, N. & Xia, J. (2019). NetworkAnalyst 3.0: A visual analytics platform for comprehensive gene expression profiling and metaanalysis. Nucleic Acids Research, 47(W1), W234–W241. https://doi.org/10.1093/nar/gkz240 | es_CO |
dc.rights.accessrights | http://purl.org/coar/access_right/c_abf2 | es_CO |
dc.type.coarversion | http://purl.org/coar/resource_type/c_2df8fbb1 | es_CO |
Aparece en las colecciones: | Biología |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
Castellanos_2021_TG.pdf | Castellanos_2021_TG | 856,78 kB | Adobe PDF | Visualizar/Abrir |
Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.