• Repositorio Institucional Universidad de Pamplona
  • Trabajos de pregrado y especialización
  • Facultad de Ciencias Básicas
  • Biología
  • Por favor, use este identificador para citar o enlazar este ítem: http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/911
    Registro completo de metadatos
    Campo DC Valor Lengua/Idioma
    dc.contributor.authorCarrillo Ruíz, Diego Enrigue.-
    dc.date.accessioned2022-05-19T16:07:29Z-
    dc.date.available2021-10-07-
    dc.date.available2022-05-19T16:07:29Z-
    dc.date.issued2022-
    dc.identifier.citationCarrillo Ruíz, D. E. (2021). Caracterización in silico de sistemas Histidina cinasas de dos componentes en la familia Symbiodiniaceae [Trabajo de Grado Pregrado, Universidad de Pamplona]. Repositorio Hulago Universidad de Pamplona. http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/911es_CO
    dc.identifier.urihttp://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/911-
    dc.descriptionLas vías de transducción de señales son fundamentales para el funcionamiento celular, así como, para el establecimiento, desarrollo y sostenimiento de la relación simbiótica mutualista Cnidaria-Symbiodiniaceae. Algunas de las proteínas de la familia Histidina Cinasa (HK) de dos componentes, podrían ser parte de la vía de transducción de señales encargada de la producción de glicerol, uno de los principales fotosintetatos transferidos por Symbiodiniaceae hacia sus hospederos cnidarios. Estas proteínas presentan dominios de sensibilización (DHp y CA) y un dominio de respuesta (RR), y pueden actuar como receptores mecánicos, foto- y quimio-receptores tanto en procariotas como en eucariotas (excepto animales y parásitos). Esta característica de recepción se debe a los diferentes eventos evolutivos que han convergido en la formación de proteínas HKs, ya que han ganado diversos dominios de proteínas a través de transferencia horizontal, duplicación y fusión de genes. Debido a lo anterior, las proteínas histidina cinasas pueden encontrarse como proteínas híbridas (con la adición de un dominio receptor REC) o simples conformadas únicamente por los dominios de sensibilización. Sin embargo, se desconoce la diversidad total y las características estructurales de las proteínas HK en la familia de microalgas dinoflageladas Symbiodiniaceae. Por tal motivo, se realizó una caracterización de proteínas Histidina Cinasas simples e híbridas en la familia Symbiodiniaceae y en la clase Dinophyceae con estilos de vida libre y simbiontes. Se construyeron filogenias de estas proteínas y se analizó la relación filogenética entre todas las proteínas respecto a la presencia de los dominios conservados. Además, por medio de análisis in silico, se caracterizó la ubicación subcelular de estas proteínas. En este trabajo se identificaron y caracterizaron filogenéticamente secuencias de proteínas Histidinas cinasas obtenidas de transcriptomas y genomas de protistas dinoflagelados de la familia Symbiodiniaceae y clase Dinophyceae, encontrándose una prevalencia de las HKs en microalgas que tienen una relación simbiótica con cnidarios escleractinios.es_CO
    dc.description.abstractThe signal transduction pathways are essential for cell function, as well as for the establishment, development, and maintenance of the mutualistic symbiotic relationship Cnidaria-Symbiodiniaceae. Some of the proteins of the two-component Histidine Kinase (HK) family could be part of the signal transduction pathway responsible for the production of glycerol, one of the main photosynthates transferred by Symbiodiniaceae to its cnidarian hosts. These proteins have sensitization domains (DHp and CA) and a response domain (RR) and can act as mechanical receptors, photo- and chemo-receptors in both prokaryotes and eukaryotes (except animals and parasites). This reception characteristic is due to the different evolutionary events that have converged in the formation of HKs proteins since they have gained various protein domains through horizontal transfer, duplication, and gene fusion. Due to the above, histidine kinases, proteins can be found as hybrid proteins (with the addition of a REC receptor domain) or simple proteins made up solely of the sensitization domains. However, the full diversity and structural characteristics of HK proteins in the dinoflagellate microalgae family Symbiodiniaceae are unknown. For this reason, a characterization of simple and hybrid Histidine Kinases proteins was carried out in the Symbiodiniaceae family and the Dinophyceae class with free lifestyles and symbionts. Phylogenies of these proteins were constructed and the phylogenetic relationship between all proteins was analyzed for the presence of conserved domains. Furthermore, using in silico analysis, the subcellular location of these proteins was characterized. In this work, histidine kinase protein sequences obtained from transcriptomes and genomes of dinoflagellate protists of the Symbiodiniaceae family and Dinophyceae class were identified and phylogenetically characterized, finding a prevalence of HKs in microalgae that have a symbiotic relationship with scleractinian cnidarians. Keywords:Signal transduction, histidine kinases, symbiosis, Symbiodiniaceae, in silico.es_CO
    dc.format.extent65es_CO
    dc.format.mimetypeapplication/pdfes_CO
    dc.language.isoeses_CO
    dc.publisherUniversidad de Pamplona – Facultad de Ciencias Básicas.es_CO
    dc.subjectTransducción de señales, Histidina cinasas, Simbiosis, Symbiodiniaceae, in silico.es_CO
    dc.titleCaracterización in silico de sistemas Histidina cinasas de dos componentes en la familia Symbiodiniaceae.es_CO
    dc.typehttp://purl.org/coar/resource_type/c_7a1fes_CO
    dc.date.accepted2021-07-07-
    dc.relation.referencesAguilar, P. S. (2001). Molecular basis of thermosensing: a two-component signal transduction thermometer in Bacillus subtilis. The EMBO Journal, 20(7). https://doi.org/10.1093/emboj/20.7.1681es_CO
    dc.relation.referencesÁlvarez, A. F., y Georgellis, D. (2016). Características y funcionamiento de los sistemas de dos componentes de organismos procariotas y eucariotas. Química Viva, 15(3), 11–27.es_CO
    dc.relation.referencesAranda, M., Li, Y., Liew, Y. J., Baumgarten, S., Simakov, O., Wilson, M. C., Piel, J., Ashoor, H., Bougouffa, S., Bajic, V. B., Ryu, T., Ravasi, T., Bayer, T., Micklem, G., Kim, H., Bhak, J., LaJeunesse, T. C., y Voolstra, C. R. (2016). Genomes of coral dinoflagellate symbionts highlight evolutionary adaptations conducive to a symbiotic lifestyle. Scientific Reports, 6(1). https://doi.org/10.1038/srep39734es_CO
    dc.relation.referencesBarba-Ostria, C. A. (2014). Los sistemas de dos componentes: circuitos moleculares versátiles. Revista Especializada En Ciencias Químico-Biológicas, 17(1), 62–76.es_CO
    dc.relation.referencesBrewster J. L., Gustin M. C. (2014). Hog1: 20 years of discovery and impact. Sci. Signal. 7:re7. 10.1126/scisignal.2005458es_CO
    dc.relation.referencesBriesemeister, S., R. J., K. O. (2010). Going from where to why - interpretable prediction of protein subcellular localization. Bioinformatics, 26(9), 1232–1238.es_CO
    dc.relation.referencesCapra, E. J., y Laub, M. T. (2012). Evolution of two-component signal transduction systems. Annual Review of Microbiology, 66(1). https://doi.org/10.1146/annurev-micro-092611-150039es_CO
    dc.relation.referencesCatlett, N. L., Yoder, O. C., y Turgeon, B. G. (2003). Whole-Genome analysis of two-component signal transduction genes in fungal pathogens. Eukaryotic Cell, 2(6). https://doi.org/10.1128/EC.2.6.1151-1161.2003es_CO
    dc.relation.referencesChang, C., Kwok, S., Bleecker, A., y Meyerowitz, E. (1993). Arabidopsis ethylene-response gene ETR1: similarity of product to two-component regulators. Science, 262(5133). https://doi.org/10.1126/science.8211181es_CO
    dc.relation.referencesDecelle J, Colin S, y Foster RA. (2015). Marine Protists: Diversity and Dynamics (S. Ohtsuka, T. Suzaki, T. Horiguchi, N. Suzuki, y F. Not, Eds.). Springer Japan. https://doi.org/10.1007/978-4-431-55130-0es_CO
    dc.relation.referencesFautin, D. G. (2009). Structural diversity, systematics, and evolution of cnidae. Toxicon, 54(8). https://doi.org/10.1016/j.toxicon.2009.02.024es_CO
    dc.relation.referencesFay, S. A., Weber, M. X., y Lipps, J. H. (2009). The distribution of Symbiodinium diversity within individual host foraminifera. Coral Reefs, 28(3). https://doi.org/10.1007/s00338-009-0511-yes_CO
    dc.relation.referencesFoureau, E., Clastre, M., Obando Montoya, E. J., Besseau, S., Oudin, A., Glévarec, G., Simkin, A. J., Crèche, J., Atehortùa, L., Giglioli-Guivarc’h, N., Courdavault, V., y Papon, N. (2014). Subcellular localization of the histidine kinase receptors Sln1p, Nik1p and Chk1p in the yeast CTG clade species Candida guilliermondii. Fungal Genetics and Biology, 65. https://doi.org/10.1016/j.fgb.2014.01.007es_CO
    dc.relation.referencesGalperin, M. Y. (2005). A census of membrane-bound and intracellular signal transduction proteins in bacteria: Bacterial IQ, extroverts and introverts. BMC Microbiology, 5(35). https://doi.org/10.1186/1471-2180-5-35es_CO
    dc.relation.referencesGalperin, M. Y., Higdon, R., y Kolker, E. (2010). Interplay of heritage and habitat in the distribution of bacterial signal transduction systems. Molecular BioSystems, 6(4). https://doi.org/10.1039/b908047ces_CO
    dc.relation.referencesGómez, F. (2012). A quantitative review of the lifestyle, habitat and trophic diversity of dinoflagellates (Dinoflagellata, Alveolata). Systematics and Biodiversity, 10(3). https://doi.org/10.1080/14772000.2012.721021es_CO
    dc.relation.referencesGonzález-Pech, R. A., Stephens, T. G., Chen, Y., Mohamed, A. R., Cheng, Y., Shah, S., Dougan, K. E., Fortuin, M. D. A., Lagorce, R., Burt, D. W., Bhattacharya, D., Ragan, M. A., y Chan, C. X. (2021). Comparison of 15 dinoflagellate genomes reveals extensive sequence and structural divergence in family Symbiodiniaceae and genus Symbiodinium. BMC Biology, 19(1). https://doi.org/10.1186/s12915-021-00994-6es_CO
    dc.relation.referencesGrant, J. R., y Katz, L. A. (2014). Building a phylogenomic pipeline for the eukaryotic tree of life - addressing deep phylogenies with genome-scale data. PLoS Currents. https://doi.org/10.1371/currents.tol.c24b6054aebf3602748ac042ccc8f2e9es_CO
    dc.relation.referencesHedtke, M., Rauscher, S., Röhrig, J., Rodríguez-Romero, J., Yu, Z., y Fischer, R. (2015). Light-dependent gene activation in Aspergillus nidulans is strictly dependent on phytochrome and involves the interplay of phytochrome and white collar-regulated histone H3 acetylation. Molecular Microbiology, 97(4). https://doi.org/10.1111/mmi.13062es_CO
    dc.relation.referencesHérivaux, A., So, Y.-S., Gastebois, A., Latgé, J.-P., Bouchara, J.-P., Bahn, Y.-S., y Papon, N. (2016). Major Sensing proteins in pathogenic fungi: The hybrid histidine kinase family. PLOS Pathogens, 12(7). https://doi.org/10.1371/journal.ppat.1005683es_CO
    dc.relation.referencesHillyer, K. E., Dias, D., Lutz, A., Roessner, U., y Davy, S. K. (2018). 13C metabolomics reveals widespread change in carbon fate during coral bleaching. Metabolomics, 14(1). https://doi.org/10.1007/s11306-017-1306-8es_CO
    dc.relation.referencesHoek, C., Mann, D., Jahns, H. M., y Jahns, M. (1995). Algae: an introduction to phycology. Cambridge University Press.es_CO
    dc.relation.referencesHu, M., Zheng, X., Fan, C.-M., y Zheng, Y. (2020). Lineage dynamics of the endosymbiotic cell type in the soft coral Xenia. Nature, 582(7813). https://doi.org/10.1038/s41586-020-2385-7es_CO
    dc.relation.referencesJacob, S., Foster, A. J., Yemelin, A., y Thines, E. (2014). Histidine kinases mediate differentiation, stress response, and pathogenicity in Magnaporthe oryzae. MicrobiologyOpen, 3(5). https://doi.org/10.1002/mbo3.197es_CO
    dc.relation.referencesKabbara, S., Hérivaux, A., Dugé de Bernonville, T., Courdavault, V., Clastre, M., Gastebois, A., Osman, M., Hamze, M., Cock, J. M., Schaap, P., y Papon, N. (2019). Diversity and evolution of sensor histidine kinases in eukaryotes. Genome Biology and Evolution, 11(1). https://doi.org/10.1093/gbe/evy213es_CO
    dc.relation.referencesKabbara, S., Schmülling, T., y Papon, N. (2018). CHASEing cytokinin receptors in plants, bacteria, fungi, and beyond. Trends in Plant Science, 23(3). https://doi.org/10.1016/j.tplants.2018.01.001es_CO
    dc.relation.referencesKang, J., Park, J. S., Jung, S. W., Kim, H., Joo, H. M., Kang, D., Seo, H., Kim, S., Jang, M., Lee, K., Jin Oh, S., Lee, S., y Lee, T. (2021). Zooming on dynamics of marine microbial communities in the phycosphere of Akashiwo sanguinea (Dinophyta) blooms. Molecular Ecology, 30(1). https://doi.org/10.1111/mec.15714es_CO
    dc.relation.referencesKenney, L. J., y Anand, G. S. (2020). EnvZ/OmpR two-component signaling: an archetype system that can function noncanonically. EcoSal Plus, 9(1). https://doi.org/10.1128/ecosalplus.ESP-0001-2019es_CO
    dc.relation.referencesKumar S, Stecher G, Li M, Knyaz C, y Tamura K. (2018). MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Molecular Biology and Evolution, 35, 1547–1549.es_CO
    dc.relation.referencesLaJeunesse, T. C., Lee, S. Y., Gil-Agudelo, D. L., Knowlton, N., y Jeong, H. J. (2015). Symbiodinium necroappetens sp. nov. (Dinophyceae): an opportunist ‘zooxanthella’ found in bleached and diseased tissues of Caribbean reef corals. European Journal of Phycology, 50(2). https://doi.org/10.1080/09670262.2015.1025857es_CO
    dc.relation.referencesLaJeunesse, T. C., Parkinson, J. E., Gabrielson, P. W., Jeong, H. J., Reimer, J. D., Voolstra, C. R., y Santos, S. R. (2018). Systematic revision of Symbiodiniaceae highlights the antiquity and diversity of coral endosymbionts. Current Biology, 28(16). https://doi.org/10.1016/j.cub.2018.07.008es_CO
    dc.relation.referencesLefort, V., Longueville, J. E., y Gascuel, O. (2017). “SMS: Smart Model Selection in PhyML.” Molecular Biology and Evolution, 34(9), 2422–2424.es_CO
    dc.relation.referencesLin, S., Cheng, S., Song, B., Zhong, X., Lin, X., Li, W., Li, L., Zhang, Y., Zhang, H., Ji, Z., Cai, M., Zhuang, Y., Shi, X., Lin, L., Wang, L., Wang, Z., Liu, X., Yu, S., Zeng, P., … Morse, D. (2015). The Symbiodinium kawagutii genome illuminates dinoflagellate gene expression and coral symbiosis. Science, 350(6261). https://doi.org/10.1126/science.aad0408es_CO
    dc.relation.referencesLinden, H. (1997). White collar 2, a partner in blue-light signal transduction, controlling expression of light-regulated genes in Neurospora crassa. The EMBO Journal, 16(1). https://doi.org/10.1093/emboj/16.1.98es_CO
    dc.relation.referencesLouche, A., Salcedo, S. P., y Bigot, S. (2017). Protein–Protein Interactions: Pull-Down Assays. https://doi.org/10.1007/978-1-4939-7033-9_20es_CO
    dc.relation.referencesMascher, T., Helmann, J. D., & Unden, G. (2006). Stimulus perception in bacterial signal-transducing histidine kinases. Microbiology and Molecular Biology Reviews, 70(4). https://doi.org/10.1128/MMBR.00020-06es_CO
    dc.relation.referencesMiller, M. A., Pfeiffer, W., & Schwartz, T. (2010). Creating the CIPRES Science Gateway for inference of large phylogenetic trees. Proceedings of the Gateway Computing Environments Workshop (GCE), 1–8.es_CO
    dc.relation.referencesMideros Mora, C. (2021). Bases moleculares de la especificidad en el mecanismo de transducción de señal en los sistemas de dos componentes bacterianos. https://doi.org/10.4995/Thesis/10251/161920es_CO
    dc.relation.referencesMizuno, T., Wurtzel, E. T., y Inouye, M. (1982). Osmoregulation of gene expression. II. DNA sequence of the envZ gene of the ompB operon of Escherichia coli and characterization of its gene product. The Journal of Biological Chemistry, 257(22), 13692–13698.es_CO
    dc.relation.referencesMuller-Parker, G., Lee, K. W., y Cook, C. B. (1996). Changes in the ultrastructure of symbiotic zooxanthellae (Symbiodinium Sp., Dinophyceae) in fed and starved sea anemones maintained under high and low light. Journal of Phycology, 32(6). https://doi.org/10.1111/j.0022-3646.1996.00987.xes_CO
    dc.relation.referencesMuscatine, L. (1967). Glycerol excretion by symbiotic algae from corals and Tridacna and its control by the host. Science, 156(3774). https://doi.org/10.1126/science.156.3774.516es_CO
    dc.relation.referencesNybakken, J. W. (1993). Marine Biology. An ecological approach. Harper Collins, 2, 38–41.es_CO
    dc.relation.referencesOchsenkühn, M. A., Röthig, T., D’Angelo, C., Wiedenmann, J., y Voolstra, C. R. (2017). The role of floridoside in osmoadaptation of coral-associated algal endosymbionts to high-salinity conditions. Science Advances, 3(8). https://doi.org/10.1126/sciadv.1602047es_CO
    dc.relation.referencesOta, I., y Varshavsky, A. (1993). A yeast protein similar to bacterial two-component regulators. Science, 262(5133). https://doi.org/10.1126/science.8211183es_CO
    dc.relation.referencesPapon, N., y Stock, A. M. (2019). What do archaeal and eukaryotic histidine kinases sense? F1000Research, 8. https://doi.org/10.12688/f1000research.20094.1es_CO
    dc.relation.referencesPawlowski, J., Holzmann, M., Fahrni, J. F., Pochon, X., y Lee, J. J. (2001). Molecular identification of algal endosymbionts in large miliolid Foraminifera: 2. Dinoflagellates. The Journal of Eukaryotic Microbiology, 48(3). https://doi.org/10.1111/j.1550-7408.2001.tb00326.xes_CO
    dc.relation.referencesProbert, I., Siano, R., Poirier, C., Decelle, J., Biard, T., Tuji, A., Suzuki, N., y Not, F. (2014). Brandtodinium gen. nov. and B. nutricula comb. Nov. (Dinophyceae), a dinoflagellate commonly found in symbiosis with polycystine radiolarians. Journal of Phycology, 50(2). https://doi.org/10.1111/jpy.12174es_CO
    dc.relation.referencesQin, H., Zheng, Y., Wang, M., Zhang, Z., Niu, Z., Ma, L., Sun, Q., Huang, H., y Wang, X. (2020). Subcellular localization of GTPase of immunity-associated protein 2. Beijing Da Xue Xue Bao Yi Xue Ban, 52(2), 221–226.es_CO
    dc.relation.referencesReiser, V., Raitt, D. C., y Saito, H. (2003). Yeast osmosensor Sln1 and plant cytokinin receptor Cre1 respond to changes in turgor pressure. Journal of Cell Biology, 161(6). https://doi.org/10.1083/jcb.200301099es_CO
    dc.relation.referencesRen, B., Liang, Y., Deng, Y., Chen, Q., Zhang, J., Yang, X., y Zuo, J. (2009). Genome-wide comparative analysis of type-A Arabidopsis response regulator genes by overexpression studies reveals their diverse roles and regulatory mechanisms in cytokinin signaling. Cell Research, 19(10). https://doi.org/10.1038/cr.2009.88es_CO
    dc.relation.referencesRibeiro, D. M., Prod’homme, A., Teixeira, A., Zanzoni, A., y Brun, C. (2020). The role of 3′UTR-protein complexes in the regulation of protein multifunctionality and subcellular localization. Nucleic Acids Research, 48(12). https://doi.org/10.1093/nar/gkaa462es_CO
    dc.relation.referencesRyzhykau, Y. L., Orekhov, P. S., Rulev, M. I., Vlasov, A. v., Melnikov, I. A., Volkov, D. A., Nikolaev, M. Yu., Zabelskii, D. v., Murugova, T. N., Chupin, V. v., Rogachev, A. v., Gruzinov, A. Yu., Svergun, D. I., Brennich, M. E., Gushchin, I. Yu., Soler-Lopez, M., Bothe, A., Büldt, G., Leonard, G., … Gordeliy, V. I. (2021). Molecular model of a sensor of two-component signaling system. Scientific Reports, 11(1). https://doi.org/10.1038/s41598-021-89613-6es_CO
    dc.relation.referencesSato, N. E., Hernández, D., y Viñas, M. D. (2010). Hábitos alimentarios de Noctiluca scintillans en aguas costeras de la Provincia de Buenos Aires, Argentina. Latin American Journal of Aquatic Research, 38(3), 403–412.es_CO
    dc.relation.referencesSharan, A., Soni, P., Nongpiur, R. C., Singla-Pareek, S. L., y Pareek, A. (2017). Mapping the ‘Two-component system’ network in rice. Scientific Reports, 7(1). https://doi.org/10.1038/s41598-017-08076-wes_CO
    dc.relation.referencesShoguchi, E., Beedessee, G., Tada, I., Hisata, K., Kawashima, T., Takeuchi, T., Arakaki, N., Fujie, M., Koyanagi, R., Roy, M. C., Kawachi, M., Hidaka, M., Satoh, N., y Shinzato, C. (2018). Two divergent Symbiodinium genomes reveal conservation of a gene cluster for sunscreen biosynthesis and recently lost genes. BMC Genomics, 19(1). https://doi.org/10.1186/s12864-018-4857-9es_CO
    dc.relation.referencesShoguchi, E., Shinzato, C., Kawashima, T., Gyoja, F., Mungpakdee, S., Koyanagi, R., Takeuchi, T., Hisata, K., Tanaka, M., Fujiwara, M., Hamada, M., Seidi, A., Fujie, M., Usami, T., Goto, H., Yamasaki, S., Arakaki, N., Suzuki, Y., Sugano, S., … Satoh, N. (2013). Draft assembly of the Symbiodinium minutum nuclear genome reveals dinoflagellate gene structure. Current Biology, 23(15). https://doi.org/10.1016/j.cub.2013.05.062es_CO
    dc.relation.referencesSigrist, C. J. A., de Castro, E., Cerutti, L., Cuche, B. A., Hulo, N., Bridge, A., Bougueleret, L., & Xenarios, I. (2012). New and continuing developments at PROSITE. Nucleic Acids Research, 41(D1). https://doi.org/10.1093/nar/gks1067es_CO
    dc.relation.referencesSimpson, C., Kiessling, W., Mewis, H., Baron-Szabo, R. C., y Müller, J. (2011). Evolutionary diversification of reef corals: a comparison of the molecular and fossil records. Evolution, 65(11). https://doi.org/10.1111/j.1558-5646.2011.01365.xes_CO
    dc.relation.referencesStock, A. M., Robinson, V. L., y Goudreau, P. N. (2000). Two-Component Signal Transduction. Annual Review of Biochemistry, 69(1). https://doi.org/10.1146/annurev.biochem.69.1.183es_CO
    dc.relation.referencesSuescún-Bolívar, L. P. (2018). Identificación de una vía MAPK involucrada en la síntesis de glicerol en Symbiodinium minutum, genotipo B1.es_CO
    dc.relation.referencesSuescún-Bolívar, L. P., y Thomé, P. E. (2015). Osmosensing and osmoregulation in unicellular eukaryotes. World Journal of Microbiology and Biotechnology, 31(3). https://doi.org/10.1007/s11274-015-1811-8es_CO
    dc.relation.referencesSuescún-Bolívar, L. P., Traverse, G. M. I., y Thomé, P. E. (2016). Glycerol outflow in Symbiodinium under osmotic and nitrogen stress. Marine Biology, 163(5). https://doi.org/10.1007/s00227-016-2899-6es_CO
    dc.relation.referencesTerán-Melo, J. L., Rodríguez-Rangel, C., Georgellis, D., y Álvarez, A. F. (2019). Mecanismos de autofosforilación y transfosforilación en sistemas de dos componentes bacterianos. TIP Revista Especializada En Ciencias Químico-Biológicas, 22. https://doi.org/10.22201/fesz.23958723e.2019.0.162es_CO
    dc.relation.referencesTrench, R. K. (1971). The physiology and biochemistry of zooxanthellae symbiotic with marine coelenterates. II. Liberation of fixed 14C by zooxanthellae in vitro. Proceedings of the Royal Society of London. Series B. Biological Sciences, 177(1047). https://doi.org/10.1098/rspb.1971.0025es_CO
    dc.relation.referencesTrench, R. K. (1979). The cell biology of plant-animal symbiosis. Annual Review of Plant Physiology, 30(1). https://doi.org/10.1146/annurev.pp.30.060179.002413es_CO
    dc.relation.referencesYamashita, H, Suzuki, G., Shinzato, C., Jimbo, M., y Koike, K. (2018). Symbiosis process between Acropora larvae and Symbiodinium differs even among closely related Symbiodinium types. Marine Ecology Progress Series, 592. https://doi.org/10.3354/meps12474es_CO
    dc.relation.referencesYamashita, Hiroshi, y Koike, K. (2013). Genetic identity of free-living Symbiodinium obtained over a broad latitudinal range in the Japanese coast. Phycological Research, 61(1). https://doi.org/10.1111/pre.12004es_CO
    dc.relation.referencesYellowlees, D., Rees, T. A. v., y Leggat, W. (2008). Metabolic interactions between algal symbionts and invertebrate hosts. Plant, Cell & Environment, 31(5). https://doi.org/10.1111/j.1365-3040.2008.01802.xes_CO
    dc.relation.referencesYuyama I, H. T. M. T. (2016). Symbiodinium kawagutii (clade F) coats the surface of Acropora solitaryensis, resulting in the formation of a sheet-like crust. Proceedings of the 13th International Coral Reef Symposium, 49–56.es_CO
    dc.relation.referencesZhulin, I. (1997). PAS domain S-boxes in archaea, bacteria and sensors for oxygen and redox. Trends in Biochemical Sciences, 22(9). https://doi.org/10.1016/S0968-0004(97)01110-9es_CO
    dc.rights.accessrightshttp://purl.org/coar/access_right/c_abf2es_CO
    dc.type.coarversionhttp://purl.org/coar/resource_type/c_2df8fbb1es_CO
    Aparece en las colecciones: Biología

    Ficheros en este ítem:
    Fichero Descripción Tamaño Formato  
    Carrillo_2021_TG.pdfCarrillo_2021_TG2,95 MBAdobe PDFVisualizar/Abrir


    Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.