Por favor, use este identificador para citar o enlazar este ítem:
http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/911
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | Carrillo Ruíz, Diego Enrigue. | - |
dc.date.accessioned | 2022-05-19T16:07:29Z | - |
dc.date.available | 2021-10-07 | - |
dc.date.available | 2022-05-19T16:07:29Z | - |
dc.date.issued | 2022 | - |
dc.identifier.citation | Carrillo Ruíz, D. E. (2021). Caracterización in silico de sistemas Histidina cinasas de dos componentes en la familia Symbiodiniaceae [Trabajo de Grado Pregrado, Universidad de Pamplona]. Repositorio Hulago Universidad de Pamplona. http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/911 | es_CO |
dc.identifier.uri | http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/911 | - |
dc.description | Las vías de transducción de señales son fundamentales para el funcionamiento celular, así como, para el establecimiento, desarrollo y sostenimiento de la relación simbiótica mutualista Cnidaria-Symbiodiniaceae. Algunas de las proteínas de la familia Histidina Cinasa (HK) de dos componentes, podrían ser parte de la vía de transducción de señales encargada de la producción de glicerol, uno de los principales fotosintetatos transferidos por Symbiodiniaceae hacia sus hospederos cnidarios. Estas proteínas presentan dominios de sensibilización (DHp y CA) y un dominio de respuesta (RR), y pueden actuar como receptores mecánicos, foto- y quimio-receptores tanto en procariotas como en eucariotas (excepto animales y parásitos). Esta característica de recepción se debe a los diferentes eventos evolutivos que han convergido en la formación de proteínas HKs, ya que han ganado diversos dominios de proteínas a través de transferencia horizontal, duplicación y fusión de genes. Debido a lo anterior, las proteínas histidina cinasas pueden encontrarse como proteínas híbridas (con la adición de un dominio receptor REC) o simples conformadas únicamente por los dominios de sensibilización. Sin embargo, se desconoce la diversidad total y las características estructurales de las proteínas HK en la familia de microalgas dinoflageladas Symbiodiniaceae. Por tal motivo, se realizó una caracterización de proteínas Histidina Cinasas simples e híbridas en la familia Symbiodiniaceae y en la clase Dinophyceae con estilos de vida libre y simbiontes. Se construyeron filogenias de estas proteínas y se analizó la relación filogenética entre todas las proteínas respecto a la presencia de los dominios conservados. Además, por medio de análisis in silico, se caracterizó la ubicación subcelular de estas proteínas. En este trabajo se identificaron y caracterizaron filogenéticamente secuencias de proteínas Histidinas cinasas obtenidas de transcriptomas y genomas de protistas dinoflagelados de la familia Symbiodiniaceae y clase Dinophyceae, encontrándose una prevalencia de las HKs en microalgas que tienen una relación simbiótica con cnidarios escleractinios. | es_CO |
dc.description.abstract | The signal transduction pathways are essential for cell function, as well as for the establishment, development, and maintenance of the mutualistic symbiotic relationship Cnidaria-Symbiodiniaceae. Some of the proteins of the two-component Histidine Kinase (HK) family could be part of the signal transduction pathway responsible for the production of glycerol, one of the main photosynthates transferred by Symbiodiniaceae to its cnidarian hosts. These proteins have sensitization domains (DHp and CA) and a response domain (RR) and can act as mechanical receptors, photo- and chemo-receptors in both prokaryotes and eukaryotes (except animals and parasites). This reception characteristic is due to the different evolutionary events that have converged in the formation of HKs proteins since they have gained various protein domains through horizontal transfer, duplication, and gene fusion. Due to the above, histidine kinases, proteins can be found as hybrid proteins (with the addition of a REC receptor domain) or simple proteins made up solely of the sensitization domains. However, the full diversity and structural characteristics of HK proteins in the dinoflagellate microalgae family Symbiodiniaceae are unknown. For this reason, a characterization of simple and hybrid Histidine Kinases proteins was carried out in the Symbiodiniaceae family and the Dinophyceae class with free lifestyles and symbionts. Phylogenies of these proteins were constructed and the phylogenetic relationship between all proteins was analyzed for the presence of conserved domains. Furthermore, using in silico analysis, the subcellular location of these proteins was characterized. In this work, histidine kinase protein sequences obtained from transcriptomes and genomes of dinoflagellate protists of the Symbiodiniaceae family and Dinophyceae class were identified and phylogenetically characterized, finding a prevalence of HKs in microalgae that have a symbiotic relationship with scleractinian cnidarians. Keywords:Signal transduction, histidine kinases, symbiosis, Symbiodiniaceae, in silico. | es_CO |
dc.format.extent | 65 | es_CO |
dc.format.mimetype | application/pdf | es_CO |
dc.language.iso | es | es_CO |
dc.publisher | Universidad de Pamplona – Facultad de Ciencias Básicas. | es_CO |
dc.subject | Transducción de señales, Histidina cinasas, Simbiosis, Symbiodiniaceae, in silico. | es_CO |
dc.title | Caracterización in silico de sistemas Histidina cinasas de dos componentes en la familia Symbiodiniaceae. | es_CO |
dc.type | http://purl.org/coar/resource_type/c_7a1f | es_CO |
dc.date.accepted | 2021-07-07 | - |
dc.relation.references | Aguilar, P. S. (2001). Molecular basis of thermosensing: a two-component signal transduction thermometer in Bacillus subtilis. The EMBO Journal, 20(7). https://doi.org/10.1093/emboj/20.7.1681 | es_CO |
dc.relation.references | Álvarez, A. F., y Georgellis, D. (2016). Características y funcionamiento de los sistemas de dos componentes de organismos procariotas y eucariotas. Química Viva, 15(3), 11–27. | es_CO |
dc.relation.references | Aranda, M., Li, Y., Liew, Y. J., Baumgarten, S., Simakov, O., Wilson, M. C., Piel, J., Ashoor, H., Bougouffa, S., Bajic, V. B., Ryu, T., Ravasi, T., Bayer, T., Micklem, G., Kim, H., Bhak, J., LaJeunesse, T. C., y Voolstra, C. R. (2016). Genomes of coral dinoflagellate symbionts highlight evolutionary adaptations conducive to a symbiotic lifestyle. Scientific Reports, 6(1). https://doi.org/10.1038/srep39734 | es_CO |
dc.relation.references | Barba-Ostria, C. A. (2014). Los sistemas de dos componentes: circuitos moleculares versátiles. Revista Especializada En Ciencias Químico-Biológicas, 17(1), 62–76. | es_CO |
dc.relation.references | Brewster J. L., Gustin M. C. (2014). Hog1: 20 years of discovery and impact. Sci. Signal. 7:re7. 10.1126/scisignal.2005458 | es_CO |
dc.relation.references | Briesemeister, S., R. J., K. O. (2010). Going from where to why - interpretable prediction of protein subcellular localization. Bioinformatics, 26(9), 1232–1238. | es_CO |
dc.relation.references | Capra, E. J., y Laub, M. T. (2012). Evolution of two-component signal transduction systems. Annual Review of Microbiology, 66(1). https://doi.org/10.1146/annurev-micro-092611-150039 | es_CO |
dc.relation.references | Catlett, N. L., Yoder, O. C., y Turgeon, B. G. (2003). Whole-Genome analysis of two-component signal transduction genes in fungal pathogens. Eukaryotic Cell, 2(6). https://doi.org/10.1128/EC.2.6.1151-1161.2003 | es_CO |
dc.relation.references | Chang, C., Kwok, S., Bleecker, A., y Meyerowitz, E. (1993). Arabidopsis ethylene-response gene ETR1: similarity of product to two-component regulators. Science, 262(5133). https://doi.org/10.1126/science.8211181 | es_CO |
dc.relation.references | Decelle J, Colin S, y Foster RA. (2015). Marine Protists: Diversity and Dynamics (S. Ohtsuka, T. Suzaki, T. Horiguchi, N. Suzuki, y F. Not, Eds.). Springer Japan. https://doi.org/10.1007/978-4-431-55130-0 | es_CO |
dc.relation.references | Fautin, D. G. (2009). Structural diversity, systematics, and evolution of cnidae. Toxicon, 54(8). https://doi.org/10.1016/j.toxicon.2009.02.024 | es_CO |
dc.relation.references | Fay, S. A., Weber, M. X., y Lipps, J. H. (2009). The distribution of Symbiodinium diversity within individual host foraminifera. Coral Reefs, 28(3). https://doi.org/10.1007/s00338-009-0511-y | es_CO |
dc.relation.references | Foureau, E., Clastre, M., Obando Montoya, E. J., Besseau, S., Oudin, A., Glévarec, G., Simkin, A. J., Crèche, J., Atehortùa, L., Giglioli-Guivarc’h, N., Courdavault, V., y Papon, N. (2014). Subcellular localization of the histidine kinase receptors Sln1p, Nik1p and Chk1p in the yeast CTG clade species Candida guilliermondii. Fungal Genetics and Biology, 65. https://doi.org/10.1016/j.fgb.2014.01.007 | es_CO |
dc.relation.references | Galperin, M. Y. (2005). A census of membrane-bound and intracellular signal transduction proteins in bacteria: Bacterial IQ, extroverts and introverts. BMC Microbiology, 5(35). https://doi.org/10.1186/1471-2180-5-35 | es_CO |
dc.relation.references | Galperin, M. Y., Higdon, R., y Kolker, E. (2010). Interplay of heritage and habitat in the distribution of bacterial signal transduction systems. Molecular BioSystems, 6(4). https://doi.org/10.1039/b908047c | es_CO |
dc.relation.references | Gómez, F. (2012). A quantitative review of the lifestyle, habitat and trophic diversity of dinoflagellates (Dinoflagellata, Alveolata). Systematics and Biodiversity, 10(3). https://doi.org/10.1080/14772000.2012.721021 | es_CO |
dc.relation.references | González-Pech, R. A., Stephens, T. G., Chen, Y., Mohamed, A. R., Cheng, Y., Shah, S., Dougan, K. E., Fortuin, M. D. A., Lagorce, R., Burt, D. W., Bhattacharya, D., Ragan, M. A., y Chan, C. X. (2021). Comparison of 15 dinoflagellate genomes reveals extensive sequence and structural divergence in family Symbiodiniaceae and genus Symbiodinium. BMC Biology, 19(1). https://doi.org/10.1186/s12915-021-00994-6 | es_CO |
dc.relation.references | Grant, J. R., y Katz, L. A. (2014). Building a phylogenomic pipeline for the eukaryotic tree of life - addressing deep phylogenies with genome-scale data. PLoS Currents. https://doi.org/10.1371/currents.tol.c24b6054aebf3602748ac042ccc8f2e9 | es_CO |
dc.relation.references | Hedtke, M., Rauscher, S., Röhrig, J., Rodríguez-Romero, J., Yu, Z., y Fischer, R. (2015). Light-dependent gene activation in Aspergillus nidulans is strictly dependent on phytochrome and involves the interplay of phytochrome and white collar-regulated histone H3 acetylation. Molecular Microbiology, 97(4). https://doi.org/10.1111/mmi.13062 | es_CO |
dc.relation.references | Hérivaux, A., So, Y.-S., Gastebois, A., Latgé, J.-P., Bouchara, J.-P., Bahn, Y.-S., y Papon, N. (2016). Major Sensing proteins in pathogenic fungi: The hybrid histidine kinase family. PLOS Pathogens, 12(7). https://doi.org/10.1371/journal.ppat.1005683 | es_CO |
dc.relation.references | Hillyer, K. E., Dias, D., Lutz, A., Roessner, U., y Davy, S. K. (2018). 13C metabolomics reveals widespread change in carbon fate during coral bleaching. Metabolomics, 14(1). https://doi.org/10.1007/s11306-017-1306-8 | es_CO |
dc.relation.references | Hoek, C., Mann, D., Jahns, H. M., y Jahns, M. (1995). Algae: an introduction to phycology. Cambridge University Press. | es_CO |
dc.relation.references | Hu, M., Zheng, X., Fan, C.-M., y Zheng, Y. (2020). Lineage dynamics of the endosymbiotic cell type in the soft coral Xenia. Nature, 582(7813). https://doi.org/10.1038/s41586-020-2385-7 | es_CO |
dc.relation.references | Jacob, S., Foster, A. J., Yemelin, A., y Thines, E. (2014). Histidine kinases mediate differentiation, stress response, and pathogenicity in Magnaporthe oryzae. MicrobiologyOpen, 3(5). https://doi.org/10.1002/mbo3.197 | es_CO |
dc.relation.references | Kabbara, S., Hérivaux, A., Dugé de Bernonville, T., Courdavault, V., Clastre, M., Gastebois, A., Osman, M., Hamze, M., Cock, J. M., Schaap, P., y Papon, N. (2019). Diversity and evolution of sensor histidine kinases in eukaryotes. Genome Biology and Evolution, 11(1). https://doi.org/10.1093/gbe/evy213 | es_CO |
dc.relation.references | Kabbara, S., Schmülling, T., y Papon, N. (2018). CHASEing cytokinin receptors in plants, bacteria, fungi, and beyond. Trends in Plant Science, 23(3). https://doi.org/10.1016/j.tplants.2018.01.001 | es_CO |
dc.relation.references | Kang, J., Park, J. S., Jung, S. W., Kim, H., Joo, H. M., Kang, D., Seo, H., Kim, S., Jang, M., Lee, K., Jin Oh, S., Lee, S., y Lee, T. (2021). Zooming on dynamics of marine microbial communities in the phycosphere of Akashiwo sanguinea (Dinophyta) blooms. Molecular Ecology, 30(1). https://doi.org/10.1111/mec.15714 | es_CO |
dc.relation.references | Kenney, L. J., y Anand, G. S. (2020). EnvZ/OmpR two-component signaling: an archetype system that can function noncanonically. EcoSal Plus, 9(1). https://doi.org/10.1128/ecosalplus.ESP-0001-2019 | es_CO |
dc.relation.references | Kumar S, Stecher G, Li M, Knyaz C, y Tamura K. (2018). MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Molecular Biology and Evolution, 35, 1547–1549. | es_CO |
dc.relation.references | LaJeunesse, T. C., Lee, S. Y., Gil-Agudelo, D. L., Knowlton, N., y Jeong, H. J. (2015). Symbiodinium necroappetens sp. nov. (Dinophyceae): an opportunist ‘zooxanthella’ found in bleached and diseased tissues of Caribbean reef corals. European Journal of Phycology, 50(2). https://doi.org/10.1080/09670262.2015.1025857 | es_CO |
dc.relation.references | LaJeunesse, T. C., Parkinson, J. E., Gabrielson, P. W., Jeong, H. J., Reimer, J. D., Voolstra, C. R., y Santos, S. R. (2018). Systematic revision of Symbiodiniaceae highlights the antiquity and diversity of coral endosymbionts. Current Biology, 28(16). https://doi.org/10.1016/j.cub.2018.07.008 | es_CO |
dc.relation.references | Lefort, V., Longueville, J. E., y Gascuel, O. (2017). “SMS: Smart Model Selection in PhyML.” Molecular Biology and Evolution, 34(9), 2422–2424. | es_CO |
dc.relation.references | Lin, S., Cheng, S., Song, B., Zhong, X., Lin, X., Li, W., Li, L., Zhang, Y., Zhang, H., Ji, Z., Cai, M., Zhuang, Y., Shi, X., Lin, L., Wang, L., Wang, Z., Liu, X., Yu, S., Zeng, P., … Morse, D. (2015). The Symbiodinium kawagutii genome illuminates dinoflagellate gene expression and coral symbiosis. Science, 350(6261). https://doi.org/10.1126/science.aad0408 | es_CO |
dc.relation.references | Linden, H. (1997). White collar 2, a partner in blue-light signal transduction, controlling expression of light-regulated genes in Neurospora crassa. The EMBO Journal, 16(1). https://doi.org/10.1093/emboj/16.1.98 | es_CO |
dc.relation.references | Louche, A., Salcedo, S. P., y Bigot, S. (2017). Protein–Protein Interactions: Pull-Down Assays. https://doi.org/10.1007/978-1-4939-7033-9_20 | es_CO |
dc.relation.references | Mascher, T., Helmann, J. D., & Unden, G. (2006). Stimulus perception in bacterial signal-transducing histidine kinases. Microbiology and Molecular Biology Reviews, 70(4). https://doi.org/10.1128/MMBR.00020-06 | es_CO |
dc.relation.references | Miller, M. A., Pfeiffer, W., & Schwartz, T. (2010). Creating the CIPRES Science Gateway for inference of large phylogenetic trees. Proceedings of the Gateway Computing Environments Workshop (GCE), 1–8. | es_CO |
dc.relation.references | Mideros Mora, C. (2021). Bases moleculares de la especificidad en el mecanismo de transducción de señal en los sistemas de dos componentes bacterianos. https://doi.org/10.4995/Thesis/10251/161920 | es_CO |
dc.relation.references | Mizuno, T., Wurtzel, E. T., y Inouye, M. (1982). Osmoregulation of gene expression. II. DNA sequence of the envZ gene of the ompB operon of Escherichia coli and characterization of its gene product. The Journal of Biological Chemistry, 257(22), 13692–13698. | es_CO |
dc.relation.references | Muller-Parker, G., Lee, K. W., y Cook, C. B. (1996). Changes in the ultrastructure of symbiotic zooxanthellae (Symbiodinium Sp., Dinophyceae) in fed and starved sea anemones maintained under high and low light. Journal of Phycology, 32(6). https://doi.org/10.1111/j.0022-3646.1996.00987.x | es_CO |
dc.relation.references | Muscatine, L. (1967). Glycerol excretion by symbiotic algae from corals and Tridacna and its control by the host. Science, 156(3774). https://doi.org/10.1126/science.156.3774.516 | es_CO |
dc.relation.references | Nybakken, J. W. (1993). Marine Biology. An ecological approach. Harper Collins, 2, 38–41. | es_CO |
dc.relation.references | Ochsenkühn, M. A., Röthig, T., D’Angelo, C., Wiedenmann, J., y Voolstra, C. R. (2017). The role of floridoside in osmoadaptation of coral-associated algal endosymbionts to high-salinity conditions. Science Advances, 3(8). https://doi.org/10.1126/sciadv.1602047 | es_CO |
dc.relation.references | Ota, I., y Varshavsky, A. (1993). A yeast protein similar to bacterial two-component regulators. Science, 262(5133). https://doi.org/10.1126/science.8211183 | es_CO |
dc.relation.references | Papon, N., y Stock, A. M. (2019). What do archaeal and eukaryotic histidine kinases sense? F1000Research, 8. https://doi.org/10.12688/f1000research.20094.1 | es_CO |
dc.relation.references | Pawlowski, J., Holzmann, M., Fahrni, J. F., Pochon, X., y Lee, J. J. (2001). Molecular identification of algal endosymbionts in large miliolid Foraminifera: 2. Dinoflagellates. The Journal of Eukaryotic Microbiology, 48(3). https://doi.org/10.1111/j.1550-7408.2001.tb00326.x | es_CO |
dc.relation.references | Probert, I., Siano, R., Poirier, C., Decelle, J., Biard, T., Tuji, A., Suzuki, N., y Not, F. (2014). Brandtodinium gen. nov. and B. nutricula comb. Nov. (Dinophyceae), a dinoflagellate commonly found in symbiosis with polycystine radiolarians. Journal of Phycology, 50(2). https://doi.org/10.1111/jpy.12174 | es_CO |
dc.relation.references | Qin, H., Zheng, Y., Wang, M., Zhang, Z., Niu, Z., Ma, L., Sun, Q., Huang, H., y Wang, X. (2020). Subcellular localization of GTPase of immunity-associated protein 2. Beijing Da Xue Xue Bao Yi Xue Ban, 52(2), 221–226. | es_CO |
dc.relation.references | Reiser, V., Raitt, D. C., y Saito, H. (2003). Yeast osmosensor Sln1 and plant cytokinin receptor Cre1 respond to changes in turgor pressure. Journal of Cell Biology, 161(6). https://doi.org/10.1083/jcb.200301099 | es_CO |
dc.relation.references | Ren, B., Liang, Y., Deng, Y., Chen, Q., Zhang, J., Yang, X., y Zuo, J. (2009). Genome-wide comparative analysis of type-A Arabidopsis response regulator genes by overexpression studies reveals their diverse roles and regulatory mechanisms in cytokinin signaling. Cell Research, 19(10). https://doi.org/10.1038/cr.2009.88 | es_CO |
dc.relation.references | Ribeiro, D. M., Prod’homme, A., Teixeira, A., Zanzoni, A., y Brun, C. (2020). The role of 3′UTR-protein complexes in the regulation of protein multifunctionality and subcellular localization. Nucleic Acids Research, 48(12). https://doi.org/10.1093/nar/gkaa462 | es_CO |
dc.relation.references | Ryzhykau, Y. L., Orekhov, P. S., Rulev, M. I., Vlasov, A. v., Melnikov, I. A., Volkov, D. A., Nikolaev, M. Yu., Zabelskii, D. v., Murugova, T. N., Chupin, V. v., Rogachev, A. v., Gruzinov, A. Yu., Svergun, D. I., Brennich, M. E., Gushchin, I. Yu., Soler-Lopez, M., Bothe, A., Büldt, G., Leonard, G., … Gordeliy, V. I. (2021). Molecular model of a sensor of two-component signaling system. Scientific Reports, 11(1). https://doi.org/10.1038/s41598-021-89613-6 | es_CO |
dc.relation.references | Sato, N. E., Hernández, D., y Viñas, M. D. (2010). Hábitos alimentarios de Noctiluca scintillans en aguas costeras de la Provincia de Buenos Aires, Argentina. Latin American Journal of Aquatic Research, 38(3), 403–412. | es_CO |
dc.relation.references | Sharan, A., Soni, P., Nongpiur, R. C., Singla-Pareek, S. L., y Pareek, A. (2017). Mapping the ‘Two-component system’ network in rice. Scientific Reports, 7(1). https://doi.org/10.1038/s41598-017-08076-w | es_CO |
dc.relation.references | Shoguchi, E., Beedessee, G., Tada, I., Hisata, K., Kawashima, T., Takeuchi, T., Arakaki, N., Fujie, M., Koyanagi, R., Roy, M. C., Kawachi, M., Hidaka, M., Satoh, N., y Shinzato, C. (2018). Two divergent Symbiodinium genomes reveal conservation of a gene cluster for sunscreen biosynthesis and recently lost genes. BMC Genomics, 19(1). https://doi.org/10.1186/s12864-018-4857-9 | es_CO |
dc.relation.references | Shoguchi, E., Shinzato, C., Kawashima, T., Gyoja, F., Mungpakdee, S., Koyanagi, R., Takeuchi, T., Hisata, K., Tanaka, M., Fujiwara, M., Hamada, M., Seidi, A., Fujie, M., Usami, T., Goto, H., Yamasaki, S., Arakaki, N., Suzuki, Y., Sugano, S., … Satoh, N. (2013). Draft assembly of the Symbiodinium minutum nuclear genome reveals dinoflagellate gene structure. Current Biology, 23(15). https://doi.org/10.1016/j.cub.2013.05.062 | es_CO |
dc.relation.references | Sigrist, C. J. A., de Castro, E., Cerutti, L., Cuche, B. A., Hulo, N., Bridge, A., Bougueleret, L., & Xenarios, I. (2012). New and continuing developments at PROSITE. Nucleic Acids Research, 41(D1). https://doi.org/10.1093/nar/gks1067 | es_CO |
dc.relation.references | Simpson, C., Kiessling, W., Mewis, H., Baron-Szabo, R. C., y Müller, J. (2011). Evolutionary diversification of reef corals: a comparison of the molecular and fossil records. Evolution, 65(11). https://doi.org/10.1111/j.1558-5646.2011.01365.x | es_CO |
dc.relation.references | Stock, A. M., Robinson, V. L., y Goudreau, P. N. (2000). Two-Component Signal Transduction. Annual Review of Biochemistry, 69(1). https://doi.org/10.1146/annurev.biochem.69.1.183 | es_CO |
dc.relation.references | Suescún-Bolívar, L. P. (2018). Identificación de una vía MAPK involucrada en la síntesis de glicerol en Symbiodinium minutum, genotipo B1. | es_CO |
dc.relation.references | Suescún-Bolívar, L. P., y Thomé, P. E. (2015). Osmosensing and osmoregulation in unicellular eukaryotes. World Journal of Microbiology and Biotechnology, 31(3). https://doi.org/10.1007/s11274-015-1811-8 | es_CO |
dc.relation.references | Suescún-Bolívar, L. P., Traverse, G. M. I., y Thomé, P. E. (2016). Glycerol outflow in Symbiodinium under osmotic and nitrogen stress. Marine Biology, 163(5). https://doi.org/10.1007/s00227-016-2899-6 | es_CO |
dc.relation.references | Terán-Melo, J. L., Rodríguez-Rangel, C., Georgellis, D., y Álvarez, A. F. (2019). Mecanismos de autofosforilación y transfosforilación en sistemas de dos componentes bacterianos. TIP Revista Especializada En Ciencias Químico-Biológicas, 22. https://doi.org/10.22201/fesz.23958723e.2019.0.162 | es_CO |
dc.relation.references | Trench, R. K. (1971). The physiology and biochemistry of zooxanthellae symbiotic with marine coelenterates. II. Liberation of fixed 14C by zooxanthellae in vitro. Proceedings of the Royal Society of London. Series B. Biological Sciences, 177(1047). https://doi.org/10.1098/rspb.1971.0025 | es_CO |
dc.relation.references | Trench, R. K. (1979). The cell biology of plant-animal symbiosis. Annual Review of Plant Physiology, 30(1). https://doi.org/10.1146/annurev.pp.30.060179.002413 | es_CO |
dc.relation.references | Yamashita, H, Suzuki, G., Shinzato, C., Jimbo, M., y Koike, K. (2018). Symbiosis process between Acropora larvae and Symbiodinium differs even among closely related Symbiodinium types. Marine Ecology Progress Series, 592. https://doi.org/10.3354/meps12474 | es_CO |
dc.relation.references | Yamashita, Hiroshi, y Koike, K. (2013). Genetic identity of free-living Symbiodinium obtained over a broad latitudinal range in the Japanese coast. Phycological Research, 61(1). https://doi.org/10.1111/pre.12004 | es_CO |
dc.relation.references | Yellowlees, D., Rees, T. A. v., y Leggat, W. (2008). Metabolic interactions between algal symbionts and invertebrate hosts. Plant, Cell & Environment, 31(5). https://doi.org/10.1111/j.1365-3040.2008.01802.x | es_CO |
dc.relation.references | Yuyama I, H. T. M. T. (2016). Symbiodinium kawagutii (clade F) coats the surface of Acropora solitaryensis, resulting in the formation of a sheet-like crust. Proceedings of the 13th International Coral Reef Symposium, 49–56. | es_CO |
dc.relation.references | Zhulin, I. (1997). PAS domain S-boxes in archaea, bacteria and sensors for oxygen and redox. Trends in Biochemical Sciences, 22(9). https://doi.org/10.1016/S0968-0004(97)01110-9 | es_CO |
dc.rights.accessrights | http://purl.org/coar/access_right/c_abf2 | es_CO |
dc.type.coarversion | http://purl.org/coar/resource_type/c_2df8fbb1 | es_CO |
Aparece en las colecciones: | Biología |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
Carrillo_2021_TG.pdf | Carrillo_2021_TG | 2,95 MB | Adobe PDF | Visualizar/Abrir |
Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.