Por favor, use este identificador para citar o enlazar este ítem:
http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/9051
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | Barajas Rincón, Fabián Camilo. | - |
dc.date.accessioned | 2024-10-01T21:53:54Z | - |
dc.date.available | 2023-03-01 | - |
dc.date.available | 2024-10-01T21:53:54Z | - |
dc.date.issued | 2023 | - |
dc.identifier.citation | Barajas Rincón, F. C. (2022). Métodos unitarios para el cálculo de la polarización del vacío en QED [Trabajo de Grado Pregrado, Universidad de Pamplona]. Repositorio Hulago Universidad de Pamplona. http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/9051 | es_CO |
dc.identifier.uri | http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/9051 | - |
dc.description | En esta tesis se realizó el cálculo de la polarización del vacío en electrodinámica cuántica al primer orden perturbativo (un-loop) utilizando dos métodos. El método diagramático basado en las reglas de Feynman y el método de unitariedad de Cutkosky asociado con el teorema óptico en teoría cuántica de campos. En el primer procedimiento fue necesario aplicar la regularización dimensional para remover las divergencias ultravioletas presentes en la amplitud del observable físico, mientras que con la segunda prescripción se utilizaron las reglas de Cutkosky donde se evitan dichas discontinuidades y se calcula la parte imaginaría de la amplitud, la cual posteriormente se utiliza para hallar la amplitud completa a partir de las relaciones de dispersión derivadas de los teoremas integrales del análisis complejo. Además, se implementó un código en el lenguaje de Wolfram Mathematica, con ayuda de los paquetes FeynArts y FeynCalc, que permitieron obtener una expresión para la polarización del vacío equivalente a la encontrada con los dos métodos analíticos. | es_CO |
dc.description.abstract | El autor no proporciona la información sobre este ítem. | es_CO |
dc.format.extent | 90 | es_CO |
dc.format.mimetype | application/pdf | es_CO |
dc.language.iso | es | es_CO |
dc.publisher | Universidad de Pamplona – Facultad de Ciencias Básicas. | es_CO |
dc.subject | Polarización del vacío. | es_CO |
dc.subject | Propagador. | es_CO |
dc.subject | Diagramas de Feynman. | es_CO |
dc.subject | Teorema óptico. | es_CO |
dc.title | Métodos unitarios para el cálculo de la polarización del vacío en QED. | es_CO |
dc.type | http://purl.org/coar/resource_type/c_7a1f | es_CO |
dc.date.accepted | 2022-12-01 | - |
dc.relation.references | G. B. Gelmini. El boson de Higgs. arXiv:1407.1741 [physics.pop-ph], 2014. | es_CO |
dc.relation.references | D. M. Asner et al. ILC higgs white paper. arXiv:1310.0763 [hep-ph], 2013. | es_CO |
dc.relation.references | G. Haghighat et al. Probing light dark sector at future lepton colliders via (dark) Higgs invisible decays. arXiv:2209.07565 [hep-ph], 2022. | es_CO |
dc.relation.references | A. Freitas. Three-loop vacuum integrals with arbitrary masses. arXiv:1609.09159 [hep-ph], Journal of High Energy Physics, 2016(11), nov 2016. | es_CO |
dc.relation.references | S. Bauberger, A. Freitas, and D. Wiegand. TVID 2: Evaluation of planar-type three-loop self-energy integrals with arbitrary masses. arXiv:1908.09887 [hep-ph], Journal of High Energy Physics, 2020(1), jan 2020. | es_CO |
dc.relation.references | E. A. Reyes and A. R. Fazio. High-Precision calculations of the Higgs Boson Mass. arXiv:2112.15295 [hep-ph], Particles, 5(1):53–73, feb 2022. | es_CO |
dc.relation.references | A. R. Fazio and E. A. Reyes R. The lightest Higgs boson mass of the MSSM at three-loop accuracy. arXiv:1901.03651 [hep-ph], Nuclear Physics B, 942:164–183, may 2019. | es_CO |
dc.relation.references | X. Chen et al. Isolated photon and photon+jet production at NNLO QCD accuracy. arXiv:1904.01044 [hep-ph], Journal of High Energy Physics, 2020(4):1– 36, 2020. | es_CO |
dc.relation.references | R. H. Parker et al. Measurement of the fine-structure constant as a test of the Standard Model. arXiv:1812.04130 [physics.atom-ph], Science, 360(6385):191–195, apr 2018. | es_CO |
dc.relation.references | T. Aoyama et al. The anomalous magnetic moment of the muon in the standard model. arXiv:2006.04822 [hep-ph], Physics Reports, 887:1–166, dec 2020. | es_CO |
dc.relation.references | P. Girotti. Status of the fermilab muon g–2 experiment. In EPJ Web of Conferences, volume 262, page 01003. EDP Sciences, 2022. | es_CO |
dc.relation.references | O. Gituliar and S. Moch. Fuchsia and Master integrals for Energy-Energy correlations at NLO in QCD. arXiv:1711.05549 [hep-ph], Acta Physica Polonica B, 48(12):2355, 2017. | es_CO |
dc.relation.references | W. J. Torres Bobadilla, A. R. Fazio, P. Mastrolia, and E. Mirabella. Generalised unitarity for dimensionally regulated amplitudes, 2015. | es_CO |
dc.relation.references | Cutkosky R. E. Singularities and discontinuities of feynman amplitudes. Journal of Mathematical Physics, 1(5):429–433, 1960. | es_CO |
dc.relation.references | R. Zwicky. A brief introduction to dispersion relations and analyticity. arXiv preprint arXiv:1610.06090, 2016. | es_CO |
dc.relation.references | T. Hahn. Generating Feynman Diagrams and Amplitudes with FeynArts 3. arXiv:hep-ph/0012260, Computer Physics Communications, 140(3):418–431, nov 2001. | es_CO |
dc.relation.references | V. Shtabovenko, R. Mertig, and F. Orellana. FeynCalc 9.3: New features and improvements. arXiv:2001.04407 [hep-ph], Computer Physics Communications, 256:107478, nov 2020. | es_CO |
dc.relation.references | M. E. Peskin. An introduction to quantum field theory. CRC press, 2018. | es_CO |
dc.relation.references | J. I. Illana. Teorıa cuántica de campos. Departamento de Fısica Teórica y del Cosmos, Universidad de Granada. Espana. Pág, 1, 2017. | es_CO |
dc.relation.references | Fred Alonso López-Durán, Efraín Zamora-Romo, José Luis Alonso-Morales, and Guillermo Mendoza-Vásques. Tomografía por emisión de positrones: los nuevos paradigmas. Tip Revista Especializada en Ciencias Químico-Biológicas, 10(1):26– 35, 2007. | es_CO |
dc.relation.references | C. D. Anderson. The positive electron. Phys. Rev., 43:491–494, Mar 1933. | es_CO |
dc.relation.references | K. Kumericki. Feynman Diagrams for Beginners. arXiv:1602.04182 [physics.ed-ph], 2016. | es_CO |
dc.relation.references | J.J. Sakurai. Modern quantum mechanics, revised edition. American Association of Physics Teachers, 1995. | es_CO |
dc.relation.references | J.D. Jackson. Classical Electrodynamics-Third Edition. John Wiley, NY, 1999. | es_CO |
dc.relation.references | R. G. Newton. Scattering theory of waves and particles. Springer Science & Business Media, 2013. | es_CO |
dc.relation.references | P. S. Carney et al. Statistical generalizations of the optical cross-section theorem with application to inverse scattering. JOSA A, 14(12):3366–3371, 1997. | es_CO |
dc.relation.references | I. Rondón O. and F. Soto E. Generalized optical theorem for propagation invariant beams. Optik, 137:17–24, 2017. | es_CO |
dc.relation.references | L. Zhang. Generalized optical theorem for an arbitrary incident field. The Journal of the Acoustical Society of America, 145(3):EL185–EL189, 2019. | es_CO |
dc.relation.references | J. W. Strutt. Xv. on the light from the sky, its polarization and colour. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 41(271):107–120, 1871. | es_CO |
dc.relation.references | G. Mie. Beiträge zur optik trüber medien, speziell kolloidaler metallösungen. Annalen der physik, 330(3):377–445, 1908. | es_CO |
dc.relation.references | E. Feenberg. The scattering of slow electrons by neutral atoms. Physical Review, 40(1):40, 1932. | es_CO |
dc.relation.references | R. G Newton. Optical theorem and beyond. American Journal of Physics, 44(7):639–642, 1976. | es_CO |
dc.relation.references | P. L. Marston. Generalized optical theorem for scatterers having inversion symmetry: Applications to acoustic backscattering. The Journal of the Acoustical Society of America, 109(4):1291–1295, 2001. | es_CO |
dc.relation.references | J. Soares. Introduction to optical characterization of materials. In Practical Materials Characterization, pages 43–92. Springer, 2014. | es_CO |
dc.relation.references | G. Gouesbet. On the optical theorem and non-plane-wave scattering in quantum mechanics. Journal of mathematical physics, 50(11):112302, 2009. | es_CO |
dc.relation.references | R. J. Rietkerk. One-loop amplitudes in perturbative quantum field theory. Master’s thesis, Utrecht University, 2012. | es_CO |
dc.relation.references | S. Weinberg. The quantum theory of fields, volume 2. Cambridge university press, 1995. | es_CO |
dc.relation.references | Matilde Legua and Luis M. Sánchez-Ruiz. Cauchy principal value contour integral with applications. Entropy, 19(5):215, 2017. | es_CO |
dc.relation.references | M. Bordag, U. Mohideen, and V.M. Mostepanenko. New developments in the casimir effect. Physics Reports, 353(1-3):1–205, oct 2001. [ | es_CO |
dc.relation.references | H. B. G. Casimir. On the Attraction Between Two Perfectly Conducting Plates. Indag. Math., 10:261–263, 1948. | es_CO |
dc.relation.references | P. R. Buenzli and Ph. A. Martin. Microscopic theory of the casimir force at thermal equilibrium: Large-separation asymptotics. Physical Review E, 77(1), jan 2008. | es_CO |
dc.relation.references | M.J. Sparnaay. Measurements of attractive forces between flat plates. Physica, 24(6):751–764, 1958. | es_CO |
dc.relation.references | S. K. Lamoreaux. Demonstration of the casimir force in the 0.6 to 6μm range. Phys. Rev. Lett., 78:5–8, Jan 1997. | es_CO |
dc.relation.references | S. K. Lamoreaux. Erratum: Demonstration of the casimir force in the 0.6 to 6 μm range [phys. rev. lett. 78, 5 (1997)]. Phys. Rev. Lett., 81:5475–5476, Dec 1998. | es_CO |
dc.relation.references | U. Mohideen and Anushree Roy. Precision measurement of the casimir force from 0.1 to 0.9μm. Phys. Rev. Lett., 81:4549–4552, Nov 1998. | es_CO |
dc.relation.references | A. M. Kimball. The casimir effect: recent controversies and progress. Journal of Physics A: Mathematical and General, 37(38):R209–R277, sep 2004. | es_CO |
dc.relation.references | G. L. Klimchitskaya and V. M. Mostepanenko. Experiment and theory in the casimir effect. Contemporary Physics, 47(3):131–144, 2006. | es_CO |
dc.relation.references | S. Breidenbach et al. Hadronic vacuum polarization correction to atomic energy levels. arXiv:2209.03234 [quant-ph], 2022. | es_CO |
dc.relation.references | L. D. Luzio et al. New physics behind the new muon g-2 puzzle? arXiv:2112.08312 [hep-ph], Physics Letters B, 829:137037, jun 2022. | es_CO |
dc.relation.references | A. Dasgupta and S. Rahmati. A note on vacuum polarisation and hawking radiation. arXiv:1205.3805 [gr-qc], 2012. | es_CO |
dc.relation.references | S. Rahmati. Vacuum polarization and Hawking radiation. PhD thesis, Lethbridge, Alta.: University of Lethbridge, Dept. of Physics and Astronomy . . . , 2012. | es_CO |
dc.relation.references | J. C. Romao. Modern techniques for one-loop calculations. Version, 1:263, 2004. | es_CO |
dc.relation.references | O. Yudilevich. One-loop amplitudes. Master’s thesis, Utrecht University, 2009. | es_CO |
dc.relation.references | C. Gnendiger et al. To d, or not to d: Recent developments and comparisons of regularization schemes. arXiv:1705.01827, The European Physical Journal C, 77(7), jul 2017. | es_CO |
dc.relation.references | C. G. Bollini and J. J. Giambiagi. Dimensional renormalization: The number of dimensions as a regularizing parameter. Nuovo Cim. B, 12(1):20–26, 1972. | es_CO |
dc.relation.references | M. Veltman et al. Regularization and renormalization of gauge fields. Nuclear Physics B, 44(1):189–213, 1972. | es_CO |
dc.relation.references | J Fv Ashmore. A method of gauge-invariant regularization. Lettere al Nuovo Cimento (1971-1985), 4(8):289–290, 1972. | es_CO |
dc.relation.references | V. Radovanovic. Problem book in quantum field theory. Springer, 2006. | es_CO |
dc.relation.references | R. L. Kronig. On the theory of dispersion of x-rays. Josa, 12(6):547–557, 1926. | es_CO |
dc.relation.references | B. A. Kniehl. Dispersion relations in loop calculations. arXiv:hep-ph/9607255, 1996. | es_CO |
dc.relation.references | D. Bardin and G. Passarino. The standard model in the making: Precision study of the electroweak interactions, volume 104. Oxford University Press, 1999. | es_CO |
dc.rights.accessrights | http://purl.org/coar/access_right/c_abf2 | es_CO |
dc.type.coarversion | http://purl.org/coar/resource_type/c_2df8fbb1 | es_CO |
Aparece en las colecciones: | Física |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
Barajas_2022_TG.pdf | Barajas_2022_TG | 1,87 MB | Adobe PDF | Visualizar/Abrir |
Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.