• Repositorio Institucional Universidad de Pamplona
  • Trabajos de pregrado y especialización
  • Facultad de Ciencias Básicas
  • Física
  • Por favor, use este identificador para citar o enlazar este ítem: http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/9051
    Registro completo de metadatos
    Campo DC Valor Lengua/Idioma
    dc.contributor.authorBarajas Rincón, Fabián Camilo.-
    dc.date.accessioned2024-10-01T21:53:54Z-
    dc.date.available2023-03-01-
    dc.date.available2024-10-01T21:53:54Z-
    dc.date.issued2023-
    dc.identifier.citationBarajas Rincón, F. C. (2022). Métodos unitarios para el cálculo de la polarización del vacío en QED [Trabajo de Grado Pregrado, Universidad de Pamplona]. Repositorio Hulago Universidad de Pamplona. http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/9051es_CO
    dc.identifier.urihttp://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/9051-
    dc.descriptionEn esta tesis se realizó el cálculo de la polarización del vacío en electrodinámica cuántica al primer orden perturbativo (un-loop) utilizando dos métodos. El método diagramático basado en las reglas de Feynman y el método de unitariedad de Cutkosky asociado con el teorema óptico en teoría cuántica de campos. En el primer procedimiento fue necesario aplicar la regularización dimensional para remover las divergencias ultravioletas presentes en la amplitud del observable físico, mientras que con la segunda prescripción se utilizaron las reglas de Cutkosky donde se evitan dichas discontinuidades y se calcula la parte imaginaría de la amplitud, la cual posteriormente se utiliza para hallar la amplitud completa a partir de las relaciones de dispersión derivadas de los teoremas integrales del análisis complejo. Además, se implementó un código en el lenguaje de Wolfram Mathematica, con ayuda de los paquetes FeynArts y FeynCalc, que permitieron obtener una expresión para la polarización del vacío equivalente a la encontrada con los dos métodos analíticos.es_CO
    dc.description.abstractEl autor no proporciona la información sobre este ítem.es_CO
    dc.format.extent90es_CO
    dc.format.mimetypeapplication/pdfes_CO
    dc.language.isoeses_CO
    dc.publisherUniversidad de Pamplona – Facultad de Ciencias Básicas.es_CO
    dc.subjectPolarización del vacío.es_CO
    dc.subjectPropagador.es_CO
    dc.subjectDiagramas de Feynman.es_CO
    dc.subjectTeorema óptico.es_CO
    dc.titleMétodos unitarios para el cálculo de la polarización del vacío en QED.es_CO
    dc.typehttp://purl.org/coar/resource_type/c_7a1fes_CO
    dc.date.accepted2022-12-01-
    dc.relation.referencesG. B. Gelmini. El boson de Higgs. arXiv:1407.1741 [physics.pop-ph], 2014.es_CO
    dc.relation.referencesD. M. Asner et al. ILC higgs white paper. arXiv:1310.0763 [hep-ph], 2013.es_CO
    dc.relation.referencesG. Haghighat et al. Probing light dark sector at future lepton colliders via (dark) Higgs invisible decays. arXiv:2209.07565 [hep-ph], 2022.es_CO
    dc.relation.referencesA. Freitas. Three-loop vacuum integrals with arbitrary masses. arXiv:1609.09159 [hep-ph], Journal of High Energy Physics, 2016(11), nov 2016.es_CO
    dc.relation.referencesS. Bauberger, A. Freitas, and D. Wiegand. TVID 2: Evaluation of planar-type three-loop self-energy integrals with arbitrary masses. arXiv:1908.09887 [hep-ph], Journal of High Energy Physics, 2020(1), jan 2020.es_CO
    dc.relation.referencesE. A. Reyes and A. R. Fazio. High-Precision calculations of the Higgs Boson Mass. arXiv:2112.15295 [hep-ph], Particles, 5(1):53–73, feb 2022.es_CO
    dc.relation.referencesA. R. Fazio and E. A. Reyes R. The lightest Higgs boson mass of the MSSM at three-loop accuracy. arXiv:1901.03651 [hep-ph], Nuclear Physics B, 942:164–183, may 2019.es_CO
    dc.relation.referencesX. Chen et al. Isolated photon and photon+jet production at NNLO QCD accuracy. arXiv:1904.01044 [hep-ph], Journal of High Energy Physics, 2020(4):1– 36, 2020.es_CO
    dc.relation.referencesR. H. Parker et al. Measurement of the fine-structure constant as a test of the Standard Model. arXiv:1812.04130 [physics.atom-ph], Science, 360(6385):191–195, apr 2018.es_CO
    dc.relation.referencesT. Aoyama et al. The anomalous magnetic moment of the muon in the standard model. arXiv:2006.04822 [hep-ph], Physics Reports, 887:1–166, dec 2020.es_CO
    dc.relation.referencesP. Girotti. Status of the fermilab muon g–2 experiment. In EPJ Web of Conferences, volume 262, page 01003. EDP Sciences, 2022.es_CO
    dc.relation.referencesO. Gituliar and S. Moch. Fuchsia and Master integrals for Energy-Energy correlations at NLO in QCD. arXiv:1711.05549 [hep-ph], Acta Physica Polonica B, 48(12):2355, 2017.es_CO
    dc.relation.referencesW. J. Torres Bobadilla, A. R. Fazio, P. Mastrolia, and E. Mirabella. Generalised unitarity for dimensionally regulated amplitudes, 2015.es_CO
    dc.relation.referencesCutkosky R. E. Singularities and discontinuities of feynman amplitudes. Journal of Mathematical Physics, 1(5):429–433, 1960.es_CO
    dc.relation.referencesR. Zwicky. A brief introduction to dispersion relations and analyticity. arXiv preprint arXiv:1610.06090, 2016.es_CO
    dc.relation.referencesT. Hahn. Generating Feynman Diagrams and Amplitudes with FeynArts 3. arXiv:hep-ph/0012260, Computer Physics Communications, 140(3):418–431, nov 2001.es_CO
    dc.relation.referencesV. Shtabovenko, R. Mertig, and F. Orellana. FeynCalc 9.3: New features and improvements. arXiv:2001.04407 [hep-ph], Computer Physics Communications, 256:107478, nov 2020.es_CO
    dc.relation.referencesM. E. Peskin. An introduction to quantum field theory. CRC press, 2018.es_CO
    dc.relation.referencesJ. I. Illana. Teorıa cuántica de campos. Departamento de Fısica Teórica y del Cosmos, Universidad de Granada. Espana. Pág, 1, 2017.es_CO
    dc.relation.referencesFred Alonso López-Durán, Efraín Zamora-Romo, José Luis Alonso-Morales, and Guillermo Mendoza-Vásques. Tomografía por emisión de positrones: los nuevos paradigmas. Tip Revista Especializada en Ciencias Químico-Biológicas, 10(1):26– 35, 2007.es_CO
    dc.relation.referencesC. D. Anderson. The positive electron. Phys. Rev., 43:491–494, Mar 1933.es_CO
    dc.relation.referencesK. Kumericki. Feynman Diagrams for Beginners. arXiv:1602.04182 [physics.ed-ph], 2016.es_CO
    dc.relation.referencesJ.J. Sakurai. Modern quantum mechanics, revised edition. American Association of Physics Teachers, 1995.es_CO
    dc.relation.referencesJ.D. Jackson. Classical Electrodynamics-Third Edition. John Wiley, NY, 1999.es_CO
    dc.relation.referencesR. G. Newton. Scattering theory of waves and particles. Springer Science & Business Media, 2013.es_CO
    dc.relation.referencesP. S. Carney et al. Statistical generalizations of the optical cross-section theorem with application to inverse scattering. JOSA A, 14(12):3366–3371, 1997.es_CO
    dc.relation.referencesI. Rondón O. and F. Soto E. Generalized optical theorem for propagation invariant beams. Optik, 137:17–24, 2017.es_CO
    dc.relation.referencesL. Zhang. Generalized optical theorem for an arbitrary incident field. The Journal of the Acoustical Society of America, 145(3):EL185–EL189, 2019.es_CO
    dc.relation.referencesJ. W. Strutt. Xv. on the light from the sky, its polarization and colour. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 41(271):107–120, 1871.es_CO
    dc.relation.referencesG. Mie. Beiträge zur optik trüber medien, speziell kolloidaler metallösungen. Annalen der physik, 330(3):377–445, 1908.es_CO
    dc.relation.referencesE. Feenberg. The scattering of slow electrons by neutral atoms. Physical Review, 40(1):40, 1932.es_CO
    dc.relation.referencesR. G Newton. Optical theorem and beyond. American Journal of Physics, 44(7):639–642, 1976.es_CO
    dc.relation.referencesP. L. Marston. Generalized optical theorem for scatterers having inversion symmetry: Applications to acoustic backscattering. The Journal of the Acoustical Society of America, 109(4):1291–1295, 2001.es_CO
    dc.relation.referencesJ. Soares. Introduction to optical characterization of materials. In Practical Materials Characterization, pages 43–92. Springer, 2014.es_CO
    dc.relation.referencesG. Gouesbet. On the optical theorem and non-plane-wave scattering in quantum mechanics. Journal of mathematical physics, 50(11):112302, 2009.es_CO
    dc.relation.referencesR. J. Rietkerk. One-loop amplitudes in perturbative quantum field theory. Master’s thesis, Utrecht University, 2012.es_CO
    dc.relation.referencesS. Weinberg. The quantum theory of fields, volume 2. Cambridge university press, 1995.es_CO
    dc.relation.referencesMatilde Legua and Luis M. Sánchez-Ruiz. Cauchy principal value contour integral with applications. Entropy, 19(5):215, 2017.es_CO
    dc.relation.referencesM. Bordag, U. Mohideen, and V.M. Mostepanenko. New developments in the casimir effect. Physics Reports, 353(1-3):1–205, oct 2001. [es_CO
    dc.relation.referencesH. B. G. Casimir. On the Attraction Between Two Perfectly Conducting Plates. Indag. Math., 10:261–263, 1948.es_CO
    dc.relation.referencesP. R. Buenzli and Ph. A. Martin. Microscopic theory of the casimir force at thermal equilibrium: Large-separation asymptotics. Physical Review E, 77(1), jan 2008.es_CO
    dc.relation.referencesM.J. Sparnaay. Measurements of attractive forces between flat plates. Physica, 24(6):751–764, 1958.es_CO
    dc.relation.referencesS. K. Lamoreaux. Demonstration of the casimir force in the 0.6 to 6μm range. Phys. Rev. Lett., 78:5–8, Jan 1997.es_CO
    dc.relation.referencesS. K. Lamoreaux. Erratum: Demonstration of the casimir force in the 0.6 to 6 μm range [phys. rev. lett. 78, 5 (1997)]. Phys. Rev. Lett., 81:5475–5476, Dec 1998.es_CO
    dc.relation.referencesU. Mohideen and Anushree Roy. Precision measurement of the casimir force from 0.1 to 0.9μm. Phys. Rev. Lett., 81:4549–4552, Nov 1998.es_CO
    dc.relation.referencesA. M. Kimball. The casimir effect: recent controversies and progress. Journal of Physics A: Mathematical and General, 37(38):R209–R277, sep 2004.es_CO
    dc.relation.referencesG. L. Klimchitskaya and V. M. Mostepanenko. Experiment and theory in the casimir effect. Contemporary Physics, 47(3):131–144, 2006.es_CO
    dc.relation.referencesS. Breidenbach et al. Hadronic vacuum polarization correction to atomic energy levels. arXiv:2209.03234 [quant-ph], 2022.es_CO
    dc.relation.referencesL. D. Luzio et al. New physics behind the new muon g-2 puzzle? arXiv:2112.08312 [hep-ph], Physics Letters B, 829:137037, jun 2022.es_CO
    dc.relation.referencesA. Dasgupta and S. Rahmati. A note on vacuum polarisation and hawking radiation. arXiv:1205.3805 [gr-qc], 2012.es_CO
    dc.relation.referencesS. Rahmati. Vacuum polarization and Hawking radiation. PhD thesis, Lethbridge, Alta.: University of Lethbridge, Dept. of Physics and Astronomy . . . , 2012.es_CO
    dc.relation.referencesJ. C. Romao. Modern techniques for one-loop calculations. Version, 1:263, 2004.es_CO
    dc.relation.referencesO. Yudilevich. One-loop amplitudes. Master’s thesis, Utrecht University, 2009.es_CO
    dc.relation.referencesC. Gnendiger et al. To d, or not to d: Recent developments and comparisons of regularization schemes. arXiv:1705.01827, The European Physical Journal C, 77(7), jul 2017.es_CO
    dc.relation.referencesC. G. Bollini and J. J. Giambiagi. Dimensional renormalization: The number of dimensions as a regularizing parameter. Nuovo Cim. B, 12(1):20–26, 1972.es_CO
    dc.relation.referencesM. Veltman et al. Regularization and renormalization of gauge fields. Nuclear Physics B, 44(1):189–213, 1972.es_CO
    dc.relation.referencesJ Fv Ashmore. A method of gauge-invariant regularization. Lettere al Nuovo Cimento (1971-1985), 4(8):289–290, 1972.es_CO
    dc.relation.referencesV. Radovanovic. Problem book in quantum field theory. Springer, 2006.es_CO
    dc.relation.referencesR. L. Kronig. On the theory of dispersion of x-rays. Josa, 12(6):547–557, 1926.es_CO
    dc.relation.referencesB. A. Kniehl. Dispersion relations in loop calculations. arXiv:hep-ph/9607255, 1996.es_CO
    dc.relation.referencesD. Bardin and G. Passarino. The standard model in the making: Precision study of the electroweak interactions, volume 104. Oxford University Press, 1999.es_CO
    dc.rights.accessrightshttp://purl.org/coar/access_right/c_abf2es_CO
    dc.type.coarversionhttp://purl.org/coar/resource_type/c_2df8fbb1es_CO
    Aparece en las colecciones: Física

    Ficheros en este ítem:
    Fichero Descripción Tamaño Formato  
    Barajas_2022_TG.pdfBarajas_2022_TG1,87 MBAdobe PDFVisualizar/Abrir


    Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.