• Repositorio Institucional Universidad de Pamplona
  • Trabajos de pregrado y especialización
  • Facultad de Ciencias Básicas
  • Física
  • Por favor, use este identificador para citar o enlazar este ítem: http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/8998
    Registro completo de metadatos
    Campo DC Valor Lengua/Idioma
    dc.contributor.authorGonzález Villamizar, Ninibed Yelitza.-
    dc.date.accessioned2024-07-03T21:35:34Z-
    dc.date.available2022-09-01-
    dc.date.available2024-07-03T21:35:34Z-
    dc.date.issued2022-
    dc.identifier.citationGonzález Villamizar, N. Y. (2022). La dispersión (anti)neutrino-electrón como estudio de interacciones no estándares del neutrino [Trabajo de Grado Pregrado, Universidad de Pamplona]. Repositorio Hulago Universidad de Pamplona. http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/8998es_CO
    dc.identifier.urihttp://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/8998-
    dc.descriptionDurante el desarrollo de esta tesis, se abordo el estudio fenomenológico de las interacciones no estándar (INE) asociadas a física nueva (FN) en el sector de neutrinos. Para llevar a cabo esta investigación, en primer lugar, se estudio la dispersión (anti)neutrino-electrón bajo el Modelo Estándar (ME) de la física de partículas elementales y posteriormente se analizo posibles interacciones adicionales a las del ME y el impacto que tienen dichas INE de los neutrinos con la materia en la dispersión (anti)neutrino-electrón. Esta ultima parte de la investigación, abarco un estudio estad ístico sobre el análisis de datos experimentales y su implementación en los códigos numéricos usando el lenguaje FORTRAN que permitió obtener cotas a los parámetros de INE.es_CO
    dc.description.abstractDuring the development of this thesis, the phenomenological study of non-standard interactions (INS) associated with new physics (NF) in the neutrino sector was addressed. To carry out this research, firstly, electron (anti)neutrino scattering was studied under the Standard Model (SM) of elementary particle physics and subsequently possible additional interactions to those of the EM were analyzed and the impact that said interactions have. INE of neutrinos with matter in (anti)neutrino-electron scattering. This last part of the research included a statistical study on the analysis of experimental data and its implementation in the numerical codes using the FORTRAN language, which allowed obtaining bounds for the INS parameters.es_CO
    dc.format.extent101es_CO
    dc.format.mimetypeapplication/pdfes_CO
    dc.language.isoeses_CO
    dc.publisherUniversidad de Pamplona - Facultad de Ciencias Básicas.es_CO
    dc.subjectInteracciones no estándar (INE).es_CO
    dc.subjectFísica nueva (FN).es_CO
    dc.subjectModelo estándar (ME).es_CO
    dc.subjectNeutrinos.es_CO
    dc.subjectDispersión.es_CO
    dc.subject(Anti)neutrino.es_CO
    dc.subjectInteracciones.es_CO
    dc.titleLa dispersión (anti)neutrino-electrón como estudio de interacciones no estándares del neutrino.es_CO
    dc.typehttp://purl.org/coar/resource_type/c_7a1fes_CO
    dc.date.accepted2022-06-01-
    dc.relation.referencesCarlo Giunti and ChungW. Kim. Fundamentals of Neutrino Physics and Astrophysics. 2007.es_CO
    dc.relation.referencesY. Fukuda et al. Evidence for oscillation of atmospheric neutrinos. Phys. Rev. Lett., 81:1562– 1567, 1998.es_CO
    dc.relation.referencesQ. R. Ahmad et al. Direct evidence for neutrino flavor transformation from neutral current interactions in the Sudbury Neutrino Observatory. Phys. Rev. Lett., 89:011301, 2002.es_CO
    dc.relation.referencesAI Derbin et al. Limitations on the magnetic moment and charge radius of the electron-antineutrino. JETP Lett, 57:796, 1993.es_CO
    dc.relation.referencesGS Vidyakin et al. Jetp lett. 55 206 vidyakin gs et al 1992. Pisma Zh. Eksp. Teor. Fiz, 55:212, 1992.es_CO
    dc.relation.referencesZ Daraktchieva, J Lamblin, O Link, C Amsler, M Avenier, C Broggini, J Busto, C Cerna, G Gervasio, P Jeanneret, G Jonkmans, D.H Koang, D Lebrun, F Ould-Saada, G Puglierin, A Stutz, A Tadsen, and J.-L Vuilleumier. Limits on the neutrino magnetic moment from the munu experiment. Physics Letters B, 564(3):190–198, 2003.es_CO
    dc.relation.referencesM. Deniz et al. Constraints on Non-Standard Neutrino Interactions and Unparticle Physics with Neutrino-Electron Scattering at the Kuo-Sheng Nuclear Power Reactor. Phys. Rev. D, 82:033004, 2010.es_CO
    dc.relation.referencesKai Zuber. Neutrino physics. Taylor & Francis, 2020.es_CO
    dc.relation.referencesDavid Griffiths. Introduction to elementary particles. 1987.es_CO
    dc.relation.referencesGeorges Aad and et al. Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC. Phys. Lett. B, 716:1–29, 2012.es_CO
    dc.relation.referencesSerguei Chatrchyan and et al. Observation of a New Boson at a Mass of 125 GeV with the CMS Experiment at the LHC. Phys. Lett. B, 716:30–61, 2012.es_CO
    dc.relation.referencesKeith A Olive, Kaustubh Agashe, Claude Amsler, Mario Antonelli, Jean-Francois Arguin, David M Asner, H Baer, Henry R Band, RM Barnett, Tullio Basaglia, et al. Review of particle physics. Chinese physics C, 38(9):090001, 2014.es_CO
    dc.relation.referencesP. A. Zyla and et al. Review of Particle Physics. PTEP, 2020(8):083C01, 2020.es_CO
    dc.relation.referencesW Noel Cottingham and Derek A Greenwood. An introduction to the standard model of particle physics. Cambridge university press, 2007.es_CO
    dc.relation.referencesRobert Mann. An introduction to particle physics and the standard model. Taylor & Francis, 2010.es_CO
    dc.relation.referencesToshiyuki Morii, Chong-Sa Lim, and Soumyendra N Mukherjee. The physics of the standard model and beyond. World Scientific, 2004.es_CO
    dc.relation.referencesGordon Kane. Modern elementary particle physics: explaining and extending the standard model. Cambridge University Press, 2017.es_CO
    dc.relation.referencesPaul Langacker. The standard model and beyond. Taylor & Francis, 2017.es_CO
    dc.relation.referencesAlexis Aguilar-Arevalo andWolfgang Bietenholz. Neutrinos: Mysterious particles with fascinating features, which led to the physics nobel prize 2015. arXiv preprint arXiv:1601.04747, 2016.es_CO
    dc.relation.referencesFrederick Reines and Clyde L Cowan Jr. Free antineutrino absorption cross section. i. measurement of the free antineutrino absorption cross section by protons. Physical Review, 113(1):273, 1959.es_CO
    dc.relation.referencesWalter Greiner, Berndt M¨uller, et al. Gauge theory of weak interactions. Springer, 1996.es_CO
    dc.relation.referencesBoris Kayser. 13. neutrino mass mixing and flavor change. Particle Data Group Rev, 2008.es_CO
    dc.relation.referencesLincoln Wolfenstein. Neutrino oscillations in matter. In Solar Neutrinos, pages 294–299. CRC Press, 2018.es_CO
    dc.relation.referencesLincoln Wolfenstein. Neutrino oscillations and stellar collapse. Physical Review D, 20(10):2634, 1979.es_CO
    dc.relation.referencesJos´e WF Valle. Resonant oscillations of massless neutrinos in matter. Physics Letters B, 199(3):432–436, 1987.es_CO
    dc.relation.referencesPI Krastev and JN Bahcall. Fcnc solutions to the solar neutrino problem. arXiv preprint hep-ph/9703267, 1997.es_CO
    dc.relation.referencesYoshiyuki Fukuda, T Hayakawa, E Ichihara, K Inoue, K Ishihara, Hirokazu Ishino, Y Itow, T Kajita, J Kameda, S Kasuga, et al. Evidence for oscillation of atmospheric neutrinos. Physical Review Letters, 81(8):1562, 1998.es_CO
    dc.relation.referencesMaria Concepcion Gonzalez-Garcia, MarceloMGuzzo, PI Krastev, Hiroshi Nunokawa, OLG Peres, V Pleitez, Jos´e Wagner Furtado Valle, and R Zukanovich Funchal. Atmospheric neutrino observations and flavor changing interactions. Physical Review Letters, 82(16):3202, 1999.es_CO
    dc.relation.referencesAnimesh Chatterjee, Poonam Mehta, Debajyoti Choudhury, and Raj Gandhi. Testing nonstandard neutrino matter interactions in atmospheric neutrino propagation. Physical Review D, 93(9):093017, 2016.es_CO
    dc.relation.referencesJens Erler and Paul Langacker. Electroweak model and constraints on new physics. arXiv preprint hep-ph/0407097, 2004.es_CO
    dc.relation.referencesWilliam J Marciano and Zohreh Parsa. Neutrino–electron scattering theory. Journal of Physics G: Nuclear and Particle Physics, 29(11):2629, 2003.es_CO
    dc.relation.referencesTh A Mueller, D Lhuillier, Muriel Fallot, A Letourneau, S Cormon, M Fechner, Lydie Giot, Th Lasserre, J Martino, G Mention, et al. Improved predictions of reactor antineutrino spectra. Physical Review C, 83(5):054615, 2011.es_CO
    dc.relation.referencesZurab Berezhiani, RS Raghavan, and Anna Rossi. Probing non-standard couplings of neutrinos at the borexino detector. Nuclear Physics B, 638(1-2):62–80, 2002.es_CO
    dc.relation.referencesSacha Davidson, Carlos Pe na Garay, Nuria Rius, and Arcadi Santamaria. Present and future bounds on non-standard neutrino interactions. Journal of High Energy Physics, 2003(03):011–011, mar 2003.es_CO
    dc.relation.referencesJ. Barranco, O. G. Miranda, C. A. Moura, and J. W. F. Valle. Constraining non-standard interactions in nu(e) e or anti-nu(e) e scattering. Phys. Rev. D, 73:113001, 2006.es_CO
    dc.relation.referencesRC Allen, HH Chen, PJ Doe, R Hausammann, WP Lee, XQ Lu, HJ Mahler, ME Potter, KC Wang, TJ Bowles, et al. Study of electron-neutrino—electron elastic scattering at lampf. Physical Review D, 47(1):11, 1993.es_CO
    dc.relation.referencesLB Auerbach, RL Burman, DO Caldwell, ED Church, JB Donahue, A Fazely, GT Garvey, RM Gunasingha, R Imlay,WCLouis, et al. Measurement of electron-neutrino electron elastic scattering. Physical Review D, 63(11):112001, 2001.es_CO
    dc.relation.referencesHenry Tsz-King Wong. The texono research program on neutrino and astroparticle physics. Modern Physics Letters A, 19(13n16):1207–1214, 2004.es_CO
    dc.relation.referencesM Deniz, Shin-Ted Lin, V Singh, J Li, HT Wong, SELC¸UK Bilmis, CY Chang, HM Chang, WC Chang, CP Chen, et al. Measurement of ν¯ e-electron scattering cross section with a csi (tl) scintillating crystal array at the kuo-sheng nuclear power reactor. Physical Review D, 81(7):072001, 2010.es_CO
    dc.relation.referencesB. C. Canas, E. A. Garces, O. G. Miranda, M. Tortola, and J. W. F. Valle. The weak mixing angle from low energy neutrino measurements: a global update. Phys. Lett. B, 761:450–455, 2016.es_CO
    dc.relation.referencesVI Kopeikin, LA Mikaelyan, and VV Sinev. Reactor as a source of antineutrinos: Thermal fission energy. Physics of Atomic Nuclei, 67(10):1892–1899, 2004.es_CO
    dc.relation.referencesHT a Wong, HB Li, ST Lin, FS Lee, V Singh, SC Wu, CY Chang, HM Chang, CP Chen, MHChou, et al. Search of neutrino magnetic moments with a high-purity germanium detector at the kuo-sheng nuclear power station. Physical Review D, 75(1):012001, 2007.es_CO
    dc.relation.referencesJM Conrad, MH Shaevitz, I Shimizu, J Spitz, M Toups, and L Winslow. Precision ν¯eelectron scattering measurements with isodar to search for new physics. Physical Review D, 89(7):072010, 2014.es_CO
    dc.relation.referencesMichaelWurm, John F. Beacom, Leonid B. Bezrukov, Daniel Bick, Johannes Bl¨umer, Sandhya Choubey, et al. The next-generation liquid-scintillator neutrino observatory lena. Astroparticle Physics, 35(11):685–732, 2012.es_CO
    dc.relation.referencesJ. M. Conrad, M. H. Shaevitz, I. Shimizu, J. Spitz, M. Toups, and L. Winslow. Precision νe-electron scattering measurements with isodar to search for new physics. Phys. Rev. D, 89:072010, Apr 2014.es_CO
    dc.rights.accessrightshttp://purl.org/coar/access_right/c_abf2es_CO
    dc.type.coarversionhttp://purl.org/coar/resource_type/c_2df8fbb1es_CO
    Aparece en las colecciones: Física

    Ficheros en este ítem:
    Fichero Descripción Tamaño Formato  
    González_2022_TG.pdfGonzález_2022_TG6,02 MBAdobe PDFVisualizar/Abrir


    Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.