• Repositorio Institucional Universidad de Pamplona
  • Trabajos de pregrado y especialización
  • Facultad de Ciencias Básicas
  • Física
  • Por favor, use este identificador para citar o enlazar este ítem: http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/8970
    Registro completo de metadatos
    Campo DC Valor Lengua/Idioma
    dc.contributor.authorMoreno Zuluaga, Linda Roció.-
    dc.date.accessioned2024-07-03T16:42:31Z-
    dc.date.available2022-09-01-
    dc.date.available2024-07-03T16:42:31Z-
    dc.date.issued2022-
    dc.identifier.citationMoreno Zuluaga, L. R. (2022). Estudio no estándar de la mecánica cuántica [Trabajo de Grado Pregrado, Universidad de Pamplona]. Repositorio Hulago Universidad de Pamplona. http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/8970es_CO
    dc.identifier.urihttp://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/8970-
    dc.descriptionEl desarrollo de este proyecto tiene como meta exponer la mecánica Bohmiana como una interpretación alternativa a la interpretación estándar, mediante una revisión bibliográfica exhaustiva presentando de manera general el formalismo matemático no relativista de esta y evidenciando el amplio campo de investigación donde actualmente se esta haciendo uso de la interpretación para explicar fenómenos cuánticos cada vez mas complejos (inclusive en el ámbito relativista), aunque las teorías cuánticas estándar y de Bohm tienen diferentes formalismos, ambas dan exactamente las mismas predicciones para todos los fenómenos, la mecánica de Bohm da una explicación de los fenómenos cuánticos en términos de partículas puntuales guiadas por funciones de onda ofrece una solución útil en diferentes campos de investigación, ya sea desarrollando algoritmos de trayectoria cuántica eficientes o proporcionando una explicación basada en la trayectoria de fenómenos cuánticos complicados. Se presenta el formalismo maten ático de la mecánica Bohmiana haciendo desarrollos en detalle, en particular se deducen las ecuaciones del potencial cuántico y de las ecuaciones de trayectoria; se da un primer ejemplo encontrando una ecuación diferencial ordinaria que permite establecer trayectorias de partícula libre, luego se desarrolla un ejemplo mas complejo sobre interferencia y trayectorias cuánticas llegando a la simulación del experimento de doble rendija. Finalmente se presenta las aplicaciones actuales encontradas en la literatura a este formalismo, así como las objeciones; por ultimo se hace una pequeña disertación del trabajo realizado.es_CO
    dc.description.abstractLa autora no proporciona la información sobre este ítem.es_CO
    dc.format.extent80es_CO
    dc.format.mimetypeapplication/pdfes_CO
    dc.language.isoeses_CO
    dc.publisherUniversidad de Pamplona - Facultad de Ciencias Básicas.es_CO
    dc.subjectLa autora no proporciona la información sobre este ítem.es_CO
    dc.titleEstudio no estándar de la mecánica cuántica.es_CO
    dc.typehttp://purl.org/coar/resource_type/c_7a1fes_CO
    dc.date.accepted2022-06-01-
    dc.relation.referencesA. Benseny, G. Albareda, A. Sanz, J. Mompart, and X. Oriols, “Applied Bohmian Mechanics,” The European Physical Journal D, vol. 68, 06 2014.es_CO
    dc.relation.referencesA. Sanz and S. Miret-Art´es, “A causal look into the quantum talbot effect,” The Journal of chemical physics, vol. 126, p. 234106, 07 2007.es_CO
    dc.relation.referencesN. Zettili, Quantum Mechanics Concepts and applications. Wiley, 2009.es_CO
    dc.relation.referencesJ. Sakurai and J. Napolitano, Modern Quantum Mechanics. 09 2020.es_CO
    dc.relation.referencesD. Bohm and H. Stapp, “The undivided universe: An ontological interpretation of quantum theory,” American Journal of Physics, vol. 62, pp. 958–960, 09 1994.es_CO
    dc.relation.referencesP. Holland, Quantum Theory of Motion: An account of the de Broglie-Bohm Causal Interpretation of Quantum Mechanics. Cambridge University Press, 1993.es_CO
    dc.relation.referencesR. Wyatt, Quantum Dynamics with Trajectories: Introduction to Quantum Hydrodynamics. Springer, New York, 2005.es_CO
    dc.relation.referencesD. Bohm, “A suggested interpretation of the quantum theory in terms of “hidden” variables. i. ii,” Physical Review, II. Series, vol. 85, 01 1952.es_CO
    dc.relation.referencesJ. Bell, Speakable and Unspeakable in Quantum Mechanics, vol. 57, pp. 196–200. 06 1989.es_CO
    dc.relation.referencesA. M. de la Pe˜na, Luis y Cetto, “Teor´ıas estoc´asticas de la mec´anica cu´antica,” Revista Mexicana de F´ısica, vol. 37, 09 1991.es_CO
    dc.relation.referencesM. Born, “Statistical interpretation of quantum mechanics,” Science (New York, N.Y.), vol. 122, pp. 675–9, 11 1955.es_CO
    dc.relation.referencesB. Dewitt, H. Everett, and N. Graham, “The many-worlds interpretation of quantum mechanics,” 01 1973.es_CO
    dc.relation.referencesR. Griffiths, “Consistent histories and the interpretation of quantum mechanics,” Journal of Statistical Physics, vol. 36, pp. 219–272, 07 1984.es_CO
    dc.relation.referencesE. Wigner, “Symmetries and reflections, scientific essays,” American Journal of Physics - AMER J PHYS, vol. 35, pp. 1169–1170, 12 1967.es_CO
    dc.relation.referencesA. Bassi and G. Ghirardi, “Dynamical reduction models,” , vol. 379, pp. 257– 426, June 2003.es_CO
    dc.relation.referencesC. Colijn, The de Broglie-Bohm Causal Interpretation of Quantum Mechanics and it’s Application to some Simple Systems. Phd thesis, University ofWaterloo, 2003.es_CO
    dc.relation.referencesA. S. Sanz and S. Miret-Art´es, “Quantum phase analysis with quantum trajectories: A step towards the creation of a Bohmian thinking,” American Journal of Physics, vol. 80, pp. 525–533, jun 2012.es_CO
    dc.relation.referencesS. Goldstein, Bohmian Mechanics. Stanford University, 2021.es_CO
    dc.relation.referencesF. Peat and J. Cushing, “Infinite potential: The life and times of david bohm,” Physics Today, vol. 50, pp. 77–78, 03 1997.es_CO
    dc.relation.referencesA. Sanz and S. Miret-Artes, “A trajectory-based understanding of quantum interference,” J. Phys. A: Math. Theor., vol. 41, 06 2008.es_CO
    dc.relation.referencesX. Pladevall, Applied Bohmian Mechanics: From Nanoscale Systems to Cosmology. Mompart, J. (Eds.). Jenny Stanford Publishing, 2012.es_CO
    dc.relation.referencesB. Poirier, “Bohmian mechanics without pilot waves,” Chemical Physics, vol. 370, no. 1, pp. 4–14, 2010. Dynamics of molecular systems: From quantum to classical.es_CO
    dc.relation.referencesA. Sanz and S. Miret-Art´es, “Quantum trajectories in elastic atom-surface scattering: Threshold and selective adsorption resonances,” The Journal of chemical physics, vol. 122, p. 14702, 02 2005.es_CO
    dc.relation.referencesG. Bowman Am. J. Phys., vol. 70, p. 313, 2002.es_CO
    dc.relation.referencesC.-D. Yang Am. J. Phys., vol. 319, p. 444, 2005.es_CO
    dc.relation.referencesH. R. B.K. Dey, A. Askar J. Chem. Phys., vol. 109, p. 8770, 1998.es_CO
    dc.relation.referencesA. Sanz and S. Miret-Artes, “Aspects of nonlocality from a quantum trajectory perspective: A wkb approach to bohmian mechanics,” Chemical Physics Letters - CHEM PHYS LETT, vol. 445, 03 2007.es_CO
    dc.relation.referencesG. Groessing, S. Fussy, J. Mesa Pascasio, and H. Schwabl, “An explanation of interference effects in the double slit experiment: Classical trajectories plus ballistic diffusion caused by zero-point fluctuations,” Annals of Physics, vol. 327, pp. 421–437, 01 2012.es_CO
    dc.relation.referencesA. Sanz, F. Borondo, and S. Miret-Art´es, “Particle diffraction studied using quantum trajectories,” Journal of Physics: Condensed Matter, vol. 14, p. 6109, 06 2002.es_CO
    dc.relation.referencesX. Oriols and J. Mompart. 2019.es_CO
    dc.relation.referencesW. Struyve, “Pilot-wave theory and quantum fields,” Rept. Prog. Phys., vol. 73, p. 106001, 2010.es_CO
    dc.relation.referencesA. Benseny, J. Bagud`a, X. Oriols, and J. Mompart, “Need for relativistic corrections in the analysis of spatial adiabatic passage of matter waves,” Phys. Rev. A, vol. 85, 05 2012.es_CO
    dc.relation.referencesD. Tausk and R. Tumulka, “Can we make a bohmian electron reach the speed of light, at least for one instant?,” Journal of Mathematical Physics, vol. 51, 06 2008.es_CO
    dc.relation.referencesA. Benseny, S. Fern´andez-Vidal, J. Bagud`a, R. Corbal´an, A. Pic´on, L. Roso, G. Birkl, and J. Mompart, “Atomtronics with holes: Coherent transport of an empty site in a triple-well potential,” Phys. Rev. A, vol. 82, p. 013604, Jul 2010.es_CO
    dc.relation.referencesX. Oriols, “Quantum-trajectory approach to time-dependent transport in mesoscopic systems with electron-electron interactions,” Phys. Rev. Lett., vol. 98, p. 066803, Feb 2007.es_CO
    dc.relation.referencesC. Lopreore and R. Wyatt, “Quantum wave packet dynamics with trajectories,” Physical Review Letters - PHYS REV LETT, vol. 82, pp. 5190–5193, 06 1999.es_CO
    dc.relation.referencesB. Curchod, I. Tavernelli, and U. Rothlisberger, “Trajectory-based solution of the nonadiabatic quantum dynamics equations: An on-the-fly approach for molecular dynamics simulations,” Physical chemistry chemical physics : PCCP, vol. 13, pp. 3231–6, 02 2011.es_CO
    dc.relation.referencesE. Gindensperger, C. Meier, and J. Beswick, “Mixing quantum and classical dynamics using bohmian trajectories,” The Journal of Chemical Physics, vol. 113, pp. 9369–9372, 12 2000.es_CO
    dc.relation.referencesO. Prezhdo and C. Brooksby, “Quantum backreaction through the bohmian particle,” Physical review letters, vol. 86, pp. 3215–9, 05 2001.es_CO
    dc.relation.referencesI. Christov, “Molecular dynamics with time dependent quantum monte carlo,” The Journal of chemical physics, vol. 129, p. 214107, 01 2009.es_CO
    dc.relation.referencesJ. Schiff and B. Poirier, “Quantum mechanics without wavefunctions,” The Journal of chemical physics, vol. 136, p. 031102, 01 2012.es_CO
    dc.relation.referencesG. Albareda, H. Appel, I. Franco, A. Abedi, and A. Rubio, “A correlated electron-nuclear dynamics with conditional wave functions,” Physical review letters, vol. 113, 05 2014.es_CO
    dc.relation.referencesI. Christov, “Time dependent quantum monte carlo: Principles and perspectives,” AIP Conference Proceedings, vol. 1228, 04 2010.es_CO
    dc.relation.referencesY. Song, F.-M. Guo, S. Li, J.-G. Chen, S.-L. Zeng, and Y. Yang, “Investigation of the generation of high-order harmonics through bohmian trajectories,” Phys. Rev. A, vol. 86, 09 2012.es_CO
    dc.relation.referencesA. Pic´on, A. Benseny, J. Mompart, J. V´azquez de Aldana, L. Plaja, G. Calvo, and L. Roso, “Transferring orbital and spin angular momenta of light to atoms,” New Journal of Physics, vol. 12, 08 2010.es_CO
    dc.relation.referencesB. A. Takemoto N, “Visualization and interpretation of attosecond electron dynamics in laser-driven hydrogen molecular ion using bohmian trajectorie,” The Journal of chemical physics, vol. 134, 02 2011.es_CO
    dc.relation.referencesL. Shifren, R. Akis, and D. Ferry, “Correspondence between quantum and classical motion: Comparing bohmian mechanics with a smoothed effective potential approach,” Physics Letters A, vol. 274, pp. 75–83, 09 2000.es_CO
    dc.relation.referencesX. Oriols, A. Trois, and G. Blouin, “Self-consistent simulation of quantum shot noise in nanoscale electron devices,” Applied Physics Letters, vol. 85, pp. 3596– 3598, 2004.es_CO
    dc.relation.referencesD. Marian, E. Colom´es, Z. Zhan, and X. Oriols, “Quantum noise from a bohmian perspective: fundamental understanding and practical computation,” Journal of Computational Electronics, vol. 14, 10 2014.es_CO
    dc.relation.referencesG. Albareda, J. Sune, and X. Oriols, “Many-particle hamiltonian for open systems with full coulomb interaction: Application to classical and quantum timedependent simulations of nanoscale electron devices,” Physical Review B, vol. 79, pp. 75315–, 02 2009.es_CO
    dc.relation.referencesX. Oriols, “Quantum-trajectory approach to time-dependent transport in mesoscopic systems with electron-electron interactions,” Phys. Rev. Lett., vol. 98, p. 066803, Feb 2007.es_CO
    dc.relation.referencesA. Alarc´on and X. Oriols, “Computation of quantum electron transport with local current conservation using quantum trajectories,” Journal of Statistical Mechanics: Theory and Experiment, vol. 2009, p. P01051, 01 2009.es_CO
    dc.relation.referencesA. Alarc´on, X. Cartoixa, and X. Oriols, “Towards the explicit computation of bohm velocities associated to n-electron wave-functions with arbitrary spinorientations,” Physica Status Solidi (c), vol. 7, 11 2010.es_CO
    dc.relation.referencesG. Albareda, A. Alarc´on, F. Traversa, A. Benali, and X. Oriols, “Bitlles: a quantum trajectory simulator for dc, ac, and noise with explicit coulomb and exchange correlations among transport electrons,” 05 2022.es_CO
    dc.relation.referencesC. Dewdney, P. Holland, and A. Kyprianidis, “What happens in a spin measurement?,” Physics Letters A, vol. 119, pp. 259–267, 12 1986.es_CO
    dc.relation.referencesD. D¨urr, S. Goldstein, T. Norsen, W. Struyve, and N. Zanghi, “Can bohmian mechanics be made relativistic?,” Proceedings. Mathematical, physical, and engineering sciences / the Royal Society, vol. 470, p. 20130699, 02 2014.es_CO
    dc.relation.referencesR. Tumulka, “The ´unromantic pictures´of quantum theory,” Journal of Physics A: Mathematical and Theoretical, vol. 40, p. 3245, 03 2007.es_CO
    dc.relation.referencesH. Nikoli´c, “Relativistic quantum mechanics and the bohmian interpretation,” Foundations of Physics Letters, vol. 18, pp. 549–561, 11 2005.es_CO
    dc.relation.referencesH. Nikoli´c, “Making nonlocal reality compatible with relativity,” International Journal of Quantum Information, vol. 09, 11 2011.es_CO
    dc.relation.referencesF. Shojai and S. Molladavoudi, “Quantum cosmology with varying speed of light and bohmian trajectories,” General Relativity and Gravitation, vol. 39, 08 2007.es_CO
    dc.relation.referencesN. Pinto-Neto, E. Santini, and F. Falciano, “Quantization of friedmann cosmological models with two fluids: Dust plus radiation,” Physics Letters A, vol. 344, pp. 131–143, 05 2005.es_CO
    dc.relation.referencesS. Kocsis, B. Braverman, S. Ravets, M. Stevens, R. Mirin, L. Shalm, and A. Steinberg, “Observing the average trajectories of single photons in a twoslit interferometer,” Science (New York, N.Y.), vol. 332, pp. 1170–3, 06 2011.es_CO
    dc.relation.referencesA. Orefice, R. Giovanelli, and D. Ditto, “Complete hamiltonian description of wave-like features in classical and quantum physics,” Foundations of Physics, vol. 39, pp. 256–272, 03 2009.es_CO
    dc.relation.referencesJ. Hirschfelder and K.-t. Tang, “Quantum mechanical streamlines. iv. collision of two spheres with square potential wells or barriers,” Chemical Physics - CHEM PHYS, vol. 65, pp. 470–486, 07 1976.es_CO
    dc.relation.referencesN. Delis, C. Efthymiopoulos, and G. Contopoulos, “Quantum vortices and trajectories in particle diffraction,” International Journal of Bifurcation and Chaos, vol. 22, 03 2011.es_CO
    dc.relation.referencesG. Contopoulos, N. Delis, and C. Efthymiopoulos, “Order in de broglie - bohm quantum mechanics,” Journal of Physics A-mathematical and Theoretical - J PHYS A-MATH THEOR, vol. 45, 03 2012.es_CO
    dc.relation.referencesC. Philippidis, C. Dewdney, and B. J. Hiley, “Quantum interference and the quantum potencial,” Il Nuovo Cimento B (1971-1996), vol. 52, no. 1, pp. 15– 28, 1979.es_CO
    dc.relation.referencesM. Nightingale and C. Umrigar, Quantum Monte Carlo methods in physics and chemistry, vol. 154. Springer, 1999.es_CO
    dc.relation.referencesW. Kohn, “Electronic structure of matter –wave functions and density functionals,” CHIMIA, vol. 54, 01 2000.es_CO
    dc.relation.referencesH. Wiseman, “Grounding bohmian mechanics in weak values and bayesianism,” New Journal of Physics, vol. 9, p. 165, 06 2007.es_CO
    dc.relation.referencesY. Aharonov, D. Albert, and L. Vaidman, “How the result of a measurement of a component of the spin of a spin- 1/2 particle can turn out to be 100,” Physical review letters, vol. 60, pp. 1351–1354, 05 1988.es_CO
    dc.relation.referencesF. Traversa, G. Albareda, M. Di Ventra, and X. Oriols, “Robust weakmeasurement protocol for bohmian velocities,” Physical Review A, vol. 87, p. 052124, 05 2013.es_CO
    dc.relation.referencesJ. Lundeen, B. Sutherland, A. Patel, C. Stewart, and C. Bamber, “Direct measurement of the quantum wavefunction,” Nature, vol. 474, pp. 188–91, 06 2011.es_CO
    dc.relation.referencesT. Norsen and W. Struyve, “Weak measurement and (bohmian) conditional wave functions,” Annals of Physics, vol. 350, 05 2013.es_CO
    dc.relation.referencesD. D¨urr, S. Goldstein, and N. Zanghi, “Quantum chaos, classical randomness, and bohmian mechanics,” Journal of Statistical Physics, vol. 68, pp. 259–270, 07 1992.es_CO
    dc.relation.referencesG. L. Baker and J. P. Gollub, Chaotic Dynamics: An Introduction. Cambridge University Press, 2 ed., 1996.es_CO
    dc.relation.referencesM. Gutzwiller, Chaos In Classical and Quantum Mechanics, vol. 1. 01 1990.es_CO
    dc.relation.referencesU. Schwengelbeck and F. Faisal, “Definition of lyapunov exponents and ks entropy in quantum dynamics,” Physics Letters A, vol. 199, no. 5, pp. 281–286, 1995.es_CO
    dc.relation.referencesR. Parmenter and R. Valentine, “Deterministic chaos and the causal interpretation of quantum mechanics,” Physics Letters A - PHYS LETT A, vol. 201, pp. 1–8, 05 1995.es_CO
    dc.relation.referencesH. Frisk, “Properties of the trajectories in bohmian mechanics,” Physics Letters A, vol. 227, pp. 139–142, 03 1997.es_CO
    dc.relation.referencesD. Wisniacki, E. Pujals, and F. Borondo, “Vortex dynamics and their interactions in quantum trajectories,” Journal of Physics A: Mathematical and Theoretical, vol. 40, p. 14353, 11 2007.es_CO
    dc.relation.referencesC. Efthymiopoulos, C. Kalapotharakos, and G. Contopoulos, “Nodal points and the transition from ordered to chaotic bohmian trajectories,” Journal of Physics A Mathematical and Theoretical, vol. 40, 09 2007.es_CO
    dc.relation.referencesA. Valentini and H. Westman, “Dynamical origin of quantum probabilities,” Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 461, 03 2004.es_CO
    dc.relation.referencesJ. Maddox and E. Bittner, “Quantum dissipation in unbounded systems,” Physical review. E, Statistical, nonlinear, and soft matter physics, vol. 65, p. 026143, 03 2002.es_CO
    dc.relation.referencesS. Garashchuk, V. Dixit, B. Gu, and J. Mazzuca, “The schrodinger equation with friction from the quantum trajectory perspective,” The Journal of chemical physics, vol. 138, p. 054107, 02 2013.es_CO
    dc.relation.referencesI. Burghardt, K. Møller, G. Parlant, L. Cederbaum, and E. Bittner, “Quantum hydrodynamics: Mixed states, dissipation, and a new hybrid quantum-classical approach,” International Journal of Quantum Chemistry, vol. 100, pp. 1153 – 1162, 12 2004.es_CO
    dc.relation.referencesE. McCullough and R. Wyatt, “Dynamics of the collinear h+h2 reaction. i. probability density and flux,” Chemical Physics - CHEM PHYS, vol. 54, pp. 3578– 3591, 04 1971.es_CO
    dc.relation.referencesJ. Hirschfelder, A. Christoph, and W. Palke, “Quantum mechanical streamlines. i - square potential barrier,” The Journal of Chemical Physics, 01 1975.es_CO
    dc.relation.referencesA. Sanz and S. Miret-Art´es, “A trajectory description of quantum processes. i. fundamentals,” Lecture Notes in Physics, vol. 850, 01 2012.es_CO
    dc.relation.referencesD. Giulini, E. Joos, C. Kiefer, J. Kupsch, I.-O. Stamatescu, and H. Zeh, Decoherence and the Appearence of a Classical World in Quantum Theory, vol.-1. 01 1996.es_CO
    dc.relation.referencesT. Durt and Y. Pierseaux, “Bohm’s interpretation and maximally entangled states,” Phys. Rev. A, vol. 66, 11 2002.es_CO
    dc.relation.referencesE. Gindensperger, C. Meier, and J. Beswick, “Hybrid quantum/classical dynamics using bohmian trajectories,” Advances in Quantum Chemistry, vol. 47, pp. 331–346, 12 2004.es_CO
    dc.relation.referencesD. D¨urr, S. Goldstein, K. M¨unch-Berndl, and N. Zanghi, “Hypersurface bohmdirac models,” Physical Review A, vol. 60, 01 1998.es_CO
    dc.relation.referencesR. Feynmanl, “Horizon: The pleasure of finding things out,” BBC UK, 11 1982.es_CO
    dc.rights.accessrightshttp://purl.org/coar/access_right/c_abf2es_CO
    dc.type.coarversionhttp://purl.org/coar/resource_type/c_2df8fbb1es_CO
    Aparece en las colecciones: Física

    Ficheros en este ítem:
    Fichero Descripción Tamaño Formato  
    Moreno_2022_TG.pdfMoreno_2022_TG818,86 kBAdobe PDFVisualizar/Abrir


    Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.