• Repositorio Institucional Universidad de Pamplona
  • Trabajos de pregrado y especialización
  • Facultad de Ciencias Básicas
  • Biología
  • Por favor, use este identificador para citar o enlazar este ítem: http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/8927
    Registro completo de metadatos
    Campo DC Valor Lengua/Idioma
    dc.contributor.authorContreras Altahona, Francisco Javier.-
    dc.date.accessioned2024-07-02T21:18:42Z-
    dc.date.available2022-09-01-
    dc.date.available2024-07-02T21:18:42Z-
    dc.date.issued2022-
    dc.identifier.citationContreras Altahona, F. J. (2022). Citotoxicidad de la ocratoxina a sobre la propagación celular de hepg2 [Trabajo de Grado Pregrado, Universidad de Pamplona]. Repositorio Hulago Universidad de Pamplona. http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/8927es_CO
    dc.identifier.urihttp://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/8927-
    dc.descriptionLa ocratoxina A (OTA) es un metabolito secundario producido por hongos de los géneros Aspergillus y Penicillium, con efecto tóxico para diversos seres vivos, se encuentra en una gran diversidad de alimentos y piensos para animales, por esta razón radica la importancia de estimar los efectos tóxicos de la OTA en la línea celular HepG2 mediante la inhibición de la proliferación celular y determinar los cambios morfológicos en las células y su correlación con la apoptosis. La línea celular HepG2 se expuso durante 48 y 72 horas a concentraciones de 1,0; 2,5; 10 y 15 μM de OTA liofilizada; a continuación, la actividad antiproliferativa de la micotoxina se calculó aplicando el método colorimétrico MTT (bromuro de 3-(4,5-dimetil-2-tiazolil)-2,5-difeniltetrazolio). Posteriormente, en células HepG2 tratadas con 10μM de OTA por 48 horas se analizaron los cambios morfológicos relacionados con la muerte celular apoptótica por microscopia electrónica de transmisión. La propagación de las células HepG2 se afecta desde la concentración de 2,5μM de OTA, en contraste con el control. Después, se realizó la medición de la concentración inhibitoria media (CI50) de OTA sobre las células HepG2, esta fue de 9,19μM DE±0,68 y de 9,98μM DE±0,4, a las 48 y 72 horas, respectivamente. Se evidenciaron alteraciones morfológicas relacionadas con la muerte celular por apoptosis en las células HepG2, como la fragmentación del núcleo (cariorrexis), fragmentación celular y formación de los cuerpos apoptóticos.es_CO
    dc.description.abstractOchratoxin A (OTA) is a secondary metabolite produced by fungi of the Aspergillus and Penicillium genera, with a toxic effect on various living beings, it is found in a wide variety of foods and animal feed, for this reason lies the importance of estimating the toxic effects of OTA on the HepG2 cell line by inhibiting cell proliferation and determining morphological changes in cells and their correlation with apoptosis. The HepG2 cell line was exposed for 48 and 72 hours at concentrations of 1.0; 2.5; 10 and 15 μM lyophilized OTA; next, the antiproliferative activity of the mycotoxin was calculated using the MTT colorimetric method (3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyltetrazolium bromide). Subsequently, in HepG2 cells treated with 10μM OTA for 48 hours, the morphological changes related to apoptotic cell death were analyzed by transmission electron microscopy. The propagation of HepG2 cells is affected from the concentration of 2.5 μM of OTA, in contrast to the control. Then, the measurement of the mean inhibitory concentration (IC50) of OTA on HepG2 cells was carried out, this was 9.19μM SD±0.68 and 9.98μM SD±0.4, at 48 and 72 hours, respectively. Morphological alterations related to cell death by apoptosis in HepG2 cells were evidenced, such as fragmentation of the nucleus (karyorrhexis), cell fragmentation and formation of apoptotic bodies.es_CO
    dc.format.extent23es_CO
    dc.format.mimetypeapplication/pdfes_CO
    dc.language.isoeses_CO
    dc.publisherUniversidad de Pamplona - Facultad de Ciencias Básicas.es_CO
    dc.subjectOcratoxina A.es_CO
    dc.subjectProliferación.es_CO
    dc.subjectCitotoxicidad.es_CO
    dc.titleCitotoxicidad de la ocratoxina a sobre la propagación celular de hepg2.es_CO
    dc.typehttp://purl.org/coar/resource_type/c_7a1fes_CO
    dc.date.accepted2022-06-01-
    dc.relation.referencesCAPRARO, J.; ROSSI, F. 2012. The effects of ochratoxin A on liver metabolism. Mediterranean Journal of Nutrition and Metabolism (Netherlands). 5:177-185. https://doi.org/10.1007/s12349-012-0101-3es_CO
    dc.relation.referencesCHEN, R.; DENG, L.; YU, X.; WANG, X.; ZHU, L.; YU, T.; ZHANG, Y.; ZHOU, B.; XU, W.; CHEN, L.; LUO, H. 2015. MiR-122 partly mediates the ochratoxin A-induced GC-2 cell apoptosis. Toxicology in Vitro Journal (United Kingdom). 30:264-273. https://doi.org/10.1016/j.tiv.2015.10.011es_CO
    dc.relation.referencesCHEN, W.; LI, C.; ZHANG, B.; ZHOU, Z.; SHEN, Y.; LIAO, X. 2018. Advances in Biodetoxification of Ochratoxin A-A Review of the Past Five Decades. Frontiers in Microbiology (Switzerland). 9(1386):1-11. https://doi.org/10.3389/fmicb.2018.01386es_CO
    dc.relation.referencesCHEN, Y.; WANG, H.; ZHAI, N.; WANG, C.; HUANG, K.; PAN, C. 2019. Nontoxic concentrations of OTA aggravate DON-induced intestinal barrier dysfunction in IPEC-J2 cells via activation of NF-κB signaling pathway. Toxicology Letters (Netherlands). 311:114-124. https://doi.org/10.1016/j.toxlet.2019.04.021es_CO
    dc.relation.referencesDOMIJAN, A.-M.; MARJANOVIĆ ČERMAK, A.; VULIĆ, A.; BUJAK TARTARO, I.; PAVIČIĆ, I.; PLEADIN, J.; MARKOV, K.; MIHALJEVIC, B. 2019. Cytotoxicity of gamma irradiated aflatoxin B1 and ochratoxin A. Journal of Environmental Science and Health, Part B (United States). 54(3):155-162. https://doi.org/10.1080/03601234.2018.1536578es_CO
    dc.relation.referencesGARCÍA, P.E.; RYU, D.; LEE, C.; JUNG LEE, H. 2021. Ochratoxin A Induces Oxidative Stress in HepG2 Cells by Impairing the Gene Expression of Antioxidant Enzymes. Toxins (Switzerland). 13(4):271. https://doi.org/10.3390/toxins13040271es_CO
    dc.relation.referencesGARZÓN, H.; JAIMES, N.; ROJAS, SALMEN, S.; GIL, M. 2016. Efecto citotóxico de Deoxinivalenol sobre la proliferación de la línea celular HepG2. MVZ Córdoba (Colombia). 26(3):1-7. https://doi.org/10.21897/rmvz.2080es_CO
    dc.relation.referencesGAYATHRI, L.; DHIVYA, R.; DHANASEKARAN, D.; PERIASAMY, V.S.; ALSHATWI, A.A.; AKBARSHA, M.A. 2015. Hepatotoxic effect of ochratoxin A and citrinin, alone and in combination, and protective effect of vitamin E: In vitro study in HepG2. Food and Chemical Toxicology (United Kingdom). 83:151-163. https://doi.org/10.1016/j.fct.2015.06.009es_CO
    dc.relation.referencesGONZÁLEZ, A.C.A.; MARÍN, S.; ROJAS-GARCÍA, A.E.; SANCHIS, V.; RAMOS, A.J. 2017. UPLC-MS/MS analysis of ochratoxin A metabolites produced by Caco-2 and HepG2 cells in a co-culture system. Food and Chemical Toxicology (United Kingdom). 109:333-340. https://doi.org/10.1016/ j.fct.2017.09.011es_CO
    dc.relation.referencesHEUSSNER, A.H.; BINGLE, L.E.H. 2015. Comparative Ochratoxin Toxicity: A Review of the Available Data. Toxins (Switzerland). 7(10):4253-4282. https://doi.org/10.3390/toxins7104253es_CO
    dc.relation.referencesJAIMES, N.; SALMEN, S.; COLMENARES, M.C.; BURGOS, A.E.; TAMAYO, L.; MENDOZA, R.V.; CANTOR, A. 2016. Efecto citotóxico de los compuestos de inclusión de paladio (II) en la beta-ciclodextrina. Biomédica (Colombia). 36(4):603-611. https://doi.org/10.7705/biomedica.v36i4.2880es_CO
    dc.relation.referencesJUAN, G.A.; TOLOSA, J.; JUAN, C.; RUIZ, M.J. 2019. Cytotoxicity, genotoxicity and disturbance of cell cycle in hepg2 cells exposed to OTA and BEA: Single and combined actions. Toxins (Switzerland). 11(6):341. https://doi.org/10.3390/toxins11060341es_CO
    dc.relation.referencesJUAN, G.A.; CARBONE, S.; BEN-MAHMOUD, M.; SAGRATINI, G.; MAÑES, J. 2020. Beauvericin and ochratoxin A mycotoxins individually and combined in HepG2 cells alter lipid peroxidation, levels of reactive oxygen species and glutathione. Food and Chemical Toxicology (Netherlands). 139:111247. https://doi.org/10.1016/j.fct.2020.111247es_CO
    dc.relation.referencesKUPCSIK, L. 2011. Estimation of Cell Number Based on Metabolic Activity: The MTT Reduction Assay. Mammalian Cell Viability: Methods and Protocols (United States). 740:13-19. https://doi.org/10.1007/978-1-61779-108-6_3es_CO
    dc.relation.referencesLI, Q.; DONG, Z.; LIAN, W.; CUI, J.; WANG, J.; SHEN, H.; LIU, W.; YANG, J.; ZHANG, X.; CUI, H. 2019. Ochratoxin A causes mitochondrial dysfunction, apoptotic and autophagic cell death and also induces mitochondrial biogenesis in human gastric epithelium cells. Archives of Toxicology (Germany). 93(4):1141-1155. https://doi.org/10.1007/s00204-019-02433-6es_CO
    dc.relation.referencesMADALENA, C.S.; FARIA, M.A.; CUNHA, S.C.; FERREIRA, I.M.P.L.V. 2018. Toxicological interactions between mycotoxins from ubiquitous fungi: Impact on hepatic and intestinal human epithelial cells. Chemosphere (United Kingdom). 202:538-548. https://doi.org/10.1016/j.chemosphere.2018.03.122es_CO
    dc.relation.referencesQI, X.; ZHU, L.; YANG, B.; LUO, H.; XU, W.; HE, X.; HUANG, K. 2018. Mitigation of cell apoptosis induced by ochratoxin A (OTA) is possibly through organic cation transport 2 (OCT2) knockout. Food and Chemical Toxicology (United Kingdom). 121:15-23. https://doi.org/10.1016/j.fct.2018.08.026es_CO
    dc.relation.referencesQIAN, G.; LIU, D.; HOU, L.; HAMID, M.; CHEN, X.; GAN, F.; SONG, S.; HUANG, K. 2018. Ochratoxin A induces cytoprotective autophagy via blocking AKT/mTOR signaling pathway in PK-15 cells. Food and Chemical Toxicology (United Kingdom). 122:120-131. https://doi.org/10.1016/j.fct.2018.09.070es_CO
    dc.relation.referencesRAVELO, A.; RUBIO ARMENDÁRIZ, C.; GUTIÉRREZ FERNÁNDEZ, A. J.; HARDISSON DE LA TORRE, A. 2011. La ocratoxina A en alimentos de consumo humano: revisión. Nutrición Hospitalaria (España). 26(6):1215-1226. https://doi.org/10.3305/nh.2011.26.6.5381es_CO
    dc.relation.referencesSALI, N.; NAGY, S.; POÓR, M.; TAMÁS, K. 2016. Multiparametric luminescent cell viability assay in toxicology models: A critical evaluation. Journal of Pharmacological and Toxicological Methods (United States). 79:45-54. https://doi.org/10.1016/j.vascn.2016.01.004es_CO
    dc.relation.referencesSERRANO, H.A.; CARDONA, N. 2015. Micotoxicosis y micotoxinas: generalidades y aspectos básicos. Revista CES Medicina (Colombia). 29(1):143-152.es_CO
    dc.relation.referencesTAO, Y.; XIE, S.; XU, F.; LIU, A.; WANG, Y.; CHEN, D.; PAN, Y.; HUANG, L.; PENG, D.; WANG, X.; YUAN, Z. 2018. Ochratoxin A: Toxicity, oxidative stress and metabolism. Food and Chemical Toxicology (United Kingdom). 112:320-331. https://doi.org/10.1016/j.fct.2018.01.002es_CO
    dc.relation.referencesZHANG, X.; BOESCH, C.; LOU, Y.; WOLFFRAM, S.; HUEBBE, P.; RIMBACH, G. 2009. Ochratoxin A induces apoptosis in neuronal cells. Genes & Nutrition (United Kingdom). 4(1):41-48. https://doi.org/10.1007/s12263-008-0109-yes_CO
    dc.relation.referencesZHANG, T.-Y.; KONG, L.; HAO, J.-X.; WANG, H.; YAN, Z.-H.; SUN, X.-F.; SHEN, W. 2020. Effects of Ochratoxin A exposure on DNA damage in porcine granulosa cells in vitro. Toxicology Letters (Netherlands). 330:167-175. https://doi.org/10.1016/j.toxlet.2020.05.011es_CO
    dc.relation.referencesZHAO, J.; QI, X.; DAI, Q.; HE, X.; DWEEP, H.; GUO, M.; LUO, Y.; GRETZ, N.; LUO, H.; HUANG, K.; XU, W. 2016. Toxicity study of ochratoxin A using HEK293 and HepG2 cell lines based on microRNA profiling. Human and Experimental Toxicology (United States). 36(1):8-22. https://doi.org/10.1177/0960327116632048es_CO
    dc.rights.accessrightshttp://purl.org/coar/access_right/c_abf2es_CO
    dc.type.coarversionhttp://purl.org/coar/resource_type/c_2df8fbb1es_CO
    Aparece en las colecciones: Biología

    Ficheros en este ítem:
    Fichero Descripción Tamaño Formato  
    Contreras_2022_TG.pdfContreras_2022_TG607,3 kBAdobe PDFVisualizar/Abrir


    Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.