Por favor, use este identificador para citar o enlazar este ítem:
http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/8927
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | Contreras Altahona, Francisco Javier. | - |
dc.date.accessioned | 2024-07-02T21:18:42Z | - |
dc.date.available | 2022-09-01 | - |
dc.date.available | 2024-07-02T21:18:42Z | - |
dc.date.issued | 2022 | - |
dc.identifier.citation | Contreras Altahona, F. J. (2022). Citotoxicidad de la ocratoxina a sobre la propagación celular de hepg2 [Trabajo de Grado Pregrado, Universidad de Pamplona]. Repositorio Hulago Universidad de Pamplona. http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/8927 | es_CO |
dc.identifier.uri | http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/8927 | - |
dc.description | La ocratoxina A (OTA) es un metabolito secundario producido por hongos de los géneros Aspergillus y Penicillium, con efecto tóxico para diversos seres vivos, se encuentra en una gran diversidad de alimentos y piensos para animales, por esta razón radica la importancia de estimar los efectos tóxicos de la OTA en la línea celular HepG2 mediante la inhibición de la proliferación celular y determinar los cambios morfológicos en las células y su correlación con la apoptosis. La línea celular HepG2 se expuso durante 48 y 72 horas a concentraciones de 1,0; 2,5; 10 y 15 μM de OTA liofilizada; a continuación, la actividad antiproliferativa de la micotoxina se calculó aplicando el método colorimétrico MTT (bromuro de 3-(4,5-dimetil-2-tiazolil)-2,5-difeniltetrazolio). Posteriormente, en células HepG2 tratadas con 10μM de OTA por 48 horas se analizaron los cambios morfológicos relacionados con la muerte celular apoptótica por microscopia electrónica de transmisión. La propagación de las células HepG2 se afecta desde la concentración de 2,5μM de OTA, en contraste con el control. Después, se realizó la medición de la concentración inhibitoria media (CI50) de OTA sobre las células HepG2, esta fue de 9,19μM DE±0,68 y de 9,98μM DE±0,4, a las 48 y 72 horas, respectivamente. Se evidenciaron alteraciones morfológicas relacionadas con la muerte celular por apoptosis en las células HepG2, como la fragmentación del núcleo (cariorrexis), fragmentación celular y formación de los cuerpos apoptóticos. | es_CO |
dc.description.abstract | Ochratoxin A (OTA) is a secondary metabolite produced by fungi of the Aspergillus and Penicillium genera, with a toxic effect on various living beings, it is found in a wide variety of foods and animal feed, for this reason lies the importance of estimating the toxic effects of OTA on the HepG2 cell line by inhibiting cell proliferation and determining morphological changes in cells and their correlation with apoptosis. The HepG2 cell line was exposed for 48 and 72 hours at concentrations of 1.0; 2.5; 10 and 15 μM lyophilized OTA; next, the antiproliferative activity of the mycotoxin was calculated using the MTT colorimetric method (3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyltetrazolium bromide). Subsequently, in HepG2 cells treated with 10μM OTA for 48 hours, the morphological changes related to apoptotic cell death were analyzed by transmission electron microscopy. The propagation of HepG2 cells is affected from the concentration of 2.5 μM of OTA, in contrast to the control. Then, the measurement of the mean inhibitory concentration (IC50) of OTA on HepG2 cells was carried out, this was 9.19μM SD±0.68 and 9.98μM SD±0.4, at 48 and 72 hours, respectively. Morphological alterations related to cell death by apoptosis in HepG2 cells were evidenced, such as fragmentation of the nucleus (karyorrhexis), cell fragmentation and formation of apoptotic bodies. | es_CO |
dc.format.extent | 23 | es_CO |
dc.format.mimetype | application/pdf | es_CO |
dc.language.iso | es | es_CO |
dc.publisher | Universidad de Pamplona - Facultad de Ciencias Básicas. | es_CO |
dc.subject | Ocratoxina A. | es_CO |
dc.subject | Proliferación. | es_CO |
dc.subject | Citotoxicidad. | es_CO |
dc.title | Citotoxicidad de la ocratoxina a sobre la propagación celular de hepg2. | es_CO |
dc.type | http://purl.org/coar/resource_type/c_7a1f | es_CO |
dc.date.accepted | 2022-06-01 | - |
dc.relation.references | CAPRARO, J.; ROSSI, F. 2012. The effects of ochratoxin A on liver metabolism. Mediterranean Journal of Nutrition and Metabolism (Netherlands). 5:177-185. https://doi.org/10.1007/s12349-012-0101-3 | es_CO |
dc.relation.references | CHEN, R.; DENG, L.; YU, X.; WANG, X.; ZHU, L.; YU, T.; ZHANG, Y.; ZHOU, B.; XU, W.; CHEN, L.; LUO, H. 2015. MiR-122 partly mediates the ochratoxin A-induced GC-2 cell apoptosis. Toxicology in Vitro Journal (United Kingdom). 30:264-273. https://doi.org/10.1016/j.tiv.2015.10.011 | es_CO |
dc.relation.references | CHEN, W.; LI, C.; ZHANG, B.; ZHOU, Z.; SHEN, Y.; LIAO, X. 2018. Advances in Biodetoxification of Ochratoxin A-A Review of the Past Five Decades. Frontiers in Microbiology (Switzerland). 9(1386):1-11. https://doi.org/10.3389/fmicb.2018.01386 | es_CO |
dc.relation.references | CHEN, Y.; WANG, H.; ZHAI, N.; WANG, C.; HUANG, K.; PAN, C. 2019. Nontoxic concentrations of OTA aggravate DON-induced intestinal barrier dysfunction in IPEC-J2 cells via activation of NF-κB signaling pathway. Toxicology Letters (Netherlands). 311:114-124. https://doi.org/10.1016/j.toxlet.2019.04.021 | es_CO |
dc.relation.references | DOMIJAN, A.-M.; MARJANOVIĆ ČERMAK, A.; VULIĆ, A.; BUJAK TARTARO, I.; PAVIČIĆ, I.; PLEADIN, J.; MARKOV, K.; MIHALJEVIC, B. 2019. Cytotoxicity of gamma irradiated aflatoxin B1 and ochratoxin A. Journal of Environmental Science and Health, Part B (United States). 54(3):155-162. https://doi.org/10.1080/03601234.2018.1536578 | es_CO |
dc.relation.references | GARCÍA, P.E.; RYU, D.; LEE, C.; JUNG LEE, H. 2021. Ochratoxin A Induces Oxidative Stress in HepG2 Cells by Impairing the Gene Expression of Antioxidant Enzymes. Toxins (Switzerland). 13(4):271. https://doi.org/10.3390/toxins13040271 | es_CO |
dc.relation.references | GARZÓN, H.; JAIMES, N.; ROJAS, SALMEN, S.; GIL, M. 2016. Efecto citotóxico de Deoxinivalenol sobre la proliferación de la línea celular HepG2. MVZ Córdoba (Colombia). 26(3):1-7. https://doi.org/10.21897/rmvz.2080 | es_CO |
dc.relation.references | GAYATHRI, L.; DHIVYA, R.; DHANASEKARAN, D.; PERIASAMY, V.S.; ALSHATWI, A.A.; AKBARSHA, M.A. 2015. Hepatotoxic effect of ochratoxin A and citrinin, alone and in combination, and protective effect of vitamin E: In vitro study in HepG2. Food and Chemical Toxicology (United Kingdom). 83:151-163. https://doi.org/10.1016/j.fct.2015.06.009 | es_CO |
dc.relation.references | GONZÁLEZ, A.C.A.; MARÍN, S.; ROJAS-GARCÍA, A.E.; SANCHIS, V.; RAMOS, A.J. 2017. UPLC-MS/MS analysis of ochratoxin A metabolites produced by Caco-2 and HepG2 cells in a co-culture system. Food and Chemical Toxicology (United Kingdom). 109:333-340. https://doi.org/10.1016/ j.fct.2017.09.011 | es_CO |
dc.relation.references | HEUSSNER, A.H.; BINGLE, L.E.H. 2015. Comparative Ochratoxin Toxicity: A Review of the Available Data. Toxins (Switzerland). 7(10):4253-4282. https://doi.org/10.3390/toxins7104253 | es_CO |
dc.relation.references | JAIMES, N.; SALMEN, S.; COLMENARES, M.C.; BURGOS, A.E.; TAMAYO, L.; MENDOZA, R.V.; CANTOR, A. 2016. Efecto citotóxico de los compuestos de inclusión de paladio (II) en la beta-ciclodextrina. Biomédica (Colombia). 36(4):603-611. https://doi.org/10.7705/biomedica.v36i4.2880 | es_CO |
dc.relation.references | JUAN, G.A.; TOLOSA, J.; JUAN, C.; RUIZ, M.J. 2019. Cytotoxicity, genotoxicity and disturbance of cell cycle in hepg2 cells exposed to OTA and BEA: Single and combined actions. Toxins (Switzerland). 11(6):341. https://doi.org/10.3390/toxins11060341 | es_CO |
dc.relation.references | JUAN, G.A.; CARBONE, S.; BEN-MAHMOUD, M.; SAGRATINI, G.; MAÑES, J. 2020. Beauvericin and ochratoxin A mycotoxins individually and combined in HepG2 cells alter lipid peroxidation, levels of reactive oxygen species and glutathione. Food and Chemical Toxicology (Netherlands). 139:111247. https://doi.org/10.1016/j.fct.2020.111247 | es_CO |
dc.relation.references | KUPCSIK, L. 2011. Estimation of Cell Number Based on Metabolic Activity: The MTT Reduction Assay. Mammalian Cell Viability: Methods and Protocols (United States). 740:13-19. https://doi.org/10.1007/978-1-61779-108-6_3 | es_CO |
dc.relation.references | LI, Q.; DONG, Z.; LIAN, W.; CUI, J.; WANG, J.; SHEN, H.; LIU, W.; YANG, J.; ZHANG, X.; CUI, H. 2019. Ochratoxin A causes mitochondrial dysfunction, apoptotic and autophagic cell death and also induces mitochondrial biogenesis in human gastric epithelium cells. Archives of Toxicology (Germany). 93(4):1141-1155. https://doi.org/10.1007/s00204-019-02433-6 | es_CO |
dc.relation.references | MADALENA, C.S.; FARIA, M.A.; CUNHA, S.C.; FERREIRA, I.M.P.L.V. 2018. Toxicological interactions between mycotoxins from ubiquitous fungi: Impact on hepatic and intestinal human epithelial cells. Chemosphere (United Kingdom). 202:538-548. https://doi.org/10.1016/j.chemosphere.2018.03.122 | es_CO |
dc.relation.references | QI, X.; ZHU, L.; YANG, B.; LUO, H.; XU, W.; HE, X.; HUANG, K. 2018. Mitigation of cell apoptosis induced by ochratoxin A (OTA) is possibly through organic cation transport 2 (OCT2) knockout. Food and Chemical Toxicology (United Kingdom). 121:15-23. https://doi.org/10.1016/j.fct.2018.08.026 | es_CO |
dc.relation.references | QIAN, G.; LIU, D.; HOU, L.; HAMID, M.; CHEN, X.; GAN, F.; SONG, S.; HUANG, K. 2018. Ochratoxin A induces cytoprotective autophagy via blocking AKT/mTOR signaling pathway in PK-15 cells. Food and Chemical Toxicology (United Kingdom). 122:120-131. https://doi.org/10.1016/j.fct.2018.09.070 | es_CO |
dc.relation.references | RAVELO, A.; RUBIO ARMENDÁRIZ, C.; GUTIÉRREZ FERNÁNDEZ, A. J.; HARDISSON DE LA TORRE, A. 2011. La ocratoxina A en alimentos de consumo humano: revisión. Nutrición Hospitalaria (España). 26(6):1215-1226. https://doi.org/10.3305/nh.2011.26.6.5381 | es_CO |
dc.relation.references | SALI, N.; NAGY, S.; POÓR, M.; TAMÁS, K. 2016. Multiparametric luminescent cell viability assay in toxicology models: A critical evaluation. Journal of Pharmacological and Toxicological Methods (United States). 79:45-54. https://doi.org/10.1016/j.vascn.2016.01.004 | es_CO |
dc.relation.references | SERRANO, H.A.; CARDONA, N. 2015. Micotoxicosis y micotoxinas: generalidades y aspectos básicos. Revista CES Medicina (Colombia). 29(1):143-152. | es_CO |
dc.relation.references | TAO, Y.; XIE, S.; XU, F.; LIU, A.; WANG, Y.; CHEN, D.; PAN, Y.; HUANG, L.; PENG, D.; WANG, X.; YUAN, Z. 2018. Ochratoxin A: Toxicity, oxidative stress and metabolism. Food and Chemical Toxicology (United Kingdom). 112:320-331. https://doi.org/10.1016/j.fct.2018.01.002 | es_CO |
dc.relation.references | ZHANG, X.; BOESCH, C.; LOU, Y.; WOLFFRAM, S.; HUEBBE, P.; RIMBACH, G. 2009. Ochratoxin A induces apoptosis in neuronal cells. Genes & Nutrition (United Kingdom). 4(1):41-48. https://doi.org/10.1007/s12263-008-0109-y | es_CO |
dc.relation.references | ZHANG, T.-Y.; KONG, L.; HAO, J.-X.; WANG, H.; YAN, Z.-H.; SUN, X.-F.; SHEN, W. 2020. Effects of Ochratoxin A exposure on DNA damage in porcine granulosa cells in vitro. Toxicology Letters (Netherlands). 330:167-175. https://doi.org/10.1016/j.toxlet.2020.05.011 | es_CO |
dc.relation.references | ZHAO, J.; QI, X.; DAI, Q.; HE, X.; DWEEP, H.; GUO, M.; LUO, Y.; GRETZ, N.; LUO, H.; HUANG, K.; XU, W. 2016. Toxicity study of ochratoxin A using HEK293 and HepG2 cell lines based on microRNA profiling. Human and Experimental Toxicology (United States). 36(1):8-22. https://doi.org/10.1177/0960327116632048 | es_CO |
dc.rights.accessrights | http://purl.org/coar/access_right/c_abf2 | es_CO |
dc.type.coarversion | http://purl.org/coar/resource_type/c_2df8fbb1 | es_CO |
Aparece en las colecciones: | Biología |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
Contreras_2022_TG.pdf | Contreras_2022_TG | 607,3 kB | Adobe PDF | Visualizar/Abrir |
Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.