Por favor, use este identificador para citar o enlazar este ítem:
http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/8917
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | Leal Parada, Edwar Armando. | - |
dc.date.accessioned | 2024-07-02T19:30:09Z | - |
dc.date.available | 2022-09-01 | - |
dc.date.available | 2024-07-02T19:30:09Z | - |
dc.date.issued | 2022 | - |
dc.identifier.citation | Leal Parada, E. A. (2022). Mecanismos inmunológicos en Cnidaria: Caracterización in silico de Péptidos antimicrobianos [Trabajo de Grado Pregrado, Universidad de Pamplona]. Repositorio Hulago Universidad de Pamplona. http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/8917 | es_CO |
dc.identifier.uri | http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/8917 | - |
dc.description | Los cnidarios son un grupo de invertebrados que surgieron hace 700 millones de años atrás. Presentan una gran complejidad que se ve reflejada en el genoma del sistema inmune. La caracterización de estos mecanismos de defensa ha sido posible gracias a los análisis genómicos y transcriptómicos llevados a cabo en diferentes cnidarios, los cuales han mostrado la presencia de varios genes que codifican moléculas de respuesta inmune conservadas en vertebrados. Para Cnidaria se han descrito diversos receptores de reconocimiento de patógenos (PRR), y moléculas de señalización intracelular que tienen como fin hacer efectiva la transcripción de genes con funciones inmunes, y moléculas efectoras, cuyo objetivo es la eliminación del patógeno. Los péptidos antimicrobianos favorecen la respuesta efectora contra patógenos y son moléculas claves dada su capacidad de acción contra hongos, virus y bacterias. Además, son altamente conservados y en Cnidaria tienen capacidad bactericida, lo cual los convierte en moléculas que pueden ser modelos para estudios evolutivos y de bioprospección. El objetivo de esta investigación fue caracterizar estructuralmente péptidos antimicrobianos (AMP) pertenecientes a la familia de las defensinas en diferentes especies de cnidarios mediante análisis computacional. Para alcanzar este propósito se llevó a cabo una búsqueda exhaustiva de secuencias homólogas a péptidos antimicrobianos pertenecientes a la familia de las defensinas en los proteomas disponibles para cnidarios, también se realizó un modelamiento 3D por homología de secuencias y una caracterización funcional de los péptidos con una herramienta desarrollada bajo un enfoque de aprendizaje automático. El modelamiento 3D por homología permitió la caracterización estructural de doce péptidos en 11 especies de cnidarios, los cuales mostraron similitud estructural con defensinas descritas en las especies Nasonia vitripennis, Pisum sativum, Solanum lycopersicum y Aurelia aurita. A estos péptidos también se les realizo una evaluación de diferentes propiedades fisicoquímicas como momento hidrofóbico, hidrofobicidad, carga neta, índice de anfifilia y punto isoeléctrico, mostrando valores que son ideales para AMP. La caracterización funcional mostro potencial bactericida de 20 péptidos contra las bacterias multirresistentes Escherichia coli, Pseudomonas aeruginosa y Klebsiella pneumoniae. Por último, se llevó a cabo la construcción de un árbol filogenético, donde se evidencia que la defensina Nuetrophil, descrita en Homo sapiens, comparte un ancestro común cercano con diferentes péptidos descritos en cnidarios, caracterizados por mostrar un potencial bactericida y una estructura α hélice rica en cisteínas (seis), típica de defensinas de mamíferos e insectos. Los resultados obtenidos muestran que Cnidaria presenta AMP con características estructurales y fisicoquímicas similares a las descritas en defensinas de insectos, mamíferos y plantas. Las características estructurales de estos péptidos, sus propiedades fisicoquímicas y su potencial funcional los perfila como moléculas prometedoras para hallazgo de nuevos antibióticos. | es_CO |
dc.description.abstract | Cnidarians are invertebrates that emerged 700 million years ago. They present a great complexity that is reflected in the genome of the immune system. The characterization of these defense mechanisms in Cnidarians has been possible thanks to genomic and transcriptomic analyses, which have shown the presence of several genes that encode immune response molecules conserved in vertebrates. For Cnidaria, various pathogen recognition receptors (PRR) have been described, signaling molecules that have the purpose of making the transcription of genes with immune functions effective, and effector molecules, whose objective is the elimination of the pathogen. Antimicrobial peptides favor the effector response against pathogens and are key molecules given their ability to act against fungi, viruses and bacteria. In addition, they are highly conserved and in Cnidaria they have bactericidal capacity, which makes them molecules that can be models for evolutionary and bioprospecting studies. The objective of this research was to structurally characterize antimicrobial peptides (AMP) belonging to the defensin family in different species of Cnidarians by computational analysis. To achieve this purpose, an exhaustive search was carried out for sequences homologous to antimicrobial peptides belonging to the defensin family in the proteomes available for Cnidarians, as well as 3D modeling by sequence homology and a functional characterization of the peptides with a tool developed under a machine learning approach. 3D homology modeling allowed the structural characterization of twelve peptides in 11 Cnidarian species, which showed structural similarity with defensins described in the species Nasonia vitripennis, Pisum sativum, Solanum lycopersicum and Aurelia aurita. These peptides were also evaluated for different physicochemical properties such as hydrophobic moment, hydrophobicity, net charge, amphiphilic index and isoelectric point, showing values that are ideal for AMP. The functional characterization showed bactericidal potential of 20 peptides against multiresistant bacteria Escherichia coli, Pseudomonas aeruginosa and Klebsiella pneumoniae. Finally, the construction of a phylogenetic tree was carried out, where it is evident that the Nuetrophil defensin, described in Homo sapiens, shares a close common ancestor with different peptides described in Cnidarians, characterized by showing a bactericidal potential and an α helix structure rich in cysteines (six), typical of mammalian and insect defensins. The results obtained show that Cnidaria present AMP with structural and physicochemical characteristics similar to those described in defensins of insects, mammals and plants. The structural characteristics of these peptides, their physicochemical properties and their functional potential outline them as promising molecules for the discovery of new antibiotics. | es_CO |
dc.format.extent | 67 | es_CO |
dc.format.mimetype | application/pdf | es_CO |
dc.language.iso | es | es_CO |
dc.publisher | Universidad de Pamplona - Facultad de Ciencias Básicas. | es_CO |
dc.subject | Cnidaria. | es_CO |
dc.subject | Péptidos antimicrobianos. | es_CO |
dc.subject | Defensinas. | es_CO |
dc.subject | Propiedades fisicoquímicas. | es_CO |
dc.subject | Potencial de acción. | es_CO |
dc.title | Mecanismos inmunológicos en Cnidaria: Caracterización in silico de Péptidos antimicrobianos. | es_CO |
dc.type | http://purl.org/coar/resource_type/c_7a1f | es_CO |
dc.date.accepted | 2022-06-01 | - |
dc.relation.references | Allemand, D., Furla, P., & Bénazet-Tambutté S. (1998). Mechanisms of carbon acquisition for endosymbiont photosynthesis in Anthozoa. Journal of Botany, 76, 925-941. | es_CO |
dc.relation.references | Arenas Gómez, C. M., Sabin, K. Z., & Echeverri, K. (2020). Wound healing across the animal kingdom: Crosstalk between the immune system and the extracellular matrix. Developmental dynamics : an official publication of the American Association of Anatomists, 249(7), 834–846. https://doi.org/10.1002/dvdy.178 | es_CO |
dc.relation.references | Aronson, R. B., & Precht, W. F. (2001). White-band disease and the changing face of Caribbean coral reefs. In The ecology and etiology of newly emerging marine diseases (pp. 25-38). Springer, Dordrecht. | es_CO |
dc.relation.references | Arruda, G., Vigerelli, H., Bufalo, M. C., Longato, G. B., Veloso, R. V., Zambelli, V. O., Picolo, G., Cury, Y., Morandini, A. C., Marques, A. C., & Sciani J. M. (2021). Box Jellyfish (Cnidaria, Cubozoa) Extract Increases Neuron's Connection: A Possible Neuroprotector Effect. BioMed research international, 2021, 8855248. https://doi.org/10.1155/2021/885524 | es_CO |
dc.relation.references | Ashton-Rickardt, P. G. (2013). An emerging role for Serine Protease Inhibitors in T lymphocyte immunity and beyond. Immunology letters, 152(1), 65–76. https://doi.org/10.1016/j.imlet.2013.04.004 | es_CO |
dc.relation.references | Augustin, R., Anton-Erxleben, F., Jungnickel, S., Hemmrich, G., Spudy, B., Podschun, R., & Bosch, T. C. (2009). Activity of the novel peptide arminin against multiresistant human pathogens shows the considerable potential of phylogenetically ancient organisms as drug sources. Antimicrobial agents and chemotherapy, 53(12), 5245–5250. https://doi.org/10.1128/AAC.00826-09 | es_CO |
dc.relation.references | Augustin, R., Fraune, S., & Bosch, T. C. (2010). How Hydra senses and destroys microbes. Seminars in immunology, 22(1), 54–58. https://doi.org/10.1016/j.smim.2009.11.002 | es_CO |
dc.relation.references | Alvarez-Filip, L., Estrada-Saldívar, N., Pérez-Cervantes, E., Molina-Hernández, A., and González-Barrios, F. J. (2019). A rapid spread of the stony coral tissue loss disease outbreak in the mexican caribbean a rapid spread of the stony coral tissue loss disease outbreak in the Mexican Caribbean. PeerJ 7:e8069. doi: 10.7717/peerj.8069 | es_CO |
dc.relation.references | Bauer, F., Schweimer, K., Klüver, E., Conejo-Garcia, J. R., Forssmann, W. G., Rösch, P., Adermann, K., & Sticht, H. (2001). Structure determination of human and murine beta-defensins reveals structural conservation in the absence of significant sequence similarity. Protein science : a publication of the Protein Society, 10(12), 2470–2479. https://doi.org/10.1110/ps.24401 | es_CO |
dc.relation.references | Bechinger, B., & Gorr, S. U. (2017). Antimicrobial Peptides: Mechanisms of Action and Resistance. Journal of dental research, 96(3), 254–260. https://doi.org/10.1177/0022034516679973 | es_CO |
dc.relation.references | Beisel, H. G., Kawabata, S., Iwanaga, S., Huber, R., & Bode, W. (1999). Tachylectin-2: crystal structure of a specific GlcNAc/GalNAc-binding lectin involved in the innate immunity host defense of the Japanese horseshoe crab Tachypleus tridentatus. The EMBO journal, 18(9), 2313–2322. https://doi.org/10.1093/emboj/18.9.2313 | es_CO |
dc.relation.references | Roesel, C. L., & Vollmer, S. V. (2019). Differential gene expression analysis of symbiotic and aposymbiotic Exaiptasia anemones under immune challenge with Vibrio coralliilyticus. Ecology and evolution, 9(14), 8279–8293. https://doi.org/10.1002/ece3.5403 | es_CO |
dc.relation.references | Roy, R. N., Lomakin, I. B., Gagnon, M. G., & Steitz, T. A. (2015). The mechanism of inhibition of protein synthesis by the proline-rich peptide oncocin. Nature structural & molecular biology, 22(6), 466–469. https://doi.org/10.1038/nsmb.3031 | es_CO |
dc.relation.references | Ruppert, E. E., & Barnes, R. D. (1996). Zoología de los invertebrados (No. QL 362. B3718 1996). | es_CO |
dc.relation.references | Sarma, J. V., & Ward, P. A. (2011). The complement system. Cell and tissue research, 343(1), 227– 235. https://doi.org/10.1007/s00441-010-1034-0 | es_CO |
dc.relation.references | Satoh, D., Horii, A., Ochiai, M., & Ashida, M. (1999). Prophenoloxidase-activating enzyme of the silkworm, Bombyx mori. Purification, characterization, and cDNA cloning. The Journal of biological chemistry, 274(11), 7441–7453. https://doi.org/10.1074/jbc.274.11.7441 | es_CO |
dc.relation.references | Schwarz, J. A., Brokstein, P. B., Voolstra, C., Terry, A. Y., Manohar, C. F., Miller, D. J., Szmant, A. M., Coffroth, M. A., & Medina, M. (2008). Coral life history and symbiosis: functional genomic resources for two reef building Caribbean corals, Acropora palmata and Montastraea faveolata. BMC genomics, 9, 97. https://doi.org/10.1186/1471-2164-9-97 | es_CO |
dc.relation.references | Schwarz R. and Dayhoff M. (1979). Matrices for detecting distant relationships. In Dayhoff M., editor, Atlas of protein sequences, pages 353-58. National Biomedical Research Foundation. | es_CO |
dc.relation.references | Schwede, T., Kopp, J., Guex, N., & Peitsch, M. C. (2003). SWISS-MODEL: An automated protein homology-modeling server. Nucleic acids research, 31(13), 3381–3385. https://doi.org/10.1093/nar/gkg520 | es_CO |
dc.relation.references | Seneca, F., Davtian, D., Boyer, L., & Czerucka, D. (2020). Gene expression kinetics of Exaiptasia pallida innate immune response to Vibrio parahaemolyticus infection. BMC genomics, 21(1), 768. https://doi.org/10.1186/s12864-020-07140-6 | es_CO |
dc.relation.references | Shenkarev, Z. O., Panteleev, P. V., Balandin, S. V., Gizatullina, A. K., Altukhov, D. A., Finkina, E. I., Kokryakov, V. N., Arseniev, A. S., & Ovchinnikova, T. V. (2012). Recombinant expression and solution structure of antimicrobial peptide aurelin from jellyfish Aurelia aurita. Biochemical and biophysical research communications, 429(1-2), 63–69. https://doi.org/10.1016/j.bbrc.2012.10.092 | es_CO |
dc.relation.references | Boman, H. G., Agerberth, B., & Boman, A. (1993). Mechanisms of action on Escherichia coli of cecropin P1 and PR-39, two antibacterial peptides from pig intestine. Infection and immunity, 61(7), 2978–2984. https://doi.org/10.1128/iai.61.7.2978-2984.1993 | es_CO |
dc.relation.references | Shinzato, C., Shoguchi, E., Kawashima, T., Hamada, M., Hisata, K., Tanaka, M., Fujie, M., Fujiwara M., Koyanagi, R., Ikuta, T., Fujiyama, A., Miller, D. J, & Satoh, N. (2011). Using the Acropora digitifera genome to understand coral responses to environmental change. Nature, 476(7360), 320–323. https://doi.org/10.1038/nature10249 | es_CO |
dc.relation.references | Shilling, E. N., Combs, I. R., & Voss, J. D. (2021). Assessing the effectiveness of two intervention methods for stony coral tissue loss disease on Montastraea cavernosa. Scientific reports, 11(1), 8566. https://doi.org/10.1038/s41598-021-86926-4 | es_CO |
dc.relation.references | Smith, V. J., Desbois, A. P., & Dyrynda, E. A. (2010). Conventional and unconventional antimicrobials from fish, marine invertebrates and micro-algae. Marine drugs, 8(4), 1213–1262. https://doi.org/10.3390/md8041213 | es_CO |
dc.relation.references | Stabili, L., Parisi, M. G., Parrinello, D., & Cammarata, M. (2018). Cnidarian Interaction with Microbial Communities: From Aid to Animal's Health to Rejection Responses. Marine drugs, 16(9), 296. https://doi.org/10.3390/md16090296 | es_CO |
dc.relation.references | Stabili, L., Schirosi, R., Parisi, M. G., Piraino, S., & Cammarata, M. (2015). The Mucus of Actinia equina (Anthozoa, Cnidaria): An Unexplored Resource for Potential Applicative Purposes. Marine drugs, 13(8), 5276–5296. https://doi.org/10.3390/md13085276 | es_CO |
dc.relation.references | Sugahara, T., Ueno, M., Goto, Y., Shiraishi, R., Doi, M., Akiyama, K., & Yamauchi, S. (2006). Immunostimulation effect of jellyfish collagen. Bioscience, biotechnology, and biochemistry, 70(9), 2131–2137. https://doi.org/10.1271/bbb.60076 | es_CO |
dc.relation.references | Takeuchi, K., Takahashi, H., Sugai, M., Iwai, H., Kohno, T., Sekimizu, K., Natori, S., & Shimada, I. (2004). Channel-forming membrane permeabilization by an antibacterial protein, sapecin: determination of membrane-buried and oligomerization surfaces by NMR. The Journal of biological chemistry, 279(6), 4981–4987. https://doi.org/10.1074/jbc.M307815200 | es_CO |
dc.relation.references | Tamura K., Stecher G., and Kumar S. (2021). MEGA 11: Molecular Evolutionary Genetics Analysis Version 11. Molecular Biology and Evolution https://doi.org/10.1093/molbev/msab120. | es_CO |
dc.relation.references | Teixeira, V., Feio, M. J., & Bastos, M. (2012). Role of lipids in the interaction of antimicrobial peptides with membranes. Progress in lipid research, 51(2), 149–177. https://doi.org/10.1016/j.plipres.2011.12.005 | es_CO |
dc.relation.references | Terrón, A., Peñalver, P., y León, D. (2018). Estudio de los cnidocistos del coral solitario Leptopsammia pruvoti (Lacaze-Duthiers 1897) (Scleractinia: Dendrophylliidae) para avanzar conocimiento del cnidoma como carácter taxonómico. Chronica naturae, 7: 18-26. https://dialnet.unirioja.es/servlet/articulo?codigo=6339564 | es_CO |
dc.relation.references | Bosch, T. C., Augustin, R., Anton-Erxleben, F., et al. (2009). Uncovering the evolutionary history of innate immunity: the simple metazoan Hydra uses epithelial cells for host defence. Developmental and comparative immunology, 33(4), 559–569. https://doi.org/10.1016/j.dci.2008.10.004 | es_CO |
dc.relation.references | Tian, C., Gao, B., Fang, Q., Ye, G., & Zhu, S. (2010). Antimicrobial peptide-like genes in Nasonia vitripennis: a genomic perspective. BMC genomics, 11, 187. https://doi.org/10.1186/1471-2164- 11-187 | es_CO |
dc.relation.references | Tortorelli, G., Rautengarten, C., Bacic, A., Segal, G., Ebert, B., Davy, S. K., van Oppen, M., & McFadden, G. I. (2021). Cell surface carbohydrates of symbiotic dinoflagellates and their role in the establishment of cnidarian-dinoflagellate symbiosis. The ISME journal, 1–10. Advance online publication. https://doi.org/10.1038/s41396-021-01059-w | es_CO |
dc.relation.references | Tracy, A. M., Weil, E., & Burge, C. A. (2021). Ecological Factors Mediate Immunity and Parasitic Co- Infection in Sea Fan Octocorals. Frontiers in immunology, 11, 608066. https://doi.org/10.3389/fimmu.2020.608066 | es_CO |
dc.relation.references | Upadhye, V., Majumdar, A., Gomashe, A., Joshi, D., Gangane, N., Thamke, D., Mendiratta, D., & Harinath, B. C. (2009). Inhibition of Mycobacterium tuberculosis secretory serine protease blocks bacterial multiplication both in axenic culture and in human macrophages. Scandinavian journal of infectious diseases, 41(8), 569–576. https://doi.org/10.1080/00365540903015109 | es_CO |
dc.relation.references | Vélez, A., Mera, C., Orduz, S., & Branch, J. W. (2021). Synthetic antimicrobial peptides generation using recurrent neural networks. Dyna, 88(216), 210-219. | es_CO |
dc.relation.references | Vidal-Dupiol, J., Adjeroud, M., Roger, E., Foure, L., Duval, D., Mone, Y., Ferrier-Pages, C., Tambutte, E., Tambutte, S., Zoccola, D., Allemand, D., & Mitta, G. (2009). Coral bleaching under thermal stress: putative involvement of host/symbiont recognition mechanisms. BMC physiology, 9, 14. https://doi.org/10.1186/1472-6793-9-14 | es_CO |
dc.relation.references | Vidal-Dupiol, J., Ladrière, O., Destoumieux-Garzón, D., Sautière, P. E., Meistertzheim, A. L., Tambutté, E., Tambutté, S., Duval, D., Fouré, L., Adjeroud, M., & Mitta, G. (2011). Innate immune responses of a scleractinian coral to vibriosis. The Journal of biological chemistry, 286(25), 22688– 22698. https://doi.org/10.1074/jbc.M110.216358 | es_CO |
dc.relation.references | Weil, E., Smith, G., & Gil-Agudelo, D. L. (2006). Status and progress in coral reef disease research. Diseases of aquatic organisms, 69(1), 1–7. https://doi.org/10.3354/dao069001 | es_CO |
dc.relation.references | Wenger, Y., Buzgariu, W., Reiter, S., & Galliot, B. (2014). Injury-induced immune responses in Hydra. Seminars in immunology, 26(4), 277–294. https://doi.org/10.1016/j.smim.2014.06.004 | es_CO |
dc.relation.references | White SH, Wimley WC. Hydrophobic interactions of peptides with membrane interfaces. Biochimica et biophysica acta. 1998;1376(3):339-52. | es_CO |
dc.relation.references | Braffman, N. R., Piscotta, F. J., Hauver, J., Campbell, E. A., Link, A. J., & Darst, S. A. (2019). Structural mechanism of transcription inhibition by lasso peptides microcin J25 and capistruin. Proceedings of the National Academy of Sciences, 116(4), 1273-1278. | es_CO |
dc.relation.references | Wood-Charlson, E. M., & Weis, V. M. (2009). The diversity of C-type lectins in the genome of a basal metazoan, Nematostella vectensis. Developmental and comparative immunology, 33(8), 881–889. https://doi.org/10.1016/j.dci.2009.01.008 | es_CO |
dc.relation.references | Wunderer, G., Béress, L., Machleidt, W., & Fritz, H. (1976). Broad-specificity inhibitors from sea anemones. Methods in enzymology, 45, 881–888. https://doi.org/10.1016/s0076-6879(76)45082- 6 | es_CO |
dc.relation.references | Xie, Q., Wang, Y., Zhang, M., Wu, S., Wei, W., Xiao, W., Wang, Y., Zhao, J., Liu, N., Jin, Y., Wu, J., & Xu, P. (2022). Recombinant HNP-1 Produced by Escherichia coli Triggers Bacterial Apoptosis and Exhibits Antibacterial Activity against Drug-Resistant Bacteria. Microbiology spectrum, 10(1), e0086021. https://doi.org/10.1128/spectrum.00860-21 | es_CO |
dc.relation.references | Yoneyama, M., Kikuchi, M., Matsumoto, K., Imaizumi, T., Miyagishi, M., Taira, K., Foy, E., Loo Y. M., Gale, M., Akira, S., Yonehara, S., Kato, A., & Fujita, T. (2005). Shared and unique functions of the DExD/H-box helicases RIG-I, MDA5, and LGP2 in antiviral innate immunity. Journal of immunology (Baltimore, Md: 1950), 175(5), 2851–2858. https://doi.org/10.4049/jimmunol.175.5.2851 | es_CO |
dc.relation.references | Zasloff, M. (2002). Antimicrobial peptides of multicellular organisms. Nature, 415(6870), 389–395. https://doi.org/10.1038/415389a | es_CO |
dc.relation.references | Zhang, Q. Y., Yan, Z. B., Meng, Y. M., Hong, X. Y., Shao, G., Ma, J. J., Cheng, X. R., Liu, J., Kang, J., & Fu, C. Y. (2021). Antimicrobial peptides: mechanism of action, activity and clinical potential. Military Medical Research, 8(1), 48. https://doi.org/10.1186/s40779-021-00343-2 | es_CO |
dc.relation.references | Zhang, SK., Song, Jw., Gong, F. (2016). Design of an α-helical antimicrobial peptide with improved cell-selective and potent anti-biofilm activity. Sci Rep 6, 27394 (2016). https://doi.org/10.1038/srep27394 | es_CO |
dc.relation.references | Zhuang, Y., Sun, L., Zhang, Y., & Liu, G. (2012). Antihypertensive effect of long-term oral administration of jellyfish (Rhopilema esculentum) collagen peptides on renovascular hypertension. Marine drugs, 10(2), 417–426. https://doi.org/10.3390/md10020417 | es_CO |
dc.relation.references | 65 Zou, J., Chang, M., Nie, P., & Secombes, C. J. (2009). Origin and evolution of the RIG-I like RNA helicase gene family. BMC evolutionary biology, 9, 85. https://doi.org/10.1186/1471-2148-9-85 | es_CO |
dc.relation.references | Brennan, J. J., Messerschmidt, J. L., Williams, L. M., Matthews, B. J., Reynoso, M., & Gilmore T. D. (2017). Sea anemone model has a single Toll-like receptor that can function in pathogen detection, NF-κB signal transduction, and development. Proceedings of the National Academy of Sciences, 114 (47). https://doi.org/10.1073/pnas.1711530114 | es_CO |
dc.relation.references | Buchmann, K. (2014). Evolution of Innate Immunity: Clues from Invertebrates via Fish to Mammals. Frontiers in immunology, 5, 459. https://doi.org/10.3389/fimmu.2014.00459 | es_CO |
dc.relation.references | Burge, C. A, Mouchka, M. E., Harvell C. D., & Roberts, S. (2013). Immune response of the Caribbean sea fan, Gorgonia ventalina, exposed to an Aplanochytrium parasite as revealed by transcriptome sequencing. Frontiers in physiology, 4, 180. https://doi.org/10.3389/fphys.2013.00180 | es_CO |
dc.relation.references | Cadavid, L. F. (2016). Resolución de conflictos al interior del organismo: el papel del sistema inmune. Acta Biológica Colombiana, 21(1Supl), 287-295. https://doi.org/10.15446/abc.v21n1Supl.50973 | es_CO |
dc.relation.references | Cardoso, M. H., Meneguetti, B. T., Costa, B. O., Buccini, D. F., Oshiro, K., Preza, S., Carvalho, C., Migliolo, L., & Franco, O. L. (2019). Non-Lytic Antibacterial Peptides That Translocate Through Bacterial Membranes to Act on Intracellular Targets. International journal of molecular sciences, 20(19), 4877. https://doi.org/10.3390/ijms20194877 | es_CO |
dc.relation.references | Cerenius, L., Kawabata, S., Lee, B. L., Nonaka, M., & Söderhäll, K. (2010). Proteolytic cascades and their involvement in invertebrate immunity. Trends in biochemical sciences, 35(10), 575–583. https://doi.org/10.1016/j.tibs.2010.04.006 | es_CO |
dc.relation.references | Chen, X., Hirt, H., Li, Y., Gorr, S. U., & Aparicio, C. (2014). Antimicrobial GL13K peptide coatings killed and ruptured the wall of Streptococcus gordonii and prevented formation and growth of biofilms. PloS one, 9(11), e111579. https://doi.org/10.1371/journal.pone.0111579 | es_CO |
dc.relation.references | Dathe, M., Nikolenko, H., Meyer, J., Beyermann, M., & Bienert, M. (2001). Optimization of the antimicrobial activity of magainin peptides by modification of charge. FEBS letters, 501(2-3), 146–150. https://doi.org/10.1016/s0014-5793(01)02648-5 | es_CO |
dc.relation.references | Davy, S. K., Allemand, D., & Weis V. M. (2012). Cell biology of cnidarian-dinoflagellate symbiosis. Microbiology and molecular biology reviews: MMBR, 76(2), 229–261. https://doi.org/10.1128/MMBR.05014-11 | es_CO |
dc.relation.references | Detournay, O., Schnitzler C. E., Poole, A., & Weis V. M. (2012). Regulation of cnidarian-dinoflagellate mutualisms: Evidence that activation of a host TGFβ innate immune pathway promotes tolerance of the symbiont. Developmental and comparative immunology, 38(4), 525–537. https://doi.org/10.1016/j.dci.2012.08.008 | es_CO |
dc.relation.references | Dimarcq, J. L., Bulet, P., Hetru, C., & Hoffmann, J. (1998). Cysteine-rich antimicrobial peptides in invertebrates. Biopolymers, 47(6), 465–477. https://doi.org/10.1002/(SICI)1097-0282(1998)47:6<465::AID-BIP5>3.0.CO;2-# | es_CO |
dc.relation.references | Dishaw, L. J., Smith, S.L., & Bigger, C.H. (2005). Characterization of a C3-like cDNA in a coral: phylogenetic implications. Immunogenetics, 57(7), 535–548. https://doi.org/10.1007/s00251-005-0005-1 | es_CO |
dc.relation.references | Dixit, E., & Kagan J. C. (2013). Intracellular pathogen detection by RIG-I-like receptors. Advances in immunology, 117, 99–125. https://doi.org/10.1016/B978-0-12-410524-9.00004-9 | es_CO |
dc.relation.references | Dong, H., Lv, Y., Zhao, D., Barrow, P., & Zhou, X. (2016). Defensins: The Case for Their Use against Mycobacterial Infections. Journal of immunology research, 2016, 7515687. https://doi.org/10.1155/2016/7515687 | es_CO |
dc.relation.references | Dunn, S. R. (2009). Immunorecognition and immunoreceptors in the Cnidaria. Invertebrate Survival Journal 6 (1) 7-14. | es_CO |
dc.relation.references | Emery, M. A., Dimos, B. A., & Mydlarz, L. D. (2021). Cnidarian Pattern Recognition Receptor Repertoires Reflect Both Phylogeny and Life History Traits. Frontiers in immunology, 12, 689463. https://doi.org/10.3389/fimmu.2021.689463 | es_CO |
dc.relation.references | Endo, Y., Nonaka, M., Saiga, H., Kakinuma, Y., Matsushita, A., Takahashi, M., Matsushita, M., & Fujita, T. (2003). Origin of mannose-binding lectin-associated serine protease (MASP)-1 and MASP-3 involved in the lectin complement pathway traced back to the invertebrate, amphioxus. Journal of immunology (Baltimore, Md.: 1950), 170(9), 4701–4707. https://doi.org/10.4049/jimmunol.170.9.4701 | es_CO |
dc.relation.references | Endo, Y., Takahashi, M., & Fujita, T. (2006). Lectin complement system and pattern recognition. Immunobiology, 211(4), 283–293. https://doi.org/10.1016/j.imbio.2006.01.003 | es_CO |
dc.relation.references | Esposito, R., D'Aniello, S., Squarzoni, P., Pezzotti, M. R., Ristoratore, F., y Spagnuolo, A. (2012). Nuevos conocimientos sobre la evolución de la familia de genes metazoos tirosinasa. PloS uno, 7 (4), e35731. https://doi.org/10.1371/journal.pone.0035731 | es_CO |
dc.relation.references | Estrada-Saldívar, N., Molina-Hernández, A., Pérez-Cervantes, E., Medellín-Maldonado, F., González-Barrios, F. J., and Alvarez-Filip, L. (2020). Reef-scale impacts of the stony coral tissue loss disease outbreak. Coral Reefs 39, 861–866. doi: 10.1007/s00338-020-01949-z | es_CO |
dc.relation.references | Fan, J., Zhuang, Y., & Li, B. (2013). Effects of collagen and collagen hydrolysate from jellyfish umbrella on histological and immunity changes of mice photoaging. Nutrients, 5(1), 223–233. https://doi.org/10.3390/nu5010223 | es_CO |
dc.relation.references | Franzenburg, S., Walter, J., Künzel, S., Wang, J., Baines, J. F., Bosch T. C., & Fraune, S. (2013). Distinct antimicrobial peptide expression determines host species-specific bacterial associations. | es_CO |
dc.relation.references | Proceedings of the National Academy of Sciences of the United States of America, 110(39), E3730–E3738. https://doi.org/10.1073/pnas.1304960110 | es_CO |
dc.relation.references | Fraune, S., Augustin, R., Anton-Erxleben, F., et al. (2010). In an early branching metazoan, bacterial colonization of the embryo is controlled by maternal antimicrobial peptides. Proceedings of the National Academy of Sciences. 107 (42). http://www.pnas.org/content/107/42/18067 | es_CO |
dc.relation.references | Fujito, N. T., Sugimoto, S., & Nonaka M. (2010). Evolution of thioester-containing proteins revealed by cloning and characterization of their genes from a cnidarian sea anemone, Haliplanella lineate. Developmental and comparative immunology, 34(7), 775–784. https://doi.org/10.1016/j.dci.2010.02.011 | es_CO |
dc.relation.references | Galeano, E., Gomez, D.I., Navas, R. Alonso, D., Zarza- González, E., Cano-Correa, M., Ward Bolivar, V., Posada-Osorio, L.S., Bolaños, N., Payan, L.F., Aponte, C. (2016). Reporte del estado de los arrecifes coralinos y pastos marinos en Colombia (2014-2015). Proyecto COL75241, PIMS # 3997, Diseño e implementación de un Subsistema Nacional de Áreas Marinas Protegidas (SAMP) en Colombia. Invemar, MADS, GEF y PNUD. Serie de publicaciones Generales del Invemar # 86, Santa Marta. 44 p. | es_CO |
dc.relation.references | Gasca, Rebeca., & Loman-Ramos, Lucio. (2014). Biodiversidad de Medusozoa (Cubozoa, Scyphozoa e Hydrozoa) en México. Revista mexicana de biodiversidad, 85(Supl. ene), S154-S163. https://doi.org/10.7550/rmb.32513 | es_CO |
dc.relation.references | Gasteiger, E., Gattiker, A., Hoogland, C., Ivanyi, I., Appel, R. D., & Bairoch, A. (2003). ExPASy: The proteomics server for in-depth protein knowledge and analysis. Nucleic acids research, 31(13), 3784–3788. https://doi.org/10.1093/nar/gkg563 | es_CO |
dc.relation.references | GCRMN. (2020). El sexto estado de los corales del mundo: Informe 2020. https://gcrmn.net/2020-report/ | es_CO |
dc.relation.references | Genzano, G., y Schiariti, A. (2016). CNIDARIA . Calcagneo J (Ed). Los Invertebrados Marinos (pp.67 - 85). Vazquez Mazzini Editores. | es_CO |
dc.relation.references | Gil Agudelo, D. L., Navas Camacho, R., Rodríguez Ramírez, A., Reyes Nivia, M. C., Bejarano, S., Garzón Ferreira, J., & Smith, G. W. (2016). ENFERMEDADES CORALINAS Y SU INVESTIGACIÓN EN LOS ARRECIFES COLOMBIANOS. Boletín De Investigaciones Marinas Y Costeras, 38(2). https://doi.org/10.25268/bimc.invemar.2009.38.2.178 | es_CO |
dc.relation.references | Gladkikh, I., Monastyrnaya, M., Leychenko, E., Zelepuga, E., Chausova, V., Isaeva, M., Anastyuk, S., Andreev, Y., Peigneur, S., Tytgat, J., & Kozlovkaya, E. (2012). Atypical reactive center Kunitz-type inhibitor from the sea anemone Heteractis crispa. Marine drugs, 10(7), 1545–1565. https://doi.org/10.3390/md10071545 | es_CO |
dc.relation.references | González, Y., Gil, D., Alonso del Rivero, M., Pascual, I., et al. (2013). Inhibidores de serino proteasas de naturaleza proteica aislados de invertebrados marinos / Proteic serine-proteases inhibitor isolated from marine invertebrates. Revista Cubana de Ciencias Biológicas, 2(1), 5-13. Recuperado de http://www.rccb.uh.cu/index.php/RCCB/article/view/14 | es_CO |
dc.relation.references | Hamada, M., Shoguchi, E., Shinzato, C., Kawashima, T., Miller, D. J., & Satoh, N. (2013). The complex NOD-like receptor repertoire of the coral Acropora digitifera includes novel domain combinations. Molecular biology and evolution, 30(1), 167–176. https://doi.org/10.1093/molbev/mss213 | es_CO |
dc.relation.references | Hasper, H. E., Kramer, N. E., Smith, J. L., Hillman, J. D., Zachariah, C., Kuipers, O. P., de Kruijff, B., & Breukink, E. (2006). An alternative bactericidal mechanism of action for lantibiotic peptides that target lipid II. Science (New York, N.Y.), 313(5793), 1636–1637. https://doi.org/10.1126/science.1129818 | es_CO |
dc.relation.references | Hassan, H. M., Khanfar, M. A., Elnagar, A. Y., Mohammed, R., Shaala, L. A., Youssef, D. T., Hifnawy, M. S., & El Sayed, K. A. (2010). Pachycladins A-E, prostate cancer invasion and migration inhibitory Eunicellin-based diterpenoids from the red sea soft coral Cladiella pachyclados. Journal of natural products, 73(5), 848–853. https://doi.org/10.1021/np900787p | es_CO |
dc.relation.references | Hawkridge, J., Pipe, R., & Brown, B. (2000). Localisation of antioxidant enzymes in the cnidarians Anemonia viridis and Goniopora stokesi. Marine Biology, 137, 1-9. | es_CO |
dc.relation.references | Hayes, M. L., Eytan, R. I., & Hellberg, M. E. (2010). High amino acid diversity and positive selection at a putative coral immunity gene (tachylectin-2). BMC evolutionary biology, 10, 150. https://doi.org/10.1186/1471-2148-10-150 | es_CO |
dc.relation.references | He, S. W., Zhang, J., Li, N. Q., Zhou, S., Yue, B., & Zhang, M. (2017). A TFPI-1 peptide that induces degradation of bacterial nucleic acids, and inhibits bacterial and viral infection in half-smooth tongue sole, Cynoglossus semilaevis. Fish & shellfish immunology, 60, 466–473. https://doi.org/10.1016/j.fsi.2016.11.029 | es_CO |
dc.relation.references | Hoffmann, J. A., Kafatos, F. C., Janeway, C. A., & Ezekowitz, R. A. (1999). Phylogenetic perspectives in innate immunity. Science (New York, N.Y.), 284(5418), 1313–1318. https://doi.org/10.1126/science.284.5418.1313 | es_CO |
dc.relation.references | Hsieh, Y. H. P. (2005). inventorUse of jellyfish Collagen (type II) in the Treatment of Rheumatoid Arthritis. U.S. Patent No. 6,894,029. Washington, DC: U.S. Patent and Trademark Office. | es_CO |
dc.relation.references | Huan, Y., Kong, Q., Mou, H., & Yi, H. (2020). Antimicrobial Peptides: Classification, Design, Application and Research Progress in Multiple Fields. Frontiers in microbiology, 11, 582779. https://doi.org/10.3389/fmicb.2020.582779 | es_CO |
dc.relation.references | Jatkar, A. A., Brown, B. E., Bythell, J. C., Guppy, R., Morris, N. J., & Pearson, J. P. (2010). Coral mucus: the properties of its constituent mucins. Biomacromolecules, 11(4), 883–888. https://doi.org/10.1021/bm9012106 | es_CO |
dc.relation.references | Jenssen, H., Hamill, P., & Hancock, R. E. (2006). Peptide antimicrobial agents. Clinical microbiology reviews, 19(3), 491–511. https://doi.org/10.1128/CMR.00056-05 | es_CO |
dc.relation.references | Jouiaei, M., Casewell, N. R., Yanagihara, A. A., Nouwens, A., Cribb, B. W., Whitehead, D., Jackson, T. N., Ali, S. A., Wagstaff, S. C., Koludarov, I., Alewood, P., Hansen, J., & Fry, B. G. (2015). Firing the sting: chemically induced discharge of cnidae reveals novel proteins and peptides from box jellyfish (Chironex fleckeri) venom. Toxins, 7(3), 936–950. https://doi.org/10.3390/toxins7030936 | es_CO |
dc.relation.references | Kolkenbroc, H., & Tschesche, H. (1987). A new inhibitor of elastase from the sea anemone (Anemonia sulcata). Biological chemistry Hoppe-Seyler, 368(2), 93–99. https://doi.org/10.1515/bchm3.1987.368.1.93 | es_CO |
dc.relation.references | Kovaleva, V., Bukhteeva, I., Kit, O. Y., & Nesmelova, I. V. (2020). Plant Defensins from a Structural Perspective. International journal of molecular sciences, 21(15), 5307. https://doi.org/10.3390/ijms21155307 | es_CO |
dc.relation.references | Kumar, P., Kizhakkedathu, J. N., & Straus, S. K. (2018). Antimicrobial Peptides: Diversity, Mechanism of Action and Strategies to Improve the Activity and Biocompatibility In Vivo. Biomolecules, 8(1), 4. https://doi.org/10.3390/biom8010004 | es_CO |
dc.relation.references | Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Molecular Biology and Evolution, 35, 1547–1549. | es_CO |
dc.relation.references | Kvennefors EC, Leggat W, Hoegh-Guldberg O, Degnan, BM, & Barnes AC. 2008. An ancient and variable mannose-binding lectin from the coral Acropora millepora binds both pathogens and symbionts. Developmental and comparative immunology, 32(12), 1582–1592. https://doi.org/10.1016/j.dci.2008.05.010 | es_CO |
dc.relation.references | Kvennefors, E. C., Leggat, W., Hoegh-Guldberg, O., Degnan, B. M., & Barnes, A. C. (2008). An ancient and variable mannose-binding lectin from the coral Acropora millepora binds both pathogens and symbionts. Developmental and comparative immunology, 32(12), 1582–1592. https://doi.org/10.1016/j.dci.2008.05.010 | es_CO |
dc.relation.references | Lantz, M. S. (1997). Are bacterial proteases important virulence factors?. Journal of periodontal research, 32(1 Pt 2), 126–132. https://doi.org/10.1111/j.1600-0765.1997.tb01393.x. | es_CO |
dc.relation.references | Lazcano-Pérez, F., Castro, H., Arenas, I., García, D. E., González-Muñoz, R., & Arreguín-Espinosa R. (2016). Activity of Palythoa caribaeorum Venom on Voltage-Gated Ion Channels in Mammalian Superior Cervical Ganglion Neurons. Toxins, 8(5), 135. https://doi.org/10.3390/toxins8050135 | es_CO |
dc.relation.references | Leclère, L., & Röttinger, E. (2017). Diversity of Cnidarian Muscles: Function, Anatomy, Development and Regeneration. Frontiers in cell and developmental biology, 4, 157. https://doi.org/10.3389/fcell.2016.00157. | es_CO |
dc.relation.references | Lee, T. H., Hall, K. N., & Aguilar, M. I. (2016). Antimicrobial Peptide Structure and Mechanism of Action: A Focus on the Role of Membrane Structure. Current topics in medicinal chemistry, 16(1), 25–39. https://doi.org/10.2174/1568026615666150703121700 | es_CO |
dc.relation.references | Leone, A., Lecci, R. M., Durante, M., Meli, F., & Piraino S. (2015). The Bright Side of Gelatinous Blooms: Nutraceutical Value and Antioxidant Properties of Three Mediterranean Jellyfish (Scyphozoa). Marine drugs, 13(8), 4654–4681. https://doi.org/10.3390/md13084654 | es_CO |
dc.relation.references | Lewies, A., Wentzel, J. F., Jacobs, G., & Du Plessis, L. H. (2015). The Potential Use of Natural and Structural Analogues of Antimicrobial Peptides in the Fight against Neglected Tropical Diseases. Molecules (Basel, Switzerland), 20(8), 15392–15433.https://doi.org/10.3390/molecules200815392 | es_CO |
dc.relation.references | Lin, K., Wang, J., & Fang L. (2000). Participation of Glycoproteins on Zooxanthellal Cell Walls in the Establishment of a Symbiotic Relationship with the Sea Anemone, Aiptasia Pulchella. Zoological Studies, 39, 172-178. | es_CO |
dc.relation.references | Lin, W. Y., Lu, Y., Su, J. H., Wen, Z. H., Dai, C. F., Kuo, Y. H., & Sheu, J. H. (2011). Bioactive cembranoids from the dongsha atoll soft coral Sarcophyton crassocaule. Marine drugs, 9(6), 994–1006. https://doi.org/10.3390/md9060994 | es_CO |
dc.relation.references | Liu, C. I., Chen, C. C., Chen, J. C., Su, J. H., Huang, H. H., Chen, J. Y., & Wu, Y. J. (2011). Proteomic analysis of anti-tumor effects of 11-dehydrosinulariolide on CAL-27 cells. Marine drugs, 9(7), 1254–1272. https://doi.org/10.3390/md9071254 | es_CO |
dc.relation.references | Loo, Y. M., & Gale, M. (2011). Immune signaling by RIG-I-like receptors. Immunity, 34(5), 680–692. https://doi.org/10.1016/j.immuni.2011.05.003 | es_CO |
dc.relation.references | Manniello, M. D., Moretta, A., Salvia, R., Scieuzo, C., Lucchetti, D., Vogel, H., Sgambato, A., & Falabella, P. (2021). Insect antimicrobial peptides: potential weapons to counteract the antibiotic resistance. Cellular and molecular life sciences : CMLS, 78(9), 4259–4282. https://doi.org/10.1007/s00018-021-03784-z | es_CO |
dc.relation.references | Mansfield, K. M., Carter, N. M., Nguyen, L., Cleves. P. A., Alshanbayeva, A., Williams, L. M., Crowder, C., Penvose, A. R., Finnerty, J. R., Weis, V. M., Siggers, T. W., & Gilmore, T. D. (2017). Transcription factor NF-κB is modulated by symbiotic status in a sea anemone model of cnidarian bleaching. Scientific reports, 7(1), 16025. https://doi.org/10.1038/s41598-017-16168-w | es_CO |
dc.relation.references | Martínez, S. B., Cadavid, L. F., & Vives, M. (2019). Actividad bactericida de péptidos antimicrobianos sintetizados a partir del transcriptoma del cnidario Hydractinia symbiolongicarpus. Repositorio Universidad de los Andes. Recuperado el 06 de octubre de 2021, de https://repositorio.uniandes.edu.co/bitstream/handle/1992/45807/u828114.pdf?sequence=1 | es_CO |
dc.relation.references | Merquiol, L., Romano, G., Ianora, A., & D'Ambra, I. (2019). Biotechnological Applications of Scyphomedusae. Marine drugs, 17(11), 604. https://doi.org/10.3390/md17110604 | es_CO |
dc.relation.references | Miller, D. J., Hemmrich, G., Ball, E. E., Hayward, D. C., Khalturin, K., Funayama, N., Agata, K., & Bosch, T. C. (2007). The innate immune repertoire in cnidaria--ancestral complexity and stochastic gene loss. Genome biology, 8(4), R59. https://doi.org/10.1186/gb-2007-8-4-r59 | es_CO |
dc.relation.references | Mullen, K. M., Peters, E. C., Harvell, C. D. (2004). Coral Resistance to Disease. In: Rosenberg E., Loya Y. (eds) Coral Health and Disease. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-06414-6_22 | es_CO |
dc.relation.references | Mydlarz, L. D., Fuess, L., Mann, W., Pinzón, J. H., & Gochfeld, D. J. (2016). Cnidarian Immunity: From Genomes to Phenomes. In: Goffredo S., Dubinsky Z. (eds) The Cnidaria, Past, Present and Future. Springer, Cham. https://doi.org/10.1007/978-3-319-31305-4_28 Mydlarz, L. D., Holthouse, S. F., Peters, E. C., & Harvell, C. D. (2008). Cellular | es_CO |
dc.relation.references | Mydlarz, L. D., Holthouse, S. F., Peters, E. C., & Harvell, C. D. (2008). Cellular responses in sea fan corals: granular amoebocytes react to pathogen and climate stressors. PloS one, 3(3), e1811. https://doi.org/10.1371/journal.pone.0001811 | es_CO |
dc.relation.references | Navarro Garcia, F., Sonnested, M., & Teter, K. (2010). Host-Toxin Interactions Involving EspC and Pet, Two Serine Protease Autotransporters of the Enterobacteriaceae. Toxins, 2(5), 1134–1147. https://doi.org/10.3390/toxins2051134 | es_CO |
dc.relation.references | Neubauer, E. F., Poole, A. Z., Neubauer, P., Detournay, O., Tan, K., Davy, S. K., & Weis, V. M. (2017). A diverse host thrombospondin-type-1 repeat protein repertoire promotes symbiont colonization during establishment of cnidarian-dinoflagellate symbiosis. eLife, 6, e24494. https://doi.org/10.7554/eLife.24494 | es_CO |
dc.relation.references | O'Neill, L. A., Golenbock, D., & Bowie, A. G. (2013). The history of Toll-like receptors - redefining innate immunity. Nature reviews. Immunology, 13(6), 453–460. https://doi.org/10.1038/nri3446. | es_CO |
dc.relation.references | Ortiz López, C. (2019). Diseño, síntesis, caracterización y evaluación in vitro de la actividad de los péptidos antimicrobianos contra bacterias patógenas resistentes a antibióticos. RACCEFYN, 43(169), 614–627. https://doi.org/10.18257/raccefyn.864 | es_CO |
dc.relation.references | Otero-González, A. J., Magalhães, B. S., Garcia-Villarino, M., López-Abarrategui, C., Sousa, D. A., Dias, S. C., & Franco O. L. (2010). Antimicrobial peptides from marine invertebrates as a new frontier for microbial infection control. FASEB journal : official publication of the Federation of American Societies for Experimental Biology, 24(5), 1320–1334. https://doi.org/10.1096/fj.09- 143388 | es_CO |
dc.relation.references | Ovchinnikova, T. V., Balandin, S. V., Aleshina, G. M., Tagaev, A. A., Leonova, Y. F., Krasnodembsky, E. D., Men'shenin, A. V., & Kokryakov, V. N. (2006). Aurelin, a novel antimicrobial peptide from jellyfish Aurelia aurita with structural features of defensins and channel-blocking toxins. Biochemical and biophysical research communications, 348(2), 514–523. https://doi.org/10.1016/j.bbrc.2006.07.078 | es_CO |
dc.relation.references | Paczosa, M. K., & Mecsas, J. (2016). Klebsiella pneumoniae: Going on the Offense with a Strong Defense. Microbiology and molecular biology reviews : MMBR, 80(3), 629–661. https://doi.org/10.1128/MMBR.00078-15 | es_CO |
dc.relation.references | Parisi, M. G., Parrinello, D., Stabili, L., & Cammarata, M. (2020). Cnidarian Immunity and the Repertoire of Defense Mechanisms in Anthozoans. Biology, 9(9), 283. https://doi.org/10.3390/biology9090283 | es_CO |
dc.relation.references | Patrzykat, A., Friedrich, C. L., Zhang, L., Mendoza, V., & Hancock, R. E. (2002). Sublethal concentrations of pleurocidin-derived antimicrobial peptides inhibit macromolecular synthesis in Escherichia coli. Antimicrobial agents and chemotherapy, 46(3), 605–614. https://doi.org/10.1128/AAC.46.3.605-614.2002 | es_CO |
dc.relation.references | Paz-Zarza, V. M., Mangwani-Mordani, S., Martínez-Maldonado, A., Álvarez-Hernández, D., Solano- Gálvez, S. G., & Vázquez-López, R. (2019). Pseudomonas aeruginosa: patogenicidad y resistencia antimicrobiana en la infección urinaria. Revista chilena de infectología, 36(2), 180-189. | es_CO |
dc.relation.references | Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera--a visualization system for exploratory research and analysis. Journal of computational chemistry, 25(13), 1605–1612. https://doi.org/10.1002/jcc.20084 | es_CO |
dc.relation.references | Pinzón, J. H., Kamel, B., Burge, C. A., Harvell, C. D., Medina, M., Weil, E., & Mydlarz, L. D. (2015). Whole transcriptome analysis reveals changes in expression of immune-related genes during and after bleaching in a reef-building coral. Royal Society open science, 2(4), 140214. https://doi.org/10.1098/rsos.140214 | es_CO |
dc.relation.references | Pirtskhalava, M., Amstrong, A. A., Grigolava, M., Chubinidze, M., Alimbarashvili, E., Vishnepolsky, B., Gabrielian, A., Rosenthal, A., Hurt, D. E., & Tartakovsky, M. (2021). DBAASP v3: database of antimicrobial/cytotoxic activity and structure of peptides as a resource for development of new therapeutics. Nucleic acids research, 49(D1), D288–D297. https://doi.org/10.1093/nar/gkaa991 | es_CO |
dc.relation.references | Rashid, R., Veleba, M., & Kline, K. A. (2016). Focal Targeting of the Bacterial Envelope by Antimicrobial Peptides. Frontiers in cell and developmental biology, 4, 55. https://doi.org/10.3389/fcell.2016.00055 | es_CO |
dc.relation.references | Raymundo, L., Couch, C., Bruckner, A., Harvell, D., Weil, E., Woodley, C., Work, T., Jordan- Dahlgren, E., Willis, B., Aeby, G. and Sato, Y. (2008). Coral Disease Handbook: Guidelines for Assessment, Monitoring & Management. Melbourne, Australia: Currie Communications. | es_CO |
dc.relation.references | Rivas, S., Bruno, S., Hernández-Pando, R., & Tsutsumi, V. (2006). Péptidos antimicrobianos en la inmunidad innata de enfermedades infecciosas. Salud Pública de México, 48(1), 62-71. Recuperado el 06 de octubre de 2021, de http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0036- 36342006000100010&lng=es&tlng=es. | es_CO |
dc.relation.references | Rivera Ortega Jacqueline. (2018). "Actividad antimicrobiana del mucus de cnidarios simbióticos". (Tesis de Maestría). Universidad Nacional Autónoma de México, México. Recuperado de https://repositorio.unam.mx/contenidos/161231 | es_CO |
dc.rights.accessrights | http://purl.org/coar/access_right/c_abf2 | es_CO |
dc.type.coarversion | http://purl.org/coar/resource_type/c_2df8fbb1 | es_CO |
Aparece en las colecciones: | Biología |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
Leal_2022_TG.pdf | Leal_2022_TG | 3,38 MB | Adobe PDF | Visualizar/Abrir |
Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.