• Repositorio Institucional Universidad de Pamplona
  • Trabajos de pregrado y especialización
  • Facultad de Ingenierías y Arquitectura
  • Ingeniería Civil
  • Por favor, use este identificador para citar o enlazar este ítem: http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/8579
    Registro completo de metadatos
    Campo DC Valor Lengua/Idioma
    dc.contributor.authorPinzón Cuta, Carlos Humberto.-
    dc.contributor.authorPérez Meneses, Jhon Alexander.-
    dc.date.accessioned2024-06-17T14:16:50Z-
    dc.date.available2021-10-12-
    dc.date.available2024-06-17T14:16:50Z-
    dc.date.issued2022-
    dc.identifier.citationPinzón Cuta, C. H.; Pérez Meneses, J. A. (2021). Cenizas volantes de carbón, un residuo de la combustión en centrales termoeléctricas: Revisión bibliográfica de sus propiedades físicas, químicas y morfológicas en el ámbito internacional y regional [Trabajo de Grado Pregrado, Universidad de Pamplona]. Repositorio Hulago Universidad de Pamplona. http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/8579es_CO
    dc.identifier.urihttp://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/8579-
    dc.descriptionLas cenizas volantes de carbón son un desecho proveniente de las centrales termoeléctricas que se obtienen tras la incineración y posterior atrapamiento en los disipadores electrostáticos o mecánicos, estas son acumuladas en vertederos, generando grandes problemas ambientales, daños a la salud y afectación a los ecosistemas circundantes. En consecuencia, en los últimos años ha tomado gran relevancia su estudio y caracterización de tal manera que su control y manejo sean apropiados. Muchas de sus propiedades están relacionadas con el tipo de carbón mineral del cual provienen, debido a que cada etapa fue sometida a periodos, temperaturas y presiones diferentes; el proceso de incineración, el tipo de horno y las temperaturas a las cuales son sometidos. Todas las anteriores están directamente relacionadas con el elemento base de su estructura molecular (el carbono), este tiene la característica de cambiar su formación microscópica y de esta manera obtener propiedades diferentes (alotropía). Las cenizas volantes pueden surgir de la combustión de compuestos orgánicos como la biomasa, los desechos residenciales y el carbón mineral, este último es el recurso natural que más partículas volátiles genera con respecto a las otras dos y la segunda fuente de energía más contaminante en el mundo. Por ello en este texto se hace una revisión bibliográfica en la cual se reúne información referente a sus propiedades químicas, morfología, propiedades físicas y sus usos en el ámbito mundial y regional; para así aportar al lector información valiosa que le facilite reconocer sus propiedades e identificar las posibles soluciones que permitan mitigar el impacto que estas causan al medio ambiente.es_CO
    dc.description.abstractLos autores no proporcionan la información sobre este ítem.es_CO
    dc.format.extent68es_CO
    dc.format.mimetypeapplication/pdfes_CO
    dc.language.isoeses_CO
    dc.publisherUniversidad de Pamplona - Facultad de Ingenierías y Arquitectura.es_CO
    dc.subjectLos autores no proporcionan la información sobre este ítem.es_CO
    dc.titleCenizas volantes de carbón, un residuo de la combustión en centrales termoeléctricas: Revisión bibliográfica de sus propiedades físicas, químicas y morfológicas en el ámbito internacional y regional.es_CO
    dc.typehttp://purl.org/coar/resource_type/c_7a1fes_CO
    dc.date.accepted2021-07-12-
    dc.relation.referencesCaenn, R., Darley, H., & Gray, G. (2017). Chapter 13 - Drilling Fluid Components. En R. Caenn, H. Darley, & G. R. Gray (Edits.), Composition and Properties of Drilling and Completion Fluids (Seventh Edition) (págs. 537-595). Gulf Professional Publishing. doi:doi.org/10.1016/B978-0-12-804751-4.00013-4.es_CO
    dc.relation.referencesFořt, J., Šál, J., Ševčík, R., Doleželová, M., Keppert, M., Jerman, M., . . . Černý, R. (2021). Biomass fly ash as an alternative to coal fly ash in blended cements: Functional aspects. Construction and Building Materials, 271. doi:doi.org/10.1016/j.conbuildmat.2020.121544.es_CO
    dc.relation.referencesJu, T., Meng, Y., Han, S., Lin, L., & Jiang, J. (2021). On the state of the art of crystalline structure reconstruction of coal fly ash: A focus on zeolites. Chemosphere, 283. doi:doi.org/10.1016/j.chemosphere.2021.131010.es_CO
    dc.relation.referencesNithyanandam, K., Shoaei, P., & Pitchumani, R. (2021). Technoeconomic analysis of thermoelectric power plant condensers with nonwetting surfaces. Energy, 227(120450). doi:doi.org/10.1016/j.energy.2021.120450.es_CO
    dc.relation.referencesPan, J., Nie, T., Hassas, B., Rezaee, M., Wen, Z., & Zhou, C. (2020). Recovery of rare earth elements from coal fly ash by integrated physical separation and acid leaching. Chemosphere, 248. doi:doi.org/10.1016/j.chemosphere.2020.126112.es_CO
    dc.relation.referencesVargas, E., Villamizar, D., Neves, M., & Nunes, M. (2021). Pelletized biomass fly ash for FAME production: Optimization of a continuous process. Fuel, 293. doi:doi.org/10.1016/j.fuel.2021.120425.es_CO
    dc.relation.referencesA.G.Castellanos, H.Mawson, V.Burke, & P.Prabhakar. (2017). Fly-ash cenosphere/clay blended composites for impact resistant tiles. Construction and Bulding Materials, 307-313.es_CO
    dc.relation.referencesAbbas, S., Saleem, M. A., Kazmi, S. M., & Munir, M. J. (2017). Production of sustainable clay bricks using waste fly ash: Mechanical and durability properties. Journal of Building Engineering, 14, 7-14. doi:10.1016/j.jobe.2017.09.008.es_CO
    dc.relation.referencesAgencia de Protección Ambiental. (2012). Estándares de mercurio y sustancias tóxicas del aire (MATS). Obtenido de https://www3.epa.gov/airquality/powerplanttoxics/basic.htmles_CO
    dc.relation.referencesAkinyemi, S., Bohórquez, F., Islam, N., Saikia, B., Sampaio, C., Crissien, T., & Silva, L. (2021). Petrography and geochemistry of exported Colombian coals: Implications from correlation and regression analyses. Energy Geoscience, 2(3), 201-210. doi:doi.org/10.1016/j.engeos.2020.12.003es_CO
    dc.relation.referencesAldahri, T., Behin, J., Kazemian, H., & Rohani, S. (2016). Synthesis of zeolite Na-P from coal fly ash by thermo-sonochemical treatment. Fuel, 182, 494-501. doi:doi.org/10.1016/j.fuel.2016.06.019.es_CO
    dc.relation.referencesAmbiental, A. d. (2013). Regla de contaminación del aire entre estados (CSAPR). Obtenido de https://www.epa.gov/crossstaterulees_CO
    dc.relation.referencesAskeland, D., Fulay, P., & Wright, W. (2013). Ciencia e ingenieria de materiales. México D.F.: Cengage learning.es_CO
    dc.relation.referencesBakalár, T., Pavolová, H., Hajduová, Z., Lacko, R., & Kyšeľa, K. (2021). Metal recovery from municipal solid waste incineration fly ash as a tool of circular economy. Journal of Cleaner Production, 302. doi:doi.org/10.1016/j.jclepro.2021.126977.es_CO
    dc.relation.referencesBaker , I. (2018). Graphite. In: Fifty Materials That Make the World. Springer, Cham. doi:10.1007/978-3-319-78766-4_16es_CO
    dc.relation.referencesBelviso, C. (2018). State-of-the-art applications of fly ash from coal and biomass: A focus on zeolite synthesis processes and issues. Progress in Energy and Combustion Science, 65, 109-135. doi:doi.org/10.1016/j.pecs.2017.10.004.es_CO
    dc.relation.referencesBelviso, C., Cavalcante, F., & Fiore, S. (2010). Synthesis of zeolite from Italian coal fly ash: Differences in crystallization temperature using seawater instead of distilled water. Waste Management, 30(5), 839-847. doi:doi.org/10.1016/j.wasman.2009.11.015es_CO
    dc.relation.referencesBelviso, C., Cavalcante, F., & Fiore, S. (2013). Ultrasonic waves induce rapid zeolite synthesis in a seawater solution. Ultrasonics Sonochemistry, 20(1), 32-36. doi:doi.org/10.1016/j.ultsonch.2012.06.004.es_CO
    dc.relation.referencesBhatt, A., Priyadarshini, S., Mohanakrishnan, A. A., Abri, A., Sattler, M., & Techapaphawit, S. (2019,). Physical, chemical, and geotechnical properties of coal fly ash: A global review,. Case Studies in Construction Materials,, Volume 11,, e00263,. doi:10.1016/j.cscm.2019.e00263.es_CO
    dc.relation.referencesBogdanowicz, R. (2015). Chapter 8 - Advancements in Diamond-Like Carbon Coatings. (A. Hamdy Makhlouf, & D. Scharnweber, Edits.) Butterworth-Heinemann. doi:doi.org/10.1016/B978-0-12-799947-0.00008-0.es_CO
    dc.relation.referencesCentro de Energía del Carbón de Japón. (2008). Base de datos de cenizas de carbón. Obtenido de Google Académico:es_CO
    dc.relation.referencesCorona-Esquivel, R., Tritlla, J., Benavides-Muñoz, M., Piedad-Sánchez, N., & Ferrusquía-Villafranca, I. (2006). Geología, estructura y composición de los principales yacimientos de carbón mineral en México. Boletín de la Sociedad Geológica Mexicana, 58(1), 141-160. doi:doi.org/10.18268/bsgm2006v58n1a5es_CO
    dc.relation.referencesD. Eliche, Q., J.A. Sandalio, P., S. Martínez, M., & L. Pérez, V. J. (2018). Investigation of use of coal fly ash in eco-friendly construction materials: fired clay bricks and silica-calcareous non fired bricks. Ceramics International, 4400-4412.es_CO
    dc.relation.referencesDash, S., Kar, B., Mukherjee, P., & Mustakim, S. (2016). A comparison among the physico-chemical-mechanical of three potential aggregates fabricated from fly ash. J. Civ. Environ, 6. doi:10.4172/2165-784X.1000243es_CO
    dc.relation.referencesDe Rossi, A., Simão, L., Ribeiro, M., Hotza, D., & Moreira, R. (2020). Study of cure conditions effect on the properties of wood biomass fly ash geopolymers. Journal of Materials Research and Technology, 9(4). doi:doi.org/10.1016/j.jmrt.2020.05.047.es_CO
    dc.relation.referencesElmrabet, R., Harfi, A. E., & Youbi, M. E. (2019). Study of properties of fly ash cements. Materials Today: Proceedings, 13(3), 850-856. doi:10.1016/j.matpr.2019.04.048.es_CO
    dc.relation.referencesENVIS. (2016). Propertis of Fly Ash. WWW Document. Obtenido de http://cbrienvis.nic.in/Database/properties.htmles_CO
    dc.relation.referencesEsmeray, E., & Atıs, M. (2019). Utilization of sewage sludge, oven slag and fly ash in clay brick production. Construction and Building Materials, 194, 110-121. doi:10.1016/j.conbuildmat.2018.10.231.es_CO
    dc.relation.referencesGalimberti, M., Agnelli, S., & Cipolletti, V. (2017). 11 - Hybrid filler systems in rubber nanocomposites. En S. Thomas, & H. J. Maria (Edits.), Progress in Rubber Nanocomposites (págs. 349-414). Woodhead Publishing. doi:10.1016/B978-0-08-100409-8.00011-5.es_CO
    dc.relation.referencesGamarra Quintero, J. S., Díaz Gonzalez, C., & Pacheco Sandoval, L. (2021). Exergoeconomic analysis of a simulated system of biomass gasification-based power generation with surplus syngas storage in a rural zone in Colombia. Sustainable Energy Technologies and Assessments, 44(101075). doi:doi.org/10.1016/j.seta.2021.101075.es_CO
    dc.relation.referencesGan, Q., Xu, J., Peng, S., Yan, F., Wang, R., & Cai, G. (2021). Effects of heating temperature on pore structure evolution of briquette coals. Fuel, 296. doi:doi.org/10.1016/j.fuel.2021.120651es_CO
    dc.relation.referencesGil, I. d. (03 de Noviembre de 2014). Blog de tecnologia IES José Arecncibia Gil. Obtenido de https://www3.gobiernodecanarias.org/medusa/ecoblog/fsancac/2014/11/03/central-termoelectrica-esquemas/es_CO
    dc.relation.referencesGollakota, A., Volli, V., & Shu, C.-M. (2019). Progressive utilisation prospects of coal fly ash: A review. Science of The Total Environment, 672, 951-989. doi:10.1016/j.scitotenv.2019.03.337.es_CO
    dc.relation.referencesGómez Rojas, O., Blandón, A., Perea, C., & Mastalerz, M. (2020). Petrographic characterization, variations in chemistry, and paleoenvironmental interpretation of Colombian coals. International Journal of Coal Geology, 227. doi:doi.org/10.1016/j.coal.2020.103516es_CO
    dc.relation.referencesHoltrop, F., Visscher, K., Jupp, A., & Slootweg, J. (2020). Chapter Three - Steric attraction: A force to be reckoned with. En I. Williams, & N. Williams (Edits.), Advances in Physical Organic Chemistry (págs. 119-141). Academic Press. doi:doi.org/10.1016/bs.apoc.2020.08.001.es_CO
    dc.relation.referencesHuang, Q., Talan, D., Henao Restrepo, J., Restrepo Baena, O., Kecojevic, V., & Noble, A. (2019). Characterization study of rare earths, yttrium, and scandium from various Colombian coal samples and non-coal lithologies. International Journal of Coal Geology, 209, 14-26. doi:doi.org/10.1016/j.coal.2019.04.008.es_CO
    dc.relation.referencesInada, M., Tsujimoto, H., Eguchi, Y., Enomoto, N., & Hojo, J. (2005). Microwave-assisted zeolite synthesis from coal fly ash in hydrothermal process. Fuel, 84(12-13), 1482-1486.es_CO
    dc.relation.referencesJayaranjan, M. L., Hullebusch, E. D., & Annachhatre, A. P. (Abril de 2014). Reuse options for coal fired power plant bottom ash and fly ash. 13, 467–486. doi:https://doi.org/10.1007/s11157-014-9336-4es_CO
    dc.relation.referencesJu, T., Meng, Y., Han, S., Lin, L., & Jiang, J. (2021). On the state of the art of crystalline structure reconstruction of coal fly ash: A focus on zeolites. Chemosphere, 283(131010). doi:10.1016/j.chemosphere.2021.131010.es_CO
    dc.relation.referencesJu, T., Meng, Y., Han, S., Lin, L., & Jiang, J. (2021). On the state of the art of crystalline structure reconstruction of coal fly ash: A focus on zeolites. Chemosphere, 283(131010). doi:doi.org/10.1016/j.chemosphere.2021.131010.es_CO
    dc.relation.referencesJuan, R., Hernández, S., Andrés, J., & Ruiz, C. (2007). Synthesis of granular zeolitic materials with high cation exchange capacity from agglomerated coal fly ash. Fuel, 86(12–13), 1811-1821. doi:doi.org/10.1016/j.fuel.2007.01.011.es_CO
    dc.relation.referencesKim, B., Prezzi, M., & Salgado, R. (2005). Geotechnical properties of fly and bottom ash mixtures for use in highway embankments. J. Geotech. Geoenvironmental Eng, 131 , 914-924. doi:10.1061/(ASCE)1090-0241(2005)131:7(914es_CO
    dc.relation.referencesKoroneos, C., Fokaides, P., & Christoforou, E. (2014). Exergy analysis of a 300 MW lignite thermoelectric power plant. Energy, 75, 304-311. doi:doi.org/10.1016/j.energy.2014.07.079.es_CO
    dc.relation.referencesKoshy, N., Dondrob, K., Hu, L., Wen, Q., & Meegoda, J. N. (2019). Synthesis and characterization of geopolymers derived from coal gangue, fly ash and red mud. Construction and Building Materials, 206, 287-296. doi:10.1016/j.conbuildmat.2019.02.076.es_CO
    dc.relation.referencesKovler, K., Perevalov, A., Steiner, V., & Metzger, L. (s.f.). Radon exhalation of cementitious materials made with coal fly ash: Part 1 - Scientific background and testing of the cement and fly ash emanation. 82, 321-334. doi:10.1016/j.jenvrad.2005.02.004es_CO
    dc.relation.referencesKumar, P., Sharma, S., & Kandpal, B. (2020). Synthesis and mechanical characterization of biomass fly ash strengthened aluminium matrix composites. Materials Today: Proceedings, 26(2), 266-272. doi:doi.org/10.1016/j.matpr.2019.11.236.es_CO
    dc.relation.referencesLeón Delgado, E. (2006). La importancia del carbón mineral en el desarrollo. Revista Del Instituto De Investigación De La Facultad De Ingeniería Geológica, Minera, Metalúrgica Y Geográfica, 9(18), 91-97. doi:doi.org/10.15381/iigeo.v9i18.579es_CO
    dc.relation.referencesLi, C., Zhou, Y., Tian, Y., Zhao, Y., Wang, K., Li, G., & Chai, Y. (2019). Preparation and characterization of mullite whisker reinforced ceramics made from coal fly ash. Ceramics International, 45(5), 5613-5616. doi:10.1016/j.ceramint.2018.12.021.es_CO
    dc.relation.referencesLieberman, R. N., Knop, Y., Izquierdo, M., Palmerola, N. M., Rosa, J. d., Cohen, H., . . . Querol, X. (2018). Potential of hazardous waste encapsulation in concrete with coal fly ash and bivalve shells. Journal of Cleaner Production, 185, 870-881. doi:10.1016/j.jclepro.2018.03.079.es_CO
    dc.relation.referencesLin, T., Zhang, Y.-Q., Zhang, L., & Klappenberger, F. (2018). On-Surface Chemistry of Alkyne Derivatives. En K. Wandelt (Ed.), Encyclopedia of Interfacial Chemistry (págs. 324-334). Elsevier. doi:doi.org/10.1016/B978-0-12-409547-2.13087-2.es_CO
    dc.relation.referencesLiu, X., Jin, Z., Jing, Y., Fan, P., Qi, Z., Bao, W., . . . Dong, L. (1 de Junio de 2021). Review of the characteristics and graded utilisation of coal gasification slag. Chinese Journal of Chemical Engineering. doi:doi.org/10.1016/j.cjche.2021.05.007.es_CO
    dc.relation.referencesLuo, Y., Ma, S., Liu, C., Zhao, Z., Zheng, S., & Wang, X. (2017). Effect of particle size and alkali activation on coal fly ash and their role in sintered ceramic tiles. Journal of the European Ceramic Society, 37(4), 1847-1856. doi:10.1016/j.jeurceramsoc.2016.11.032.es_CO
    dc.relation.referencesMiao, G., Li, Z., Meng, Q., Li, J., & Yang, Y. (2021). Experimental research on the emission of higher molecular weight gases during coal oxidation. Fuel, 300. doi:doi.org/10.1016/j.fuel.2021.120906.es_CO
    dc.relation.referencesMoreira, F., Guerreiro, J., Brandão, L., & Sales, M. (2015). 1 - Synthesis of molecular biomimetics. En Biomimetic Technologies (págs. 3-31). In Woodhead Publishing Series in Electronic and Optical Materials. doi:doi.org/10.1016/B978-0-08-100249-0.00001-Xes_CO
    dc.relation.referencesMunawer, M. E. (2018). Human health and environmental impacts of coal combustion and post-combustion wastes. 17, 87-96.es_CO
    dc.relation.referencesMusyoka, N., Petrik, L., Balfour, G., Ndungu, P., Gitari, W., & Hums, E. (2012). Synthesis of zeolites from coal fly ash: Application of a statistical experimental design. Chemical Intermediates, 38(2), 471-486.es_CO
    dc.relation.referencesPinzón Cuta, C. H., Jaimes Alvarado, Y. D., & Ramón Valencia, B. (2019). Desarrollo de materiales compuestos de arcilla con cenizas volantes de la combustion del carbon de la central térmica Termotasajero. Pamplona.es_CO
    dc.relation.referencesPohanish, R. P. (2017). Sittig's Handbook of Toxic and Hazardous Chemicals and Carcinogens.es_CO
    dc.relation.referencesRakhi, R. (2019). 16 - Preparation and properties of manipulated carbon nanotube composites and applications. En A. Khan, M. Jawaid, Inamuddin, & A. Asiri (Edits.), Nanocarbon and its Composites (págs. 489-520). Woodhead Publishing. doi:doi.org/10.1016/B978-0-08-102509-3.00016-X.es_CO
    dc.relation.referencesRaza, J., Khoja, A., Naqvi, S., Mehran, M., Shakir, S., Liaquat, R., . . . Ali, G. (2021). Methane decomposition for hydrogen production over biomass fly ash-based CeO2 nanowires promoted cobalt catalyst. Journal of Environmental Chemical Engineering, 9(5). doi:doi.org/10.1016/j.jece.2021.105816.es_CO
    dc.relation.referencesRen, J., Hu, L., Dong, Z., Tang, L., Xing, F., & Liu, J. (2021). Effect of silica fume on the mechanical property and hydration characteristic of alkali-activated municipal solid waste incinerator (MSWI) fly ash. Journal of Cleaner Production, 295. doi:doi.org/10.1016/j.jclepro.2021.126317.es_CO
    dc.relation.referencesRipp, C., Hambitzer, G., Zinck, L., & Borck, M. (2009). SECONDARY BATTERIES – LITHIUM RECHARGEABLE SYSTEMS – LITHIUM-ION | Inorganic Electrolyte Batteries. En C. Ripp, G. Hambitzer, L. Zinck, M. Borck, & J. Garche (Ed.), Encyclopedia of Electrochemical Power Sources (págs. 383-392). Elsevier. doi:doi.org/10.1016/B978-044452745-5.00192-1.es_CO
    dc.relation.referencesSagastume Gutiérrez, A., Cabello Eras, J., Hens, L., & Vandecasteele, C. (2020). The energy potential of agriculture, agroindustrial, livestock, and slaughterhouse biomass wastes through direct combustion and anaerobic digestion. The case of Colombia. Journal of Cleaner Production, 269. doi:doi.org/10.1016/j.jclepro.2020.122317.es_CO
    dc.relation.referencesSaikia, B., Hower, J., Islam, N., Sharma, A., & Das, P. (2021). Geochemistry and petrology of coal and coal fly ash from a thermal power plant in India. Fuel, 291(120122). doi:doi.org/10.1016/j.fuel.2020.120122.es_CO
    dc.relation.referencesSengupta, J. (2018). Chapter 9 - Carbon Nanotube Fabrication at Industrial Scale: Opportunities and Challenges. En C. Hussain (Ed.), Handbook of Nanomaterials for Industrial Applications (págs. 172-194). Elsevier. doi:doi.org/10.1016/B978-0-12-813351-4.00010-9.es_CO
    dc.relation.referencesShen, Y., Hu, Y., Wang, M., Bao, W., Chang, L., & Xie, K. (2021). Speciation and thermal transformation of sulfur forms in high-sulfur coal and its utilization in coal-blending coking process: A review. Chinese Journal of Chemical Engineering. doi:doi.org/10.1016/j.cjche.2021.04.007.es_CO
    dc.relation.referencesSun, J., Zhou, H., Jiang, H., Zhang, W., & Mao, L. (2021). Recycling municipal solid waste incineration fly ash in fired bricks: An evaluation of physical-mechanical and environmental properties. Construction and Building Materials, 294. doi:doi.org/10.1016/j.conbuildmat.2021.123476.es_CO
    dc.relation.referencesSzerement, J., Szatanik-Kloc, A., Jarosz, R., Bajda, T., & Mierzwa-Hersztek, M. (2021). Contemporary applications of natural and synthetic zeolites from fly ash in agriculture and environmental protection. Journal of Cleaner Production, 311. doi:10.1016/j.jclepro.2021.127461.es_CO
    dc.relation.referencesTeixeira, E., Camões, A., Branco, F., Aguiar, J., & Fangueiro, R. (2019). Recycling of biomass and coal fly ash as cement replacement material and its effect on hydration and carbonation of concrete. Waste Management, 94, 39-48. doi:doi.org/10.1016/j.wasman.2019.05.044.es_CO
    dc.relation.referencesThomas, S., & Hanna, J. M. (2017). Progress in Rubber Nanocomposites. Composites Science and Engineering. doi:https://doi.org/10.1016/C2014-0-03997-4es_CO
    dc.relation.referencesTian, X., Rao, F., Li, C., Ge, W., Ortiz Lara, N., Song, S., & Xia, L. (2021). Solidification of municipal solid waste incineration fly ash and immobilization of heavy metals using waste glass in alkaline activation system. Chemosphere. doi:doi.org/10.1016/j.chemosphere.2021.131240.es_CO
    dc.relation.referencesTurner Fairbank Research Institute. (2016). A Report on User Guidelines for Waste and Byproduct Materials in Pavement Construction.es_CO
    dc.relation.referencesValeeva, D., Kunilovab, I., Alpatovc, A., Mikhailovad, A., Goldberge, M., & Kondratiev, A. (Mayo de 2019). Complex utilisation of ekibastuz brown coal fly ash: Iron & carbon separation and aluminum extraction. 218.es_CO
    dc.relation.referencesVargas, E., Ospina, L., Neves, M., Tarelho, L., & Nunes, M. (2021). Optimization of FAME production from blends of waste cooking oil and refined palm oil using biomass fly ash as a catalyst. Renewable Energy, 163, 1637-1647. doi:doi.org/10.1016/j.renene.2020.10.030.es_CO
    dc.relation.referencesVerma, D., & Goh, K. (2019). Chapter 11 - Functionalized Graphene-Based Nanocomposites for Energy Applications. En M. Jawaid, R. Bouhfid, & A. Kacem Qaiss (Edits.), Functionalized Graphene Nanocomposites and their Derivatives (págs. 219-243). Elsevier. doi:doi.org/10.1016/B978-0-12-814548-7.00011-8.es_CO
    dc.relation.referencesViswanathan, P., & Ramaraj, R. (2019). Chapter 2 - Functionalized Graphene Nanocomposites for Electrochemical Sensors. En A. Pandikumar, & P. Rameshkumar (Edits.), Graphene-Based Electrochemical Sensors for Biomolecules (págs. 43-65). Elsevier. doi:doi.org/10.1016/B978-0-12-815394-9.00002-9.es_CO
    dc.relation.referencesWandelt, K. (2018). Encyclopedia of Interfacial Chemistry Surface Science and Electrochemistry. Elsevier.es_CO
    dc.relation.referencesWang, N., Sun, X., Zhao, Q., Yang, Y., & Wang, P. (2020). Leachability and adverse effects of coal fly ash: A review. Journal of Hazardous Materials, 396. doi:10.1016/j.jhazmat.2020.122725.es_CO
    dc.relation.referencesWei, H., Zhang, Y., Cui, J., Han, L., & Li, Z. (2019). Engineering and environmental evaluation of silty clay modified by waste fly ash and oil shale ash as a roades_CO
    dc.relation.referencesYang, J., Su, Y., He, X., Tan, H., Jiang, Y., Zeng, L., & Strnadel, B. (2018). Pore structure evaluation of cementing composites blended with coal by-products: Calcined coal gangue and coal fly ash. Fuel Processing Technology, 181, 75-90. doi:10.1016/j.fuproc.2018.09.013.es_CO
    dc.relation.referencesZhao, S., Duan, Y., Li, Y., Liu, M., Lu, J., Ding, Y., . . . Du, M. (s.f.). Emission characteristic and transformation mechanism of hazardous trace elements in a coal-fired power plant. 214, 597-606. doi:10.1016/j.fuel.2017.09.093es_CO
    dc.relation.referencesZhou, E., Zhang, Y., Zhao, Y., Tian, Q., Chen, Z., lv, G., . . . Duan, C. (2021). Influence of bubbles on the segregated stability of fine coal in a vibrated dense medium gas–solid fluidized bed. Particuology. doi:doi.org/10.1016/j.partic.2021.03.018.es_CO
    dc.rights.accessrightshttp://purl.org/coar/access_right/c_abf2es_CO
    dc.type.coarversionhttp://purl.org/coar/resource_type/c_2df8fbb1es_CO
    Aparece en las colecciones: Ingeniería Civil

    Ficheros en este ítem:
    Fichero Descripción Tamaño Formato  
    Pinzón_Pérez_2021_TG.pdfPinzón_Pérez_2021_TG1,9 MBAdobe PDFVisualizar/Abrir


    Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.