Por favor, use este identificador para citar o enlazar este ítem:
http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/705
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | García Martínez, Pablo Fabián. | - |
dc.date.accessioned | 2022-05-12T16:24:34Z | - |
dc.date.available | 2018-03-19 | - |
dc.date.available | 2022-05-12T16:24:34Z | - |
dc.date.issued | 2018 | - |
dc.identifier.citation | García Martínez, P. F. (2017). Evaluación de Chlorophytum comosum como bioindicador y fitorremediador de la contaminación atmosférica presente en los espacios interiores de la Universidad de Pamplona, en Pamplona Norte de Santander, Colombia [Trabajo de Grado Pregrado, Universidad de Pamplona]. Repositorio Hulago Universidad de Pamplona. http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/705 | es_CO |
dc.identifier.uri | http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/705 | - |
dc.description | El estado de la calidad del aire es un factor importante que influye en la salud y en el bienestar de las personas. Su deterioro se relaciona con los efectos de las emisiones de contaminantes a la atmósfera, provenientes de fuentes de diferentes clases y orígenes, las cuales son causadas por la actividad humana o natural. La calidad del aire se determina por su composición, donde encontramos una mezcla de partículas líquidas y sólidas, de sustancias orgánicas e inorgánicas, que se encuentran en suspensión (material particulado), y los gases. Conocer el estado de la calidad del aire es fundamental para determinar las zonas en las cuales hay mayor potencial de afectación de la salud humana, que contaminantes, su distribución en el tiempo y en el espacio, y las fuentes de emisión asociadas a los mismos. Para medir y evaluar el impacto de la contaminación del aire en la población y en los recursos naturales es indispensable contar con los equipos, sistemas, redes y programas adecuados de medición, la cual representa altos costos. Existen diversos métodos de remediación para estos contaminantes, entre los cuales se encuentran los físicos, químicos y biológicos. Un método biológico es la fitorremediación, que utiliza las plantas para eliminar, degradar o almacenar contaminantes inorgánicos y orgánicos del suelo, del aire y del agua. La planta Chlorophytum comosum es una especie ornamental, empleada mucho como planta interior, se adapta a diferentes condiciones de luz, temperatura, humedad y puede sobrevivir a condiciones extremas. En este estudio se evaluó a Chlorophytum comosum como bioindicador y fitoremediador de la contaminación del aire interior en tres espacios de la universidad de Pamplona. Se identificó tanto en la raíz como en la hoja la presencia de hidrocarburos aromáticos policíclicos (HAPs) y metales pesados. Inicialmente la materia orgánica presente en la raíz y hoja de la planta se obtuvo por ultrasonido, se concentró por rotaevaporación, el extracto global se utilizó para la determinación de los HAPs por cromatografía de gases (FID). Los HAPs encontrados fueron fenantreno, antraceno, fluoranteno, pireno, benzo (a) antraceno, criseno, benzo (b) fluoranteno, benzo (k) fluoranteno, benzo (a) pireno, indeno (1,2,3-cd) pireno, dibenzo (a, h) antraceno. Para la identificación de metales, las plantas fueron sometidas a desecación por 48 horas, y fueron digeridas con HCl. Los extractos se analizaron por medio de Espectrofotómetros de Absorción Atómica. Los metales pesados presentes fueron Cr, Cu, Fe, Mn, Pb y Zn. Los (HAPs) y metales pesados encontrados en los extractos de las plantas analizados coinciden con los encontrados en filtros de equipos utilizados para monitoreo de la calidad del aire de ambientes exteriores de la Universidad de Pamplona en estudios anteriores. Por lo tanto, Chlorophytum comosum podría ser empleado como bioindicador y fitorremediador de los contaminantes presente en el aire de espacios interiores siendo una alternativa a bajo costo y sustentable. | es_CO |
dc.description.abstract | The state of air quality is an important factor that influences the health and well-being of people. Its deterioration is related to the effects of pollutant emissions into the atmosphere, from sources of different kinds and origins, which are caused by human or natural activity. The quality of the air is determined by its composition, where we find a mixture of liquid and solid particles, organic and inorganic substances, which are in suspension (particulate matter), and gases. Knowing the state of air quality is essential to determine the areas in which there is greater potential for affecting human health, than pollutants, their distribution over time and space, and the emission sources associated with them. To measure and evaluate the impact of air pollution on the population and on natural resources, it is essential to have the necessary equipment, systems, networks and measurement programs, which represent high costs. There are various methods of remediation for these pollutants, among which are the physical, chemical and biological. A biological method is phytoremediation, which uses plants to remove, degrade or store inorganic and organic contaminants in soil, air and water. The plant Chlorophytum comosum is an ornamental species, widely used as an indoor plant, it adapts to different conditions of light, temperature, humidity and can survive extreme conditions. In this study, Chlorophytum comosum was evaluated as a bioindicator and phytoremediator of indoor air pollution in three spaces of the University of Pamplona. The presence of polycyclic aromatic hydrocarbons (PAHs) and heavy metals was identified both in the root and in the leaf. Initially the organic matter present in the root and leaf of the plant was obtained by ultrasound, it was concentrated by rotaevaporation, the global extract was used for the determination of PAHs by gas chromatography (FID). The PAHs found were phenanthrene, anthracene, fluoranthene, pyrene, benzo (a) anthracene, chrysene, benzo (b) fluoranthene, benzo (k) fluoranthene, benzo (a) pyrene, indene (1,2,3-cd) pyrene, dibenzo (a, h) anthracene. For the identification of metals, the plants were subjected to drying for 48 hours, and were digested with HCl. The extracts were analyzed by Atomic Absorption Spectrophotometers. The heavy metals present were Cr, Cu, Fe, Mn, Pb and Zn. The (HAPs) and heavy metals found in the extracts of the analyzed plants coincide with those found in filters of equipment used to monitor the air quality of outdoor environments of the University of Pamplona in previous studies. Therefore, Chlorophytum comosum could be used as a bioindicator and phytoremediator of the pollutants present in the air of interior spaces, being an alternative at low cost and sustainable. | es_CO |
dc.format.extent | 62 | es_CO |
dc.format.mimetype | application/pdf | es_CO |
dc.language.iso | es | es_CO |
dc.publisher | Universidad de Pamplona-Facultad de Ciencias Básicas. | es_CO |
dc.subject | Fitorremediación de air interior. | es_CO |
dc.subject | Material Particulado. | es_CO |
dc.subject | HAPS. | es_CO |
dc.subject | Metales Pesados. | es_CO |
dc.subject | Chlorophytum comosum. | es_CO |
dc.title | Evaluación de Chlorophytum comosum como bioindicador y fitorremediador de la contaminación atmosférica presente en los espacios interiores de la Universidad de Pamplona, en Pamplona Norte de Santander, Colombia . | es_CO |
dc.type | http://purl.org/coar/resource_type/c_7a1f | es_CO |
dc.date.accepted | 2017-12-19 | - |
dc.relation.references | Fullerton, D. G., Bruce, N. & Gordon, . S. B., 2008. Indoor air pollution from biomass fuel smoke is a major health concern in the developing world. Transactions of the Royal Society of Tropical Medicine and Hygiene, 102(9), pp. 843-851. | es_CO |
dc.relation.references | Pachón, J. E. & Vela, H. S., 2008. Análisis espacio-temporal de la concentración de metales pesados en la localidad de Puente Aranda de Bogotá-Colombia. Revista Facultad de Ingeniería Universidad de Antioquia, Volumen 43, pp. 120-133. | es_CO |
dc.relation.references | Pandey, B. K., Vyas, S., Pandey, M. & Gaur, A., 2016. haracterisation of municipal solid waste generated from Bhopal, India. Current Science Perspectives, Volumen 2, pp. 52-56 | es_CO |
dc.relation.references | Peart, V., 1992. Indoor Air Quality in Florida: Houseplants to Fight Pollution. Department of Family, Youth and Community Services, Florida Cooperative Extension Service,, Volumen FCS 3208. | es_CO |
dc.relation.references | Quijano Parra, A., Quijano Vargas, . M. J. & Henao, J. A., 2010. Caracterización fisicoquímica del material particulado-fracción respirable PM2. 5 en Pamplona-Norte de Santander-Colombia.. Bistua: Revista de la Facultad de Ciencias Básicas, 8(1), pp. 53-66. | es_CO |
dc.relation.references | Tchounwou, P. B., Yedjou , . C. G., Patlolla, . A. K. & Sutton, D. J., 2012. Heavy metal toxicity and the environment.. Molecular, clinical and environmental toxicology, Volumen 101, pp. 133-164 | es_CO |
dc.relation.references | Wang, Y., Tao , J. & Dai , J., 2011. Lead tolerance and detoxification mechanism of Chlorophytum comosum.. Journal of Biotechnology, 10(65), pp. 1416-14521. | es_CO |
dc.relation.references | Zampolli, S. y otros, 2004. An electronic nose based on solid state sensor arrays for lowcost indoor air quality monitoring applications. Sensors and Actuators, Volumen 101, pp. 39-46 | es_CO |
dc.relation.references | Arias Martínez , S. A. y otros, 2010. Fitorremediación con humedales artificiales para el tratamiento de aguas residuales porcinas.. Informador técnico, Volumen 74, pp. 12-22. | es_CO |
dc.relation.references | Bercu, R., 2007. ANATOMICAL ASPECTS OF CHLOROPHYTUM COMOSUM (THUNB.) JACQUES „VARIEGATUM” (ANTHERICACEAE). pp. 463-468. | es_CO |
dc.relation.references | Brody, J. . E., 2001. Another source of air pollution: the home.. The New York Times, January.. | es_CO |
dc.relation.references | Brundrett, M. C., 2002. Coevolution of roots and mycorrhizas of land plants. New phytologist, 154(2), pp. 275-304. | es_CO |
dc.relation.references | Carazo Fernández, L., Fernández Alvarez, R., González Barcala, F. J. & Rodríguez Portal, J. A., 2013. Contaminación del aire interior y su impacto en la patología respiratoria. Archivos de Bronconeumología, 49(1), pp. 22-27. Chithra, V. S. & Nagendra, S., 2013. Chemical and morphological characteristics of indoor and outdoor particulate matter in an urban environment. Atmospheric Environment, Volumen 77, pp. 579-587. | es_CO |
dc.relation.references | Chong, N. S., Sivaramakrishnan, K., Wells, M. & Jones, K., 2002. Characterization of inhalable particulate matter in ambient air by scanning electron microscopy and energydispersive X-ray analysis. Electronic Journal of Environmental, Agricultural and Food Chemistry, 1(3), pp. 145-164. | es_CO |
dc.relation.references | Cornejo, J. J., Muñoz, F. G., Ma, C. Y. & Stewart, A. J., 1999. Studies on the decontamination of air by plants. Ecotoxicology. Ecotoxicology, 8(4), pp. 311-320. | es_CO |
dc.relation.references | Costa, P. C. & James, R. W., 1995. onstructive use of vegetation in office buildings. In Proceedings the plants for people symposium, Volumen 23, pp. 1-23. | es_CO |
dc.relation.references | D’Amato , G., Liiccardi G, G., D’Amato , M. & M, Cazzola, M., 2002. Outdoor air pollution, climatic changes and allergic bronchial asthma. Eur Respir J, Volumen 20, pp. 763-776. | es_CO |
dc.relation.references | Daisey , J. M., Angell, W. J. & Apte, M. G., 2003. Indoor air quality, ventilation and health symptoms in schools: an analysis of existing information. Indoor air, 13(1), pp. 53-64. | es_CO |
dc.relation.references | Daisey, J. M., Angell, W. J. & Apte, M. G., 2003. Indoor air quality, ventilation and health symptoms in schools: an analysis of existing information. Indoor ai. Indoor Air, 13(1), pp. 53-64. | es_CO |
dc.relation.references | Dzierżanowski, K. y otros, 2011. Deposition of particulate matter of different size fractions on leaf surfaces and in waxes of urban forest species.. International Journal of Phytoremediation, 13(10), pp. 1037-1046. | es_CO |
dc.relation.references | EEA, 2207. Air pollution in Europe 1990–2004. Report No 2. | es_CO |
dc.relation.references | Farmer, A., 2002. Effects of particulates. Air pollution and plant life, Volumen 2, p. 187– 199. | es_CO |
dc.relation.references | Gavidia, Gavidia, T., Proncuk, J. & Sly, P. D., 2009. Impactos ambientales sobre la salud respiratoria de los niños: Carga global de las enfermedades respiratorias pediátricas ligada al ambiente.. Revista chilena de enfermedades respiratorias, 25(2), pp. 99-108. | es_CO |
dc.relation.references | Gawrońska, H. & Bakera, B., 2015. Phytoremediation of particulate matter from indoor air by Chlorophytum comosum L. plants.. Air Quality, Atmosphere & Health, 8(3), pp. 265272. | es_CO |
dc.relation.references | Gawronski, S. W. y otros, 2017. Plants in Air Phytoremediation. Advances in Botanical Research, Volumen 83, pp. 319-346. | es_CO |
dc.relation.references | Giese, M. y otros, 1994. Detoxification of formaldehyde by the spider plant (Chlorophytum comosum) and by soybean (Glycine max L.) cell-suspension culture.. Plant Physiol, Volumen 104, p. 1301–1309. | es_CO |
dc.relation.references | Giese, M., Doranth, . U. B., Langebartels, C. & H. Sandermann , J., 1994. Detoxification of formaldehyde by the spider plant (Chlorophytum comosum L.) and by soybean (Glycine max L.) cell-suspension cultures.. Plant Physiology, 104(4), pp. 1301-1309|. | es_CO |
dc.relation.references | Gil, L., Cáceres, . D., Quiñones, . L. & Adonis, M., 1997. Contaminación del aire en espacios exteriores e interiores en la ciudad de Temuco. Ciencia y ambiente, 13(1), pp. 7078. | es_CO |
dc.relation.references | Gómez, H. y otros, 2013. Líquenes como biomonitores de la contaminación atmosférica por hidrocarburos aromáticos policíclicos (HAP). Revisión. Revista de la Facultad de Ingeniería Universidad Central de Venezuela, 28(2), pp. 45-58. | es_CO |
dc.relation.references | Guieysse, B. y otros, 2008. Biological treatment of indoor air for VOC removal: Potential and challenges. Biotechnology Advances , Volumen 26, pp. 398-410. | es_CO |
dc.relation.references | Irga, P. J., Paull, N. J., Abdo, P. & Torpy, F. R., 2017. An assessment of the atmospheric particle removal efficiency of an in-room botanical biofilter system. Building and Environment, Volumen 115, pp. 281-290. | es_CO |
dc.relation.references | Kaupp , H., Blumenstock , M. & McLachlan, M. S., 2002. Retention and mobility of atmospheric particle-associated organic pollutant PCDD/Fs and PAHs in maize leaves. New Phytologist, Volumen 148, pp. 443-480. | es_CO |
dc.relation.references | Kaushik, N., 2005. Saponins of Chlorophytum Species. Phytochemistry Reviews, 4(2), pp. 191-196 | es_CO |
dc.relation.references | Kleeberger , S. R., 2003. Genetic aspects of susceptibility to air pollution. Eur Respir J, Volumen 21, pp. 52-56 | es_CO |
dc.relation.references | Kosiba , P., 2008. Variability of morphometric leaf traits in small-leaved linden (Tilia cordata Mill.) under the influence of air pollution.. Acta Soc. Bot. Pol, 77(2), pp. 125-137. | es_CO |
dc.relation.references | Lehndorff, E. & Schwark, L., 2004. Biomonitoring of air quality in the Cologne Conurbation using pine needles as a passive sampler—Part II: polycyclic aromatic hydrocarbons (PAH).. Atmospheric Environment,, 38(23), pp. 3793-3808. | es_CO |
dc.relation.references | Li, Q. y otros, 2017. Dependence of Plant Uptake and Diffusion of Polycyclic Aromatic Hydrocarbons on the Leaf Surface Morphology and Micro-structures of Cuticular Waxes. Scientific Reports, Volumen 7, p. 46235. | es_CO |
dc.relation.references | Mastandrea, C. y otros, 2005. Hidrocarburos aromáticos policíclicos. Riesgos para la salud y marcadores biológicos. Acta bioquímica clínica latinoamericana, 39(1), pp. 27-36. | es_CO |
dc.relation.references | Meléndez Gélvez, I., Martínez Montañez, M. L. & Quijano Parra, A., 2012. Actividad mutagénica y genotóxica en el material particuladofracción respirable MP2,5 en Pamplona, Norte de Santander, Colombia. Iatreia , 25(4), pp. 347-356. | es_CO |
dc.relation.references | Molina, 2004. Megacities and atmospheric pollution. Journal of the Air & Waste Management Association, 54(6), pp. 644-680. | es_CO |
dc.relation.references | Noriega, P. y otros, 2008. Estudio de la concentración de cadmio y plomo en el aire de la ciudad de Quito, empleando briofitas como biomonitores.. La Granja, 8(2), pp. 17-24 | es_CO |
dc.relation.references | Pandey, A. K., Pandey, M. & Tripathi, B. D., 2015. Air Pollution Tolerance Index of climber plant species to develop Vertical Greenery Systems in a polluted tropical city. Landscape and Urban Planning, Volumen 144, pp. 119-127. | es_CO |
dc.relation.references | Philips, W. S., 1963. Depth of roots in soil. Ecology, 44(2), p. 424. | es_CO |
dc.relation.references | Popek, R., Gawronska, H. & Gawronski, S. W., 2015. The level of particulate matter on foliage depends on the distance from the source of emission. International journal of phytoremediation, 17(12), pp. 1262-1268 | es_CO |
dc.relation.references | Popek, R., Łukowski, A., Bates, C. & Oleksyn, J., 2017. Particulate matter, heavy metals and polycyclic aromatic hydrocarbons accumulation on the leaves of Tilia cordata Mill. in five Polish cities with different level of air pollution.. International Journal of Phytoremediation. | es_CO |
dc.relation.references | Pough , T., MacKenzie , A. R., Whyatt , J. D. & Hevitt , N., 2012. Effectiveness of green infrastructure for improvement of air quality in urban street canyons. Environ Sci Technol, Volumen 46, pp. 7692-7699. | es_CO |
dc.relation.references | Quijano, M. J., Quijano, A. & Meléndez, I., 2014. Identificación de hidrocarburos aromáticos policíclicos (HAPs) en el PM2. 5 del aire de Pamplona-Colombia.. Revista UDCA Actualidad & Divulgación Científica, 17(1), pp. 25-33. | es_CO |
dc.relation.references | Quintana, N. L. & Olivero Vebel, J., 2008. Fitorremediación: una alternativa para mitigar los procesos de contaminación ambiental.. Unicarta, pp. 75-79. | es_CO |
dc.relation.references | Saravita, J. y otros, 2013. articulate matter containing environmentally persistent free radicals and adverse infant respiratory health effects: a review.. Biochem Mol Toxicol, Volumen 27, pp. 56-68. | es_CO |
dc.relation.references | Schwitzguébel , J. P., 2000. POTENTIAL OF PHYTOREMEDIATION, AN EMERGING GREEN. Ecosystem Service and Sustainable Watershed Management in North China, pp. 23-25. | es_CO |
dc.relation.references | Shi, J. y otros, 2017. Quantifying the particulate matter accumulation on leaf surfaces of urban plants in Beijing, China. Atmospheric Pollution Research, pp. 1-7. | es_CO |
dc.relation.references | Silva, R. A., Wes, J. J., Zhang, Y. & Anenberg, S. C., 2013. Global premature mortality due to anthropogenic outdoor air pollution and the contribution of past climate change. ENVIRONMENTAL RESEARCH LETTERS, 8(3), pp. 1-11. | es_CO |
dc.relation.references | Soreanu, G., Michael, D. & Darlington, A., 2013. Botanical biofiltration of indoor gaseous pollutants – A mini-review. Chemical Engineering Journal, p. 585–594. | es_CO |
dc.relation.references | Sorkhoh , N. A. y otros, 2001. ioremediation of volatile oil hydrocarbons by epiphytic bacteria associated with American grass (Cynodon sp.) and broad bean (Vicia faba) leaves.. Int Biodeter Biodegrad, Volumen 65, pp. 797-802. | es_CO |
dc.relation.references | Springer, M., 2010. Biomonitoreo acuático. Biol. Trop, 58(4), pp. 53-59. | es_CO |
dc.relation.references | Sun, F. y otros, 2014. Deposition Velocity of PM2.5 in the Winter and Spring above Deciduous and Coniferous Forests in Beijing, China. PLoS One, 9(5). | es_CO |
dc.relation.references | Torpy, F. R., Zavattaro, M. & Irga, P. J., 2016. Green wall technology for the phytoremediation of indoor air: a system for the reduction of high CO2 concentrations.. Air Quality, Atmosphere & Health, 10(5), pp. 1-11. | es_CO |
dc.relation.references | Torpy, F. R., Irga, P. J. & Burchett, M. D., 2014. Reducing Indoor Air Pollutants Through Biotechnology. Biotechnologies and Biomimetics for Civil Engineering, pp. 181-210. | es_CO |
dc.relation.references | Vidali M., e. a., 2001. Biorremediación. una visión general.. Química Pura y Aplicada,, 73(7), pp. 1163-1172. | es_CO |
dc.relation.references | Volk, H. E., Lurmann, F. & Penfold, B., 2013. Traffic-related air pollution, particulate matter, and autism. JAMA psychiatr, 70(1), pp. 71-77. | es_CO |
dc.relation.references | Voutsa , D. & Samara , C., 2002. Labile and bioaccessible fractions of heavy metals in the airborne particulate matter from urban and industrial areas. Atmos Environ, Volumen 36, p. 3583–3590. | es_CO |
dc.relation.references | Wolverton , B. C., 2008. How to grow fresh air—50 houseplants that purify your home or office. Cathy Meeus (ed) Weidenfeld & Nicolson, pp. 8-27. | es_CO |
dc.relation.references | Wolverton , B. C., 2008. How to grow fresh air—50 houseplants that purify your home or office.. Cathy Meeus (ed) Weidenfeld & Nicolson,, pp. 8-27. | es_CO |
dc.relation.references | Wolverton, B. C. & Wolverton , J. D., 1993. Plants and soil microorganisms: removal of formaldehyde, xylene and ammonia from the indoor environment. J Miss Acad Sci, 38(11), pp. 11-15. | es_CO |
dc.relation.references | Wood, R. A. y otros, 2006. The Potted-Plant Microcosm Substantially Reduces Indoor Air VOC Pollution: I. Office Field-Study. Water, Air, and Soil Pollution, 175(1), pp. 163-180. | es_CO |
dc.relation.references | Wood, R. A., 2003. Improving the indoor environment for health, well-being and productivity. Greening Cities: a new urban ecology. . Australian Technology Park, Sydney, 30(4). | es_CO |
dc.relation.references | Wood, R. A. y otros, 2002. Potted-plant/growth media interactions and capacities for removal of volatiles from indoor air. The Journal of Horticultural Science and Biotechnology, 77(1), pp. 120-129. | es_CO |
dc.relation.references | Yang, J., McBride, J., Zhou, J. & Sun, Z., 2005. The urban forest in Beijing and its role in air pollution reduction. Urban Forestry & Urban Greening, 3(2), pp. 65-78. | es_CO |
dc.relation.references | Yan, J. y otros, 2016. A novel approach for quantifying particulate matter distribution on leaf surface by combining SEM and object-based image analysis. Remote Sensing of Environment, Volumen 173, pp. 156-161. | es_CO |
dc.rights.accessrights | http://purl.org/coar/access_right/c_abf2 | es_CO |
dc.type.coarversion | http://purl.org/coar/resource_type/c_2df8fbb1 | es_CO |
Aparece en las colecciones: | Biología |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
Garcia_2017_TG.pdf | Garcia_2017_TG | 2,84 MB | Adobe PDF | Visualizar/Abrir |
Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.