• Repositorio Institucional Universidad de Pamplona
  • Trabajos de pregrado y especialización
  • Facultad de Ciencias Básicas
  • Microbiología
  • Por favor, use este identificador para citar o enlazar este ítem: http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/5929
    Registro completo de metadatos
    Campo DC Valor Lengua/Idioma
    dc.contributor.authorAraque Gelves, Dayanna Isabel.-
    dc.date.accessioned2023-02-16T20:14:35Z-
    dc.date.available2019-06-18-
    dc.date.available2023-02-16T20:14:35Z-
    dc.date.issued2019-
    dc.identifier.citationAraque Gelves, D. I. (2019). Aproximación a la diversidad de actinobacterias cultivables presentes en los nódulos radiculares de lupinussp y exploración preliminar de su potencial biotecnológico [Trabajo de Grado Pregrado, Universidad de Pamplona]. Repositorio Hulago Universidad de Pamplona. http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/5929es_CO
    dc.identifier.urihttp://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/5929-
    dc.descriptionLa autora no proporciona la información sobre este ítem.es_CO
    dc.description.abstractLa autora no proporciona la información sobre este ítem.es_CO
    dc.format.extent141es_CO
    dc.format.mimetypeapplication/pdfes_CO
    dc.language.isoeses_CO
    dc.publisherUniversidad de Pamplona - Facultad de Ciencias Básicas.es_CO
    dc.subjectLa autora no proporciona la información sobre este ítem.es_CO
    dc.titleAproximación a la diversidad de actinobacterias cultivables presentes en los nódulos radiculares de lupinussp y exploración preliminar de su potencial biotecnológico.es_CO
    dc.typehttp://purl.org/coar/resource_type/c_7a1fes_CO
    dc.date.accepted2019-03-18-
    dc.relation.referencesAguilera López, J., Vries, E., Espinosa Restrepo, M. T., Henríquez Mendoza, G. M., Marín, V. Y., Pardo Ramos, C., … Wisner, C. (2017). Handbook of Spatial Statistics. Journal of Chemical Information and Modeling (Vol. 53). https://doi.org/10.1017/CBO9781107415324.004es_CO
    dc.relation.referencesAlós, J.-I. (2014). Resistencia bacteriana a los antibióticos: una crisis global. Enfermedades Infecciosas y Microbiología Clínica, 33(10), 692–699. https://doi.org/10.1016/j.eimc.2014.10.004es_CO
    dc.relation.referencesArenas Sosa, I., & Lopez Sanchez, J. L. (2004). Espectrofotometría de absorción. Retrieved from http://www.ibt.unam.mx/computo/pdfs/met/espectrometria_de_absorcion.pdfes_CO
    dc.relation.referencesBarletta Farías, C. R., Pérez Ponce, L. J., Castro Vega, G., Pujol Pérez, M., Barletta Del Castillo, J. E., & Dueñas Pérez, Y. (2018). Acinetobacter baumannii multirresistente: un reto para la terapéutica actual Multidrug-resistant Acinetobacter baumannii: a challange for current therapeutic, 4-05.es_CO
    dc.relation.referencesBarney Duran, V. E. (2011). Biodiversidad y ecogeografía del género.es_CO
    dc.relation.referencesBelghit, S., Driche, E. H., Bijani, C., Zitouni, A., Sabaou, N., Badji, B., & Mathieu, F. (2016). Activity of 2,4-Di-tert-butylphenol produced by a strain of Streptomyces mutabilis isolated from a Saharan soil against Candida albicans and other pathogenic fungi. Journal de Mycologie Medicale, 26(2), 160–169. https://doi.org/10.1016/j.mycmed.2016.03.001es_CO
    dc.relation.referencesCarmona, I. (2013). De colorantes sintéticos a naturales en la industria alimentaria. Agrimundo, ODEPA, Ministerio de Agricultura Chile (Vol. Reporte 5).es_CO
    dc.relation.referencesCarro, L., Riesco, R., Spröer, C., Trujillo, M. E., Trujillo, M. E., Deutsche, D., & Mikroorganismen, S. Von. (2019). Micromonospora noduli sp . nov . and Micromonospora vinacea sp . nov ., isolated from Pisum sativum nodules Printed in Great Britain, (2016), 3509–3514. https://doi.org/10.1099/ijsem.0.001231es_CO
    dc.relation.referencesCarro, L., Spröer, C., Alonso, P., & Trujillo, M. E. (2012). Diversity of Micromonospora strains isolated from nitrogen fixing nodules and rhizosphere of Pisum sativum analyzed by multilocus sequence analysis ଝ. Systematic and Applied Microbiology, 35(2), 73–80. https://doi.org/10.1016/j.syapm.2011.11.003es_CO
    dc.relation.referencesCarro, L., Veyisoglu, A., Riesco, R., Spröer, C., Klenk, H., Sahin, N., & Trujillo, M. E. (2019). Micromonospora phytophila sp . nov . and Micromonospora luteiviridis sp . nov ., isolated as natural inhabitants of plant nodules, 248–253. https://doi.org/10.1099/ijsem.0.002490es_CO
    dc.relation.referencesCastillo, G., Michelena, G., & Nogueiras, C. (2010). Caracterización cromatográfica y espectroscopica de pigmento rojo obtenido a partir de Bothrydiplodia theobromae.es_CO
    dc.relation.referencesDholakiya, R. N., Kumar, R., Mishra, A., Mody, K. H., & Jha, B. (2017). Antibacterial and antioxidant activities of novel actinobacteria strain isolated from Gulf of Khambhat, Gujarat. Frontiers in Microbiology, 8(DEC), 1–16. https://doi.org/10.3389/fmicb.2017.02420es_CO
    dc.relation.referencesEscalante, B., Arregui, M., Muñoz, M., & Olivera, S. (2007). Endocarditis nosocomial por Klebsiella oxytoca, 24(10), 563–564.es_CO
    dc.relation.referencesFatahi-Bafghi, M., Rasouli-nasab, M., Yasliani-Fard, S., Habibnia, S., Gharehbaghi, F., Eshraghi, S. S., … Heidarieh, P. (2018). Diversity and Antimicrobial Activity of Actinomycetes Isolated from Lut Desert: The Extremely Arid Climatic Zones of Iran. International Journal of Peptide Research and Therapeutics, 0(0), 0. https://doi.org/10.1007/s10989-018-9767-9es_CO
    dc.relation.referencesFuenzalida, V. G., & Ramos, F. C. (n.d.). AISLAMIENTO Y CARACTERIZACIÓN DE ACTINOBACTERIAS DE BIOTECNOLOGÍA, 1–7.es_CO
    dc.relation.referencesGanapathy, A., & Natesan, S. (2018). Metabolic Potential and Biotechnological Importance of Plant Associated Endophytic Actinobacteria. New and Future Developments in Microbial Biotechnology and Bioengineering: Actinobacteria: Diversity and Biotechnological Applications. Elsevier B.V. https://doi.org/10.1016/B978-0-444-63994-3.00014-Xes_CO
    dc.relation.referencesGhodhbane-Gtari, F., Essoussi, I., Chattaoui, M., Chouaia, B., Jaouani, A., Daffonchio, D., … Gtari, M. (2010). Isolation and characterization of non-Frankia actinobacteria from root nodules of alnus glutinosa, casuarina glauca and elaeagnus angustifolia. Symbiosis, 50(1–2), 51–57. https://doi.org/10.1007/s13199-009-0029-7es_CO
    dc.relation.referencesGolinska, P., Wypij, M., Agarkar, G., Rathod, D., Dahm, H., & Rai, M. (2015). Endophytic actinobacteria of medicinal plants: Diversity and bioactivity. Antonie van Leeuwenhoek, International Journal of General and Molecular Microbiology, 108(2), 267–289. https://doi.org/10.1007/s10482-015-0502-7es_CO
    dc.relation.referencesGoodfellow, M., & Fiedler, H. P. (2010). A guide to successful bioprospecting: Informed by actinobacterial systematics. Antonie van Leeuwenhoek, International Journal of General and Molecular Microbiology, 98(2), 119–142. https://doi.org/10.1007/s10482-010-9460-2es_CO
    dc.relation.referencesGoodfellow, M., Kampfer, P., Busse, H., Trujillp, M. E., Suzuki, K., Ludwing, W., & Whitman, W. B. (2012). Bergey´s Manual of Systematics Bacteriology (Vol. 3, p. 33).es_CO
    dc.relation.referencesGuevara, B. L. L. (2017). Aislamiento y caracterización morfológica de cepas nativas de actinomicetos y su actividad antagónica contra Ralstonia solanacearum, Escherichia coli, Staphylococcus aureus y Salmonella sp. Escuela Agrícuola Panamericana, 30.es_CO
    dc.relation.referencesHarir, M., Miloud, B., Zohra, F., García-Arenzana, J. M., Veloso, A., & Rodríguez-Couto, S. (2017). Isolation and Characterization of Actinobacteria from Algerian Sahara Soils with Antimicrobial Activities. International Journal of Molecular and Cellular Medicine, 6(2), 109–120. https://doi.org/10.22088/acadpub.BUMS.6.2.5es_CO
    dc.relation.referencesHurtado, J., Pacheco, S. L., Sheen, P., & Ugarte, D. (2018). Actinobacteria Isolated From Mineral Ores in Peru. Journal of Microbiology, Biotechnology and Food Sciences, 7(3), 366–370. https://doi.org/10.15414/jmbfs.2018.7.4.366-370es_CO
    dc.relation.referencesIniyan, A. M., Kannan, R. R., & Vincent, S. G. P. (2017). Characterization of Culturable Actinomycetes Associated with Halophytic Rhizosphere as Potential Source of Antibiotics. Proceedings of the National Academy of Sciences India Section B - Biological Sciences, 87(1), 233–242. https://doi.org/10.1007/s40011-015-0601-2es_CO
    dc.relation.referencesJiang, Z. K., Tuo, L., Huang, D. L., Osterman, I. A., Tyurin, A. P., Liu, S. W., … Sun, C. H. (2018). Diversity, novelty, and antimicrobial activity of endophytic actinobacteria from mangrove plants in Beilun Estuary National Nature Reserve of Guangxi, China. Frontiers in Microbiology, 9(MAY), 1–11. https://doi.org/10.3389/fmicb.2018.00868es_CO
    dc.relation.referencesJose, V. L. L., Suzana, C. S. M., Katia, A. de S., Marcos, A. S., & Claudia, M. M. (2017). Characterization of actinobacteria from the semiarid region, and their antagonistic effect on strains of rhizobia. African Journal of Biotechnology, 16(11), 499–507. https://doi.org/10.5897/AJB2016.15724es_CO
    dc.relation.referencesKim, T. U., Cho, S. H., Han, J. H., Shin, Y. M., Lee, H. B., & Kim, S. B. (2012). Diversity and physiological properties of root endophytic actinobacteria in native herbaceous plants of Korea. Journal of Microbiology, 50(1), 50–57. https://doi.org/10.1007/s12275-012-1417-xes_CO
    dc.relation.referencesLe, X. H., Franco, C. M. M., Ballard, R. A., & Drew, E. A. (2016). Isolation and characterisation of endophytic actinobacteria and their effect on the early growth and nodulation of lucerne (Medicago sativa L.). Plant and Soil, 405(1–2), 13–24. https://doi.org/10.1007/s11104-015- 2652-9es_CO
    dc.relation.referencesLee, L. H., Chan, K. G., Stach, J., Wellington, E. M. H., & Goh, B. H. (2018). Editorial: The search for biological active agent(s) from actinobacteria. Frontiers in Microbiology, 9(MAY), 1–4. https://doi.org/10.3389/fmicb.2018.00824es_CO
    dc.relation.referencesLeón, J., Aponte, J. J., Cuadra, D. L., Galindo, N., Jaramillo, L., Vallejo, M., & Marguet, E. (2016). Actinomicetos aislados de Argopecten purpuratus productores de enzimas extracelulares y con actividad inhibitoria de patógenos marinos. Revista de Biologia Marina y Oceanografia, 51(1), 69–80. https://doi.org/10.4067/S0718-19572016000100007es_CO
    dc.relation.referencesLeón, J., Aponte, J. J., Rojas, R., Cuadra, D., Ayala, N., Toms, G., & Guerrero, M. (2011). Estudio de actinomicetos marinos aislados de la costa central del Per?? y su actividad antibacteriana frente a staphylococcus aureus meticilina resistentes y enterococcus faecalis vancomicina resistentes. Revista Peruana de Medicina Experimental y Salud Publica, 28(2), 237–246.es_CO
    dc.relation.referencesLeon, J., Liza, L., Soto, I., Cuadra, D., Patino, L., & Zerpa, R. (2007). Bioactives actinomycetes ofmarine sediment from the central coast of Peru. The Peruvian Journal of Biology, 14(2), 259–270.es_CO
    dc.relation.referencesLluvia Itzel López, L., Leyva, E., & de la Cruz, R. F. G. (2011). Las naftoquinonas: Más que pigmentos naturals. Revista Mexicana de Ciencias Farmaceuticas, 42(1), 6–17.es_CO
    dc.relation.referencesMartinez Hidalgo, P., Galindo Villardón, P., Trujillo, M. E., M, J., & Martinez Molina, E. (2014). Micromonospora from nitrogen fixing nodules of alfalfa ( Medicago sativa L .). A. https://doi.org/10.1038/srep06389es_CO
    dc.relation.referencesMartínez, Z. E., Aguilar, E. E. Q., & Enríquez, G. R. (2017). Potencial biotecnológico de las actinobacterias aisladas de suelos de México como fuente natural de moléculas bioactivas : compuestos antimicrobianos y enzimas hidrolíticas, 21(December), 39–51.es_CO
    dc.relation.referencesMason, C., Cheeptham, N., Riquelme, C., Charlop-Powers, Z., Miller, A. Z., Enes Dapkevicius, M. de L., & Brady, S. (2016). Biotechnological potential of Actinobacteria from Canadian and Azorean volcanic caves. Applied Microbiology and Biotechnology, 101(2), 843–857. https://doi.org/10.1007/s00253-016-7932-7es_CO
    dc.relation.referencesMazutti, M. A., Tres, M. V., Confortin, T. C., Todero, I., Zabot, G. L., Luft, L., & Soares, J. F. (2018). Importance of Lupinus albescens in agricultural and food-related areas: A review. 3 Biotech, 8(10), 1–10. https://doi.org/10.1007/s13205-018-1474-xes_CO
    dc.relation.referencesMingma, R., Pathom-aree, W., Trakulnaleamsai, S., Thamchaipenet, A., & Duangmal, K. (2014). Isolation of rhizospheric and roots endophytic actinomycetes from Leguminosae plant and their activities to inhibit soybean pathogen, Xanthomonas campestris pv. glycine. World Journal of Microbiology and Biotechnology, 30(1), 271–280. https://doi.org/10.1007/s11274- 013-1451-9es_CO
    dc.relation.referencesMorvan, A., Moubareck, C., Leclercq, A., Hervé-Bazin, M., Bremont, S., Lecuit, M., … Le Monnier, A. (2010). Antimicrobial resistance of Listeria monocytogenes strains isolated from humans in France. Antimicrobial Agents and Chemotherapy, 54(6), 2728–2731. https://doi.org/10.1128/AAC.01557-09es_CO
    dc.relation.referencesNgamwonglumlert, L., Devahastin, S., & Chiewchan, N. (2017). Natural colorants: Pigment stability and extraction yield enhancement via utilization of appropriate pretreatment and extraction methods. Critical Reviews in Food Science and Nutrition, 57(15), 3243–3259. https://doi.org/10.1080/10408398.2015.1109498es_CO
    dc.relation.referencesNie, Y., Wu, Y., Wang, C., Lin, R., Xie, Y., Fang, D., … Lian, Y. (2018). Structure elucidation and antitumour activity of a new macrolactam produced by marine-derived actinomycete Micromonospora sp . FIM05328. Natural Product Research, 6419, 1–6. https://doi.org/10.1080/14786419.2017.1366479es_CO
    dc.relation.referencesNouioui, I., Gueddou, A., Ghodhbane-gtari, F., Rhode, M., Gtari, M., & Klenk, H. (2017). Frankia asymbiotica sp . nov ., a non-infective actinobacterium isolated from Morella californica root nodule, 4897–4901. https://doi.org/10.1099/ijsem.0.002153es_CO
    dc.relation.referencesNouioui, I., Maria, F. G., Rohde, M. M., Tisa, L. S., & Gtari, M. (2017). Frankia inefficax sp . nov ., an actinobacterial endophyte inducing ineffective , non nitrogen-fixing , root nodules on its actinorhizal host plants. Antonie van Leeuwenhoek, 110(3), 313–320. https://doi.org/10.1007/s10482-016-0801-7es_CO
    dc.relation.referencesNouioui, I., Montero, C., Faten, C., Gtari, G., Rohde, M., Tisa, L. S., … Maher, K. (2017). Frankia discariae sp . nov .: an infective and effective microsymbiont isolated from the root nodule of Discaria trinervis. Archives of Microbiology, 0(0), 0. https://doi.org/10.1007/s00203-017-1337- 6es_CO
    dc.relation.referencesOrden-Martínez, B., Martínez-Ruiz, R., & Millán-Pérez, R. (2008). €Qué estamos aprendiendo de Staphylococcus saprophyticus? Enfermedades Infecciosas y Microbiología Clínica, 26(8), 495– 499. https://doi.org/10.1157/13127454es_CO
    dc.relation.referencesParada, R. B., Marguet, E. R., & Vallejo, M. (2017). Aislamiento y caracterización parcial de actinomicetos de suelos con actividad antimicrobiana contra bacterias multidrogo-resistentes Isolation and partial characterization of soils actinomycetes with antimicrobial activity against multidrug-resistant bac. Revista Colombiana Biotecnología, XIX(2), 15–23. https://doi.org/10.15446/rev.colomb.biote.v19n2.64098es_CO
    dc.relation.referencesPathalam, G., Rajendran, H. A. D., Appadurai, D. R., Gandhi, M. R., Michael, G. P., Savarimuthu, I., & Naif, A. A.-D. (2017). Isolation and molecular characterization of actinomycetes with antimicrobial and mosquito larvicidal properties. Beni-Suef University Journal of Basic and Applied Sciences, 6(2), 209–217. https://doi.org/10.1016/j.bjbas.2017.04.002es_CO
    dc.relation.referencesPokharel, A., Mirza, B. S., & Dawson, J. O. (2011). Frankia Populations in Soil and Root Nodules of Sympatrically Grown Alnus Taxa, 92–100. https://doi.org/10.1007/s00248-010-9726-2es_CO
    dc.relation.referencesQin, S., Li, J., Chen, H. H., Zhao, G. Z., Zhu, W. Y., Jiang, C. L., … Li, W. J. (2009). Isolation, diversity, and antimicrobial activity of rare actinobacteria from medicinal plants of tropical rain forests in Xishuangbanna China. Applied and Environmental Microbiology, 75(19), 6176–6186. https://doi.org/10.1128/AEM.01034-09es_CO
    dc.relation.referencesQin, S., Xing, K., Jiang, J., & Xu, L. (2011). Biodiversity , bioactive natural products and biotechnological potential of plant-associated endophytic actinobacteria, 457–473. https://doi.org/10.1007/s00253-010-2923-6es_CO
    dc.relation.referencesRateb, M. E., Ebel, R., & Jaspars, M. (2018). Natural product diversity of actinobacteria in the Atacama Desert. Antonie van Leeuwenhoek, International Journal of General and Molecular Microbiology, 111(8), 1467–1477. https://doi.org/10.1007/s10482-018-1030-zes_CO
    dc.relation.referencesRevollo, E., Serna, O., & Hernández, J. (2012). Caracterización de actinobacterias raras, degradadoras de lignocelulosa: Demostración de actividad lacasa en dos aislados de Tsukamurella sp y Cellulosimicrobium sp. Rev. Colomb. Biotecnol., 14(2), 70–80.es_CO
    dc.relation.referencesRoca, B., Ferrer, D., & Perez, A. (2005). Absceso hepático por Klebsiella oxytoca, 22, 2005.es_CO
    dc.relation.referencesRodríguez, R. (2008). ANÁLISIS DE LA POBLACIÓN BACTERIANA ENDOFITA PRESENTE EN NÓDULOS DE Lupinus: INTERACCIÓN Y LOCALIZACIÓN IN SITU.es_CO
    dc.relation.referencesRomano, S., Jackson, S. A., Patry, S., & Dobson, A. D. W. (2018). Extending the “one strain many compounds” (OSMAC) principle to marine microorganisms. Marine Drugs, 16(7), 1–29. https://doi.org/10.3390/md16070244es_CO
    dc.relation.referencesSalam, N., Khieu, T. N., Liu, M. J., Vu, T. T., Chu-Ky, S., Quach, N. T., … Li, W. J. (2017). Endophytic Actinobacteria associated with Dracaena cochinchinensis Lour.: Isolation, diversity, and their cytotoxic activities. BioMed Research International, 2017. https://doi.org/10.1155/2017/1308563es_CO
    dc.relation.referencesSarmiento-vizca, A., Braña, A. F., Ignacio, P., Pedro, N. De, Cruz, M. De, Caridad, D., … Blanco, G. (2017). Paulomycin G , a New Natural Product with Cytotoxic Activity against Tumor Cell Lines Produced by Deep-Sea Sediment Derived Micromonospora matsumotoense M-412 from the Avil é s Canyon in the. https://doi.org/10.3390/md15090271es_CO
    dc.relation.referencesSingh, V., Haque, S., Khare, S., Tiwari, A. K., Katiyar, D., Banerjee, B., … Tripathi, C. K. M. (2018). Isolation and purification of antibacterial compound from streptomyces levis collected from soil sample of north India. PLoS ONE, 13(7), 1–10. https://doi.org/10.1371/journal.pone.0200500es_CO
    dc.relation.referencesSr, S. K., & Rao, K. V. B. (2012). In-vitro antimicrobial activity of marine actinobacteria against multidrug resistance Staphylococcus aureus. Asian Pacific Journal of Tropical Biomedicine, 2(10), 787–792. https://doi.org/10.1016/S2221-1691(12)60230-5es_CO
    dc.relation.referencesSrivastava, V., & Dubey, A. K. (2016). Anti-biofilm activity of the metabolites of Streptomyces chrestomyceticus strain ADP4 against Candida albicans. Journal of Bioscience and Bioengineering, 122(4), 434–440. https://doi.org/10.1016/j.jbiosc.2016.03.013es_CO
    dc.relation.referencesStroble, G., & Daisy, B. (2003). Bioprospecting for Microbial Endophytes and Their Natural Products. Avian Diseases, 67(4), 491–502. https://doi.org/10.1128/MMBR.67.4.491es_CO
    dc.relation.referencesTarazona, U., Jorge, L., Nadia, G., Vallejo, M., & Marguet, E. (2017). Caracterización de actinomicetos de sedimento marino y su potencial actividad antagonista frente a Vibrio sp . aislados de Litopenaeus vannamei, 29(2), 676–691.es_CO
    dc.relation.referencesTekaya, S. Ben, Guerra, T., Rodriguez, D., Dawson, J. O., Marcos, S., & Hahn, D. (2017). Frankia diversity in host-plant root nodules is independent of abundance or relative diversity of Frankia in corresponding rhizosphere soils Downloaded from http://aem.asm.org/ on December 15 , 2017 by FUDAN UNIVERSITY Frankia diversity in host-plant root, 78666(December). https://doi.org/10.1128/AEM.02248-17es_CO
    dc.relation.referencesTorres, O. D., & Velho, L. (2009). Capacidades científicas y tecnológicas de Colombia para adelantar prácticas de bioprospección. Revista Iberoamericana de Ciencia Tecnología y Sociedad, 4(12), 55–68. Retrieved from http://www.scielo.org.ar/scielo.php?script=sci_arttext&pid=S1850- 00132009000100004&lang=ptes_CO
    dc.relation.referencesTrujillo, M. E. (2013). Micromonospora halotolerans sp . nov ., isolated from the rhizosphere of a Pisum sativum plant, 1245–1254. https://doi.org/10.1007/s10482-013-9903-7es_CO
    dc.relation.referencesTrujillo, M. E., Alonso-Vega, P., Rodríguez, R., Carro, L., Cerda, E., Alonso, P., & Martínez-Molina, E. (2010). The genus Micromonospora is widespread in legume root nodules: The example of Lupinus angustifolius. ISME Journal, 4(10), 1265–1281. https://doi.org/10.1038/ismej.2010.55es_CO
    dc.relation.referencesTrujillo, M. E., Kroppenstedt, R. M., Schumann, P., & Martı, E. (2006). Kribbella lupini sp . nov ., isolated from the roots of Lupinus angustifolius, 407–411. https://doi.org/10.1099/ijs.0.63745-0es_CO
    dc.relation.referencesWei, G., Shi, P., Shi, P., Liu, D., Yang, B., Li, M., & Wei, G. (2015). International Journal of Systematic and Evolutionary Microbiology Microbacterium shaanxiense sp . nov ., isolated from the nodule surface of soybean Microbacterium shaanxiense sp . nov ., isolated from the nodule surface of soybean. https://doi.org/10.1099/ijs.0.000116es_CO
    dc.relation.referencesWei, W., Zhou, Y., Chen, F., Yan, X., Lai, Y., Wei, C., … Wang, X. (2018). Isolation, diversity, and antimicrobial and immunomodulatory activities of endophytic actinobacteria from tea cultivars Zijuan and Yunkang-10 (Camellia sinensis var. assamica). Frontiers in Microbiology, 9(JUN), 1–11. https://doi.org/10.3389/fmicb.2018.01304es_CO
    dc.rights.accessrightshttp://purl.org/coar/access_right/c_abf2es_CO
    dc.type.coarversionhttp://purl.org/coar/resource_type/c_2df8fbb1es_CO
    Aparece en las colecciones: Microbiología

    Ficheros en este ítem:
    Fichero Descripción Tamaño Formato  
    Araque_2019_TG.pdfAraque_2019_TG8,32 MBAdobe PDFVisualizar/Abrir


    Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.