Por favor, use este identificador para citar o enlazar este ítem:
http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/5924
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | Calderón Fajardo, Angie Alejandra. | - |
dc.date.accessioned | 2023-02-16T15:36:44Z | - |
dc.date.available | 2020-03-17 | - |
dc.date.available | 2023-02-16T15:36:44Z | - |
dc.date.issued | 2020 | - |
dc.identifier.citation | Calderón Fajardo, A. A. (2019). Evaluación del potencial de bacterias antárticas para la biodegradación de hidrocarburos de petróleo [Trabajo de Grado Pregrado, Universidad de Pamplona]. Repositorio Hulago Universidad de Pamplona. http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/5924 | es_CO |
dc.identifier.uri | http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/5924 | - |
dc.description | La autora no proporciona la información sobre este ítem. | es_CO |
dc.description.abstract | La autora no proporciona la información sobre este ítem. | es_CO |
dc.format.extent | 127 | es_CO |
dc.format.mimetype | application/pdf | es_CO |
dc.language.iso | es | es_CO |
dc.publisher | Universidad de Pamplona - Facultad de Ciencias Básicas. | es_CO |
dc.subject | La autora no proporciona la información sobre este ítem. | es_CO |
dc.title | Evaluación del potencial de bacterias antárticas para la biodegradación de hidrocarburos de petróleo. | es_CO |
dc.type | http://purl.org/coar/resource_type/c_7a1f | es_CO |
dc.date.accepted | 2019-12-17 | - |
dc.relation.references | Aamir, S. (2015). A rapid and efficient method of fungal genomic DNA extraction, suitable for PCR based molecular methods. Plant Pathology & Quarantine, 5(2), 74–81. https://doi.org/10.5943/ppq/5/2/6 | es_CO |
dc.relation.references | Abbasian, F., Palanisami, T., Megharaj, M., Naidu, R., Lockington, R., & Ramadass, K. (2016). Microbial diversity and hydrocarbon degrading gene capacity of a crude oil field soil as determined by metagenomics analysis. Biotechnology Progress, 32(3), 638–648. https://doi.org/10.1002/btpr.2249 | es_CO |
dc.relation.references | Adams, B. J., Bardgett, R. D., Ayres, E., Wall, D. H., Aislabie, J., Bamforth, S., … Stevens, M. I. (2006). Diversity and distribution of Victoria Land biota. Soil Biology and Biochemistry, 38(10), 3003–3018. https://doi.org/10.1016/j.soilbio.2006.04.030 | es_CO |
dc.relation.references | Agrawal, N., Verma, P., & Shahi, S. K. (2018). Degradation of polycyclic aromatic hydrocarbons (phenanthrene and pyrene) by the ligninolytic fungi Ganoderma lucidum isolated from the hardwood stump. Bioresources and Bioprocessing, 5(1). https://doi.org/10.1186/s40643-018-0197-5 | es_CO |
dc.relation.references | Aislabie, J., Foght, J., & Saul, D. (2000). Aromatic hydrocarbon-degrading bacteria from soil near Scott Base, Antarctica. Polar Biology, 23(3), 183–188. https://doi.org/10.1007/s003000050025 | es_CO |
dc.relation.references | Aislabie, J. M., Balks, M. R., Foght, J. M., & Waterhouse, E. J. (2004). Hydrocarbon Spills on Antarctic Soils: Effects and Management. Environmental Science and Technology, 38(5), 1265–1274. https://doi.org/10.1021/es0305149 | es_CO |
dc.relation.references | Alekhina, I. A., Marie, D., Petit, J. R., Lukin, V. V., Zubkov, V. M., & Bulat, S. A. (2007). Molecular analysis of bacterial diversity in kerosene-based drilling fluid from the deep ice borehole at Vostok, East Antarctica. FEMS Microbiology Ecology, 59(2), 289–299. https://doi.org/10.1111/j.1574-6941.2006.00271.x | es_CO |
dc.relation.references | ATCM. (2011). Informe Final de la XXV Reunión Consultiva del Tratado Antártico. | es_CO |
dc.relation.references | Bachmann, R. T., Johnson, A. C., & Edyvean, R. G. J. (2014). Biotechnology in the petroleum industry: An overview. International Biodeterioration and | es_CO |
dc.relation.references | Biodegradation, 86, 225–237. https://doi.org/10.1016/j.ibiod.2013.09.011 | es_CO |
dc.relation.references | Benov, L. (2019). Effect of growth media on the MTT colorimetric assay in bacteria. Plos One, 14(8), e0219713. https://doi.org/10.1371/journal.pone.0219713 | es_CO |
dc.relation.references | Benson, D. A., Cavanaugh, M., Clark, K., Karsch-Mizrachi, I., Lipman, D. J., Ostell, J., & Sayers, E. W. (2013). GenBank. Nucleic Acids Research, 41(D1), 36–42. https://doi.org/10.1093/nar/gks1195 | es_CO |
dc.relation.references | Brambilla, E., Ionescu, A., Cazzaniga, G., Edefonti, V., & Gagliani, M. (2014). The influence of antibacterial toothpastes on in vitro Streptococcus mutans biofilm formation: a continuous culture study. American Journal of Dentistry, 27(3), 160–166. | es_CO |
dc.relation.references | Brown, K. E., King, C. K., Kotzakoulakis, K., George, S. C., & Harrison, P. L. (2016). Assessing fuel spill risks in polar waters: Temporal dynamics and behaviour of hydrocarbons from Antarctic diesel, marine gas oil and residual fuel oil. Marine Pollution Bulletin, 110(1), 343–353. https://doi.org/10.1016/j.marpolbul.2016.06.042 | es_CO |
dc.relation.references | Burgess, K. S., Morgan, M., Deverno, L., & Husband, B. C. (2005). Asymmetrical introgression between two Morus species (M. alba, M. rubra) that differ in abundance. Molecular Ecology, 14(11), 3471–3483. https://doi.org/10.1111/j.1365-294X.2005.02670.x | es_CO |
dc.relation.references | Chatterjee, S., & Raval, I. H. (2019). Pathogenic Microbial Genetic Diversity with Reference to Health. Microbial Diversity in the Genomic Era, 559–577. https://doi.org/10.1016/B978-0-12-814849-5.00032-0 | es_CO |
dc.relation.references | Chaudhary, D. K., Kim, D. U., Kim, D., & Kim, J. (2019). Flavobacteri um petrolei sp. nov., a novel psychrophilic, diesel-degrading bacterium isolated from oil- contaminated Arctic soil. Scientific Reports, 9(1), 1–9. https://doi.org/10.1038/s41598-019-40667-7 | es_CO |
dc.relation.references | Christie, S., Raper, D., Lee, D. S., Williams, P. I., Rye, L., Blakey, S., … Whitefield, P. D. (2012). Polycyclic aromatic hydrocarbon emissions from the combustion of alternative fuels in a gas turbine engine. Environmental Science and Technology, 46(11), 6393–6400. https://doi.org/10.1021/es300301k | es_CO |
dc.relation.references | Conceição, L. D. H. C. S., Belo, G. O., Souza, M. M., Santos, S. F., Cerqueira- Silva, C. B. M., & Corrêa, R. X. (2011). Confirmation of cross-fertilization using molecular markers in ornamental passion flower hybrids. Genetics and Molecular Research, 10(1), 47–52. https://doi.org/10.4238/vol10-1gmr894 | es_CO |
dc.relation.references | Convey, P. (2017). Antarctic Ecosystems. Reference Module in Life Sciences. https://doi.org/10.1016/B978-0-12-809633-8.02182-8 | es_CO |
dc.relation.references | Convey, Peter. (2013). Antarctic Ecosystems. Encyclopedia of Biodiversity: Second Edition, 1, 179–188. https://doi.org/10.1016/B978-0-12-384719- 5.00264-1 | es_CO |
dc.relation.references | Convey, Peter, Chown, S. L., Clarke, A., Barnes, D. K. A., Bokhorst, S., Cummings, V., … Wall, D. H. (2014). The spatial structure of antarctic biodiversity. Ecological Monographs, 84(2), 203–244. https://doi.org/10.1890/12-2216.1 | es_CO |
dc.relation.references | D’Amico, S., Collins, T., Marx, J. C., Feller, G., & Gerday, C. (2006). Psychrophilic microorganisms: Challenges for life. EMBO Reports, 7(4), 385–389. https://doi.org/10.1038/sj.embor.7400662 | es_CO |
dc.relation.references | de Jesus, H. E., & Peixoto, R. S. (2015). Bioremediation in Antarctic Soils. Journal of Petroleum & Environmental Biotechnology, 06(06). https://doi.org/10.4172/2157-7463.1000248 | es_CO |
dc.relation.references | Drahansky, M., Paridah, M. ., Moradbak, A., Mohamed, A. ., Owolabi, F. abdulwahab taiwo, Asniza, M., & Abdul Khalid, S. H. . (2016). We are IntechOpen , the world ’ s leading publisher of Open Access books Built by scientists , for scientists TOP 1 %. Intech, i(tourism), 13. https://doi.org/http://dx.doi.org/10.5772/57353 | es_CO |
dc.relation.references | Fingas, M., Yang, C., Brown, C. E., Hollebone, B., Yang, Z., Lambert, P., … Wang, Z. (2017). Chemical Fingerprints of Crude Oils and Petroleum Products. Oil Spill Science and Technology, 209–304. https://doi.org/10.1016/B978-0-12- 809413-6.00004-7 | es_CO |
dc.relation.references | Gabrielson, J., Hart, M., Jarelöv, A., Kühn, I., McKenzie, D., & Möllby, R. (2002). Evaluation of redox indicators and the use of digital scanners and spectrophotometer for quantification of microbial growth in microplates. Journal of Microbiological Methods, 50(1), 63–73. https://doi.org/10.1016/S0167-7012(02)00011-8 | es_CO |
dc.relation.references | Gargouri, B., Mhiri, N., Karray, F., Aloui, F., & Sayadi, S. (2015). Isolation and Characterization of Hydrocarbon-Degrading Yeast Strains from Petroleum Contaminated Industrial Wastewater. BioMed Research International, 2015. https://doi.org/10.1155/2015/929424 | es_CO |
dc.relation.references | Geyer, K. M., Altrichter, A. E., Takacs-Vesbach, C. D., Van Horn, D. J., Gooseff, M. N., & Barrett, J. E. (2014). Bacterial community composition of divergent soil habitats in a polar desert. FEMS Microbiology Ecology, 89(2), 490–494. https://doi.org/10.1111/1574-6941.12306 | es_CO |
dc.relation.references | Gomes, M. B., Gonzales-Limache, E. E., Sousa, S. T. P., Dellagnezze, B. M., Sartoratto, A., Silva, L. C. F., … Oliveira, V. M. (2018). Exploring the potential of halophilic bacteria from oil terminal environments for biosurfactant production and hydrocarbon degradation under high-salinity conditions. International Biodeterioration & Biodegradation, 126, 231–242. https://doi.org/10.1016/J.IBIOD.2016.08.014 | es_CO |
dc.relation.references | Gouma, S., Fragoeiro, S., Bastos, A. C., & Magan, N. (2014). Bacterial and Fungal Bioremediation Strategies. In Microbial Biodegradation and Bioremediation. https://doi.org/10.1016/B978-0-12-800021-2.00013-3 | es_CO |
dc.relation.references | Gröger, T. M., Käfer, U., & Zimmermann, R. (2019). Gas chromatography in combination with fast high-resolution time-of-flight mass spectrometry: Technical overview and perspectives for data visualization. Trends in Analytical Chemistry, 115677. https://doi.org/10.1016/j.trac.2019.115677 | es_CO |
dc.relation.references | Habib, S., Ahmad, S. A., Johari, W. L. W., Shukor, M. Y. A., & Yasid, N. A. (2018). Bioremediation of petroleum hydrocarbon in antarctica by microbial species: An overview. Pertanika Journal of Science and Technology, 26(1), 1–20. | es_CO |
dc.relation.references | Habib, S., Lutfi, W., Johari, W., Yunus, M., Shukor, A., & Yasid, N. A. (2017). BIOREMEDIATION SCIENCE AND TECHNOLOGY Short communication Screening of Hydrocarbon-degrading Bacterial Isolates Using the Redox Application of 2 , 6-DCPIP. 5(2), 13–16. | es_CO |
dc.relation.references | Hashemzadeh, H., Cheghamirza, K., & Saeidi, M. (2012). investigation of genetic diversity of Iranian wheat cultivars and line using RAPD markers RAPD.(September 2016). | es_CO |
dc.relation.references | INACH. (1961). Tratado Antartico. 1–8. | es_CO |
dc.relation.references | Jl, M. C. K. (1990). Oil spillage i n Antarctica. Environ. Sci.Technol, 24(5). | es_CO |
dc.relation.references | Khan, M. A. I., Biswas, B., Smith, E., Naidu, R., & Megharaj, M. (2018). Toxicity assessment of fresh and weathered petroleum hydrocarbons in contaminated soil- a review. Chemosphere, 212, 755–767. https://doi.org/10.1016/J.CHEMOSPHERE.2018.08.094 | es_CO |
dc.relation.references | Kolsal, F., Akbal, Z., & Liaqat, F. (2017). Hydrocarbon degradation abilities of psychrotolerant Bacillus strains. AIMS Microbiology, 3(3), 467–482. https://doi.org/10.3934/microbiol.2017.3.467 | es_CO |
dc.relation.references | Koma, D., Sakashita, Y., Kubota, K., Fujii, Y., Hasumi, F., Chung, S. Y., & Kubo, M. (2003). Degradation of Car Engine Base Oil by Rhodococcus sp. NDKK48 and Gordonia sp. NDKY76A. Bioscience, Biotechnology and Biochemistry, 67(7), 1590–1593. https://doi.org/10.1271/bbb.67.1590 | es_CO |
dc.relation.references | Kubota, K., Koma, D., Matsumiya, Y., Chung, S. Y., & Kubo, M. (2008). Phylogenetic analysis of long-chain hydrocarbon-degrading bacteria and evaluation of their hydrocarbon-degradation by the 2,6-DCPIP assay. Biodegradation, 19(5), 749–757. https://doi.org/10.1007/s10532-008-9179-1 | es_CO |
dc.relation.references | Kuete, V., Karaosmanoğlu, O., & Sivas, H. (2017). Anticancer Activities of African Medicinal Spices and Vegetables. Medicinal Spices and Vegetables from Africa, 271–297. https://doi.org/10.1016/B978-0-12-809286-6.00010-8 | es_CO |
dc.relation.references | Kumar, R., Kumar, P., & Giri, A. (2019). Regional impact of psychrophilic bacteria on bioremediation. In Smart Bioremediation Technologies. https://doi.org/10.1016/b978-0-12-818307-6.00007-x | es_CO |
dc.relation.references | Kumar, S., Stecher, G., & Tamura, K. (2016). MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Molecular Biology and Evolution, 33(7), 1870–1874. https://doi.org/10.1093/molbev/msw054 | es_CO |
dc.relation.references | Lam, N. L., Smith, K. R., Gauthier, A., & Bates, M. N. (2012). Kerosene: A review of household uses and their hazards in low-and middle-income countries. Journal of Toxicology and Environmental Health - Part B: Critical Reviews, 15(6), 396–432. https://doi.org/10.1080/10937404.2012.710134 | es_CO |
dc.relation.references | Lima, S. D., Oliveira, A. F., Golin, R., Lopes, V. C. P., Caixeta, D. S., Lima, Z. M., & Morais, E. B. (2019). Isolation and characterization of hydrocarbon-degrading bacteria from gas station leaking-contaminated groundwater in the Southern Amazon, Brazil. Brazilian Journal of Biology, 6984. https://doi.org/10.1590/1519-6984.208611 | es_CO |
dc.relation.references | Maiyoh, G. K., Njoroge, R. W., & Tuei, V. C. (2015). Effects and mechanisms of kerosene use-related toxicity. Environmental Toxicology and Pharmacology, 40(1), 57–70. https://doi.org/10.1016/J.ETAP.2015.05.010 | es_CO |
dc.relation.references | Mariano, A. P., Angelis, D. de F. de, Pirôllo, M. P. S., Contiero, J., & Bonotto, D. M. (2009). Investigation about the efficiency of the bioaugmentation technique when applied to diesel oil contaminated soils. Brazilian Archives of Biology and Technology, 52(5), 1297–1312. https://doi.org/10.1590/S1516- 89132009000500030 | es_CO |
dc.relation.references | Martinko;, M. T. M. J. M., & Clark, P. V. D. D. P. (2009). Broch Biología de Los microorganismos (Duodécima; S. A. PEARSON EDUCACIÓN, ed.). Madrid España. | es_CO |
dc.relation.references | Mazloum-ardakani, M., Barazesh, B., & Moshtaghioun, S. M. (2019). Designing and optimization of an electrochemical substitute for the cell viability assay. Scientific Reports, 1–8. https://doi.org/10.1038/s41598-019-51241-6 | es_CO |
dc.relation.references | Meerloo, J. Van, Kaspers, G. J. L., & Cloos, J. (2011). Cancer Cell Culture: Cell senstitivity assays: The MTT assay. 731, 237–245. https://doi.org/10.1007/978-1-61779-080-5 | es_CO |
dc.relation.references | Montagnolli, R. N., Lopes, P. R. M., & Bidoia, E. D. (2015). Screening the Toxicity and Biodegradability of Petroleum Hydrocarbons by a Rapid Colorimetric Method. Archives of Environmental Contamination and Toxicology, 68(2), 342–353. https://doi.org/10.1007/s00244-014-0112-9 | es_CO |
dc.relation.references | Olawoyin, R. (2016). Application of backpropagation artificial neural network prediction model for the PAH bioremediation of polluted soil. Chemosphere, 161, 145–150. https://doi.org/10.1016/J.CHEMOSPHERE.2016.07.003 | es_CO |
dc.relation.references | Passarini, M. R. Z., Sette, L. D., & Rodrigues, M. V. N. (2011). Improved extraction method to evaluate the degradation of selected PAHs by marine fungi grown in fermentative medium. Journal of the Brazilian Chemical Society, 22(3), 564– 570. https://doi.org/10.1590/S0103-50532011000300022 | es_CO |
dc.relation.references | Pearce, J. M., & Pearce, J. M. (2014). Digital Designs and Scientific Hardware. Open-Source Lab, 165–252. https://doi.org/10.1016/B978-0-12-410462- 4.00006-8 | es_CO |
dc.relation.references | Pohanish, R. P., & Pohanish, R. P. (2017a). O. Sittig’s Handbook of Toxic and Hazardous Chemicals and Carcinogens, 2439–2482. https://doi.org/10.1016/B978-0-323-38968-6.00014-4 | es_CO |
dc.relation.references | Pohanish, R. P., & Pohanish, R. P. (2017b). P. Sittig’s Handbook of Toxic and Hazardous Chemicals and Carcinogens, 2483–2786. https://doi.org/10.1016/B978-0-323-38968-6.00015-6 | es_CO |
dc.relation.references | Powell, S. M., Stark, J. S., Snape, I., Woolfenden, E. N. M., Bowman, J. P., & Riddle, M. J. (2010). Effects of diesel and lubricant oils on Antarctic benthic microbial communities over five years. Aquatic Microbial Ecology, 61(2), 119– 127. https://doi.org/10.3354/ame01441 | es_CO |
dc.relation.references | Ramírez Botero, C. M. (2013). Perspectivas en nutrició n humana. In Perspectivas en Nutrición Humana (Vol. 15). Retrieved from http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0124- 41082013000100007&lng=en&nrm=iso&tlng=es | es_CO |
dc.relation.references | Régo, A. P. J., Mendes, K. F., Bidoia, E. D., & Tornisielo, V. L. (2018). DCPIP and Respirometry Used in the Understanding of Ametryn Biodegradation. Journal of Environment and Ecology, 9(1), 27. https://doi.org/10.5296/jee.v9i1.13962 | es_CO |
dc.relation.references | Ruberto, L., Vazquez, S. C., & Mac Cormack, W. P. (2003). Effectiveness of the natural bacterial flora, biostimulation and bioaugmentation on the bioremediation of a hydrocarbon contaminated Antarctic soil. International Biodeterioration and Biodegradation, 52(2), 115–125. https://doi.org/10.1016/S0964-8305(03)00048-9 | es_CO |
dc.relation.references | San-Valero, P., Penya-Roja, J. M., Álvarez-Hornos, F. J., Marzal, P., & Gabaldón, C. (2015). Dynamic mathematical modelling of the removal of hydrophilic VOCs by biotrickling filters. International Journal of Environmental Research and Public Health, 12(1), 746–766. https://doi.org/10.3390/ijerph120100746 | es_CO |
dc.relation.references | Sanusi, S. N. A., Halmi, M. I. E., Abdullah, S. R. S., Hassan, H. A., Hamzah, F. M., & Idris, M. (2016). Comparative process optimization of pilot-scale total petroleum hydrocarbon (TPH) degradation by Paspalum scrobiculatum L. Hack using response surface methodology (RSM) and artificial neural networks (ANNs). Ecological Engineering, 97, 524–534. https://doi.org/10.1016/J.ECOLENG.2016.10.044 | es_CO |
dc.relation.references | Sarkar, J., Kazy, S. K., Gupta, A., Dutta, A., Mohapatra, B., Roy, A., … Sar, P. (2016). Biostimulation of indigenous microbial community for bioremediation of petroleum refinery sludge. Frontiers in Microbiology, 7(SEP), 1–20. https://doi.org/10.3389/fmicb.2016.01407 | es_CO |
dc.relation.references | Sigma-aldrich, H. C. H. (2019). 31/12/2019. 1–5. | es_CO |
dc.relation.references | Silva, T. R., Duarte, A. W. F., Passarini, M. R. Z., Ruiz, A. L. T. G., Franco, C. H., Moraes, C. B., … Oliveira, V. M. (2018). Bacteria from Antarctic environments: diversity and detection of antimicrobial, antiproliferative, and antiparasitic activities. Polar Biology, 41(7), 1505–1519. https://doi.org/10.1007/s00300- 018-2300-y | es_CO |
dc.relation.references | Simarro, R., González, N., Bautista, L. F., & Molina, M. C. (2013). Biodegradation of high-molecular-weight polycyclic aromatic hydrocarbons by a wood- degrading consortium at low temperatures. FEMS Microbiology Ecology, 83(2), 438–449. https://doi.org/10.1111/1574-6941.12006 | es_CO |
dc.relation.references | Speight, J. G., & Speight, J. G. (2011). Hydrocarbons from Petroleum. Handbook of Industrial Hydrocarbon Processes, 85–126. https://doi.org/10.1016/B978-0- 7506-8632-7.10003-9 | es_CO |
dc.relation.references | Stark, J. S., Raymond, T., Deppeler, S. L., & Morrison, A. K. (2019). Antarctic Seas. In World Seas: An Environmental Evaluation (Second Edi). https://doi.org/10.1016/B978-0-12-805068-2.00002-4 | es_CO |
dc.relation.references | Thompson, J. D., Higgins, D. G., & Gibson, T. J. (1994). CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research, 22(22), 4673–4680. https://doi.org/10.1093/nar/22.22.4673 | es_CO |
dc.relation.references | Tortora GJ, Funke BR, C. C. (2012). Tortora funke. | es_CO |
dc.relation.references | Turner, N. R., & Renegar, D. A. (2017). Petroleum hydrocarbon toxicity to corals: A review. Marine Pollution Bulletin, 119(2), 1–16. https://doi.org/10.1016/J.MARPOLBUL.2017.04.050 | es_CO |
dc.relation.references | Twentyman, P. R., & Luscombe, M. (1987). A study of some variables in a tetrazolium dye (MTT) based assay for cell growth and chemosensitivity. British Journal of Cancer, 56(3), 279–285. https://doi.org/10.1038/bjc.1987.190 | es_CO |
dc.relation.references | Vega, L., & Vazquez, R. R. (2016). Biorremediación por bioestimulación y bioaumentación con microorganismos nativos de un suelo agrícola contaminado con hidrocarburos. Centro de Investigación y de Estudios Avanzados, (August), 82–85. | es_CO |
dc.relation.references | Villa, R. D., Trovó, A. G., & Nogueira, R. F. P. (2010). Diesel degradation in soil by fenton process. Journal of the Brazilian Chemical Society, 21(6), 1089–1095. https://doi.org/10.1590/S0103-50532010000600019 | es_CO |
dc.relation.references | Villarino Marzo, C. (1992). El Protocolo de 1991 al Tratado Antártico sobre protección del medio ambiente. Revista Española de Derecho Internacional, 44(1), 259–261. | es_CO |
dc.relation.references | Vincent, W. F. (2000). Evolutionary origins of Antarctic microbiota: invasion, selection and endemism. Antarctic Science, 12(3), 374–385. https://doi.org/10.1017/s0954102000000420 | es_CO |
dc.relation.references | Wang, F., Gai, Y., Chen, M., & Xiao, X. (2009). Arthrobacter psychrochitiniphilus sp . nov ., a psychrotrophic bacterium isolated from Antarctica. 2759–2762. https://doi.org/10.1099/ijs.0.008912-0 | es_CO |
dc.relation.references | Wu, M., Wu, J., Zhang, X., & Ye, X. (2019). Effect of bioaugmentation and biostimulation on hydrocarbon degradation and microbial community composition in petroleum-contaminated loessal soil. Chemosphere, 237, 124456. https://doi.org/10.1016/j.chemosphere.2019.124456 | es_CO |
dc.relation.references | Yakimov, M. M., Gentile, G., Bruni, V., Cappello, S., D’Auria, G., Golyshin, P. N., & Giuliano, L. (2004). Crude oil-induced structural shift of coastal bacterial communities of rod bay (Terra Nova Bay, Ross Sea, Antarctica) and characterization of cultured cold-adapted hydrocarbonoclastic bacteria. FEMS Microbiology Ecology, 49(3), 419–432. https://doi.org/10.1016/j.femsec.2004.04.018 | es_CO |
dc.relation.references | Yang, S., Wen, X., Shi, Y., Liebner, S., Jin, H., & Perfumo, A. (2016). Hydrocarbon degraders establish at the costs of microbial richness, abundance and keystone taxa after crude oil contamination in permafrost environments. Scientific Reports, 6(October). https://doi.org/10.1038/srep37473 | es_CO |
dc.relation.references | Yoneyama, S., Sakurada, Y., Mabuchi, F., Imasawa, M., Sugiyama, A., Kubota, T., & Iijima, H. (2014). Genetic and clinical factors associated with reticular pseudodrusen in exudative age-related macular degeneration. Graefe’s Archive for Clinical and Experimental Ophthalmology, 252(9), 1435–1441. https://doi.org/10.1007/s00417-014-2601-y | es_CO |
dc.relation.references | Yoon, S. H., Ha, S. M., Kwon, S., Lim, J., Kim, Y., Seo, H., & Chun, J. (2017). Introducing EzBioCloud: A taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. International Journal of Systematic and Evolutionary Microbiology, 67(5), 1613–1617. https://doi.org/10.1099/ijsem.0.001755 | es_CO |
dc.relation.references | Yoshida, N., Hoashi, J., Morita, T., McNiven, S. J., Nakamura, H., & Karube, I. (2001). Improvement of a mediator-type biochemical oxygen demand sensor for on-site measurement. Journal of Biotechnology, 88(3), 269–275. https://doi.org/10.1016/S0168-1656(01)00282-6 | es_CO |
dc.relation.references | Zhang, P., Wu, W. M., Van Nostrand, J. D., Deng, Y., He, Z., Gihring, T., … Zhou, J. (2015). Dynamic succession of groundwater functional microbial communities in response to emulsified vegetable oil amendment during sustained in situ U(VI) reduction. Applied and Environmental Microbiology, 81(12), 4164–4172. https://doi.org/10.1128/AEM.00043-15 | es_CO |
dc.relation.references | Zhang, R., Song, B., & Yuan, J. (2018). Bioanalytical methods for hypochlorous acid detection: Recent advances and challenges. TrAC Trends in Analytical Chemistry, 99, 1–33. https://doi.org/10.1016/J.TRAC.2017.11.015 | es_CO |
dc.rights.accessrights | http://purl.org/coar/access_right/c_abf2 | es_CO |
dc.type.coarversion | http://purl.org/coar/resource_type/c_2df8fbb1 | es_CO |
Aparece en las colecciones: | Microbiología |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
Calderón_2019_TG.pdf | Calderón_2019_TG | 7,83 MB | Adobe PDF | Visualizar/Abrir |
Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.