• Repositorio Institucional Universidad de Pamplona
  • Trabajos de pregrado y especialización
  • Facultad de Ciencias Básicas
  • Microbiología
  • Please use this identifier to cite or link to this item: http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/5923
    Full metadata record
    DC FieldValueLanguage
    dc.contributor.authorHernández Castillo, Andrés Antonio.-
    dc.identifier.citationHernández Castillo, A. A. (2019). Determinación de la capacidad de biodegradación por hongos filamentosos sobremateriales poliméricos [Trabajo de Grado Pregrado, Universidad de Pamplona]. Repositorio Hulago Universidad de Pamplona. http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/5923es_CO
    dc.descriptionEl autor no proporciona la información sobre este ítem.es_CO
    dc.description.abstractEl autor no proporciona la información sobre este ítem.es_CO
    dc.publisherUniversidad de Pamplona - Facultad de Ciencias Básicas.es_CO
    dc.subjectEl autor no proporciona la información sobre este ítem.es_CO
    dc.titleDeterminación de la capacidad de biodegradación por hongos filamentosos sobremateriales poliméricos.es_CO
    dc.relation.referencesAro, N, Pakula, T & Penttilä, M. (2005). Transcriptional regulation of plant cell wall degradation by filamentous fungi. FEMS Microbiology Reviews. 29, pg. 719–739.es_CO
    dc.relation.referencesArutchelvi, J, Sudhakar, M, Arkatkar, A, Doble, M, Bhaduri, S & Uppara, PV. (2008). ‘Biodegradation of polyethylene and polypropylene’, Indian Journal of Biotechnology. 7, pg. 9–22.es_CO
    dc.relation.referencesASTM D883-00, Standard Terminology Relating to Plastics, ASTM International, West Conshohocken, PA. (2000). pg 6-7. [En línea]. Recuperado de: http://file.yizimg.com/175706/2011090910321097.pdfes_CO
    dc.relation.referencesASTM G21: 2015. Standard Practice for Determining Resistance of Synthetic Polymeric Materials to Fungi, ASTM International, West Conshohocken, PA.es_CO
    dc.relation.referencesBen-Dov, E., Brenner, A. & Kushmaro, A. (2007). Quantification of Sulfate-reducing Bacteria in Industrial Wastewater, by Real-time Polymerase Chain Reaction (PCR) Using dsrA and apsA Genes. Microb Ecol. 54 (3), pg 439–451.es_CO
    dc.relation.referencesBhardwaj, H., Gupta, R., & Tiwari, A. (2012). Microbial population associated with plastic degradation. Scientific Reports. 1 (5), pg 272–274.es_CO
    dc.relation.referencesBlankenship J and Mitchell A. (2006). How to build a biofilm: a fungal perspective. Current Opinion in Microbiology. 9 (6), pg 588-594. [En línea]. Recuperado de: https://www.sciencedirect.com/science/article/pii/S136952740600155X?via%3Dihu bes_CO
    dc.relation.referencesBrydson, J., Plastics Materials, Vol. 7th edition, Butterworth Heinemann, (1999). Pg 1-21es_CO
    dc.relation.referencesCañedo Verónica y Ames Teresa. (2004). Manual de Laboratorio para el Manejo de Hongos Entomopatógenos. Centro Internacional de la Papa (CIP), Lima, Perú. pg 29-31.es_CO
    dc.relation.referencesCragg, S. M., Beckham, G. T., Bruce, N. C., Distel, D. L., Dupree, P., Etxabe, A. et al. (2015). Lignocellulose degradation mechanisms across the tree of life. Curr. Opin. Chem. Biol. 29, pg 108–119.es_CO
    dc.relation.referencesChandra, J., Kuhn, D. M., Mukherjee, P. K., Hoyer, L. L., McCormick, T., and Ghannoum, M. A. (2001). Biofilm formation by the fungal pathogen Candida albicans: development, architecture, and drug resistance. Journal of bacteriology. 183(18) pg 5385–5394. [En línea]. Recuperado de: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC95423/es_CO
    dc.relation.referencesDas, M and Kumar, S. (2014). Microbial deterioration of low density polyethylene by Aspergillus and Fusarium sp. International Journal of ChemTech Research. 6 (1), pg 299–305.es_CO
    dc.relation.referencesDeepika S and Jaya Madhuri R, (2015). Biodegradation of low density polyethylene by micro-organisms from garbage soil. Journal of Experimental Biology and Agricultural Sciences. 3(1), pg 15-21.es_CO
    dc.relation.referencesDeshmukh, R., Khardenavis, A. A., & Purohit, H. J. (2016). Diverse Metabolic Capacities of Fungi for Bioremediation. Indian journal of microbiology, 56(3), pg 247–264. [En línea]. Recuperado de: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4920763/es_CO
    dc.relation.referencesDevi R, Kannan V, Nivas D, Kannan K, Chandru S and Antony A. (2015). Biodegradation of HDPE by Aspergillus spp. from marine ecosystemof Gulf of Mannar, India. Marine Pollution Bulletin. pg 1-9.es_CO
    dc.relation.referencesDimarogona M, Nikolaivits E, Kanelli M, Christakopoulos P, Sandgren M and Topakas E. (2015). Structural and functional studies of a Fusarium oxysporum cutinase with polyethylene terephthalate modification potential. Biochimica et Biophysica Acta (BBA). 1850 (11), pg 2308-2317.es_CO
    dc.relation.referencesDonlan Rodney. (2002). Biofilms: microbial life on surfaces. Emerg Infect Dis. 8 (9) pg 881- 890. [En línea]. Recuperado de: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2732559/es_CO
    dc.relation.referencesDyakov Yu. T and Zinovyeva S.V. (2007). Chapter 1 - Plant parasite microorganisms, in Comprehensive and Molecular Phytopathology. pg 19. [En línea]. Recuperado de: https://www.sciencedirect.com/science/article/pii/B9780444521323500043es_CO
    dc.relation.referencesEnvironmental Protection Agency (EPA). Permeation and Leaching. Washington DC (2004). [En línea]. Recuperado de: [https://www.epa.gov/sites/production/files/2015- 09/documents/permeationandleaching.pdf]es_CO
    dc.relation.referencesFanning, S., & Mitchell, A. P. (2012). Fungal biofilms. PLoS pathogens, 8(4) pg 1- 4. [En línea]. Recuperado de: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3320593/#ppat.1002585-Finkel1es_CO
    dc.relation.referencesFarshad Mehdi. (2006). Plastic pipe systems, in Plastic Pipe Systems: Failure Investigation and Diagnosis. Elsevier Science. pg 1-27. [En línea]. Recuperado de: https://www.sciencedirect.com/science/article/pii/B9781856174961500021es_CO
    dc.relation.referencesFinkel, J. S., & Mitchell, A. P. (2011). Genetic control of Candida albicans biofilm development. Nature reviews. Microbiology, 9(2), pg 109–118. [En línea]. Recuperado de: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3891587/es_CO
    dc.relation.referencesFlórez R, Bassi J.M., Thompson A. (2014). Microbial degradation and deterioration of polyethylene - a review. Int. Biodeterior. Biodegr. 88, pp 83-90. [En línea]. Recuperado de: http://dx.doi.org/10.1016/j.ibiod.2013.12.014.es_CO
    dc.relation.referencesFlemming, H. C. and Wingender, J. (2010), The biofilm matrix. Nat. Rev. Microbiol. 8, pg 623–633.es_CO
    dc.relation.referencesFlemming H. C, Wingender J, Szewzyk U, Steinberg P, Rice SA, Kjelleberg S. (2016). Biofilms: An emergent form of bacterial life. Nature Reviews Microbiology. 14(9) pg 563-575.es_CO
    dc.relation.referencesG.M. Guebitz, A. Cavaco-Paulo. (2008). Enzymes go big: surface hydrolysis and functionali sation of synthetic polymers. Trends Biotechnol. 26 (1), pg 32-38. Ghabeche, W. Alimi L, and Chaoui K. (2015). Degradation of plastic pipe surfaces in contact with an aggressive acidic environment. Energy Procedia. 74. pg 351- 364. [En línea]. Recuperado de: https://www.sciencedirect.com/science/article/pii/S1876610215013934es_CO
    dc.relation.referencesGu Ji-Dong. (2003). Microbiological deterioration and degradation of synthetic polymeric materials: recent research advances. International Biodeterioration & Biodegradation. 52 (2), pg 69-91.es_CO
    dc.relation.referencesImmanuel O. M., Ibiene A. A. and Stanley H. O. (2014). Enhanced biodegradation of polyethylene by fungus isolated from the koluama mangrove swamp in the Niger Delta. Scholars Research Library, J. Microbiol. Biotech.Reserch, 4 (2), pg 1-9.es_CO
    dc.relation.referencesIñigo, M., & Del Pozo, J. L. (2018). Fungal biofilms: From bench to bedside. Revista española de quimioterapia: publicación oficial de la Sociedad Española de Quimioterapia, 31 (1), pg 35–38.es_CO
    dc.relation.referencesJankauskaite, V, Macijauskas, G, Lygaitis, R. (2008). Polyethylene Terephthalate Waste Recycling and Application Possibilities: a Review. Materials Science. 14 (2), pg 119-127.es_CO
    dc.relation.referencesJeyakumar D, Chirsteen and Doble M. (2013). Synergistic effects of pretreatment and blending on fungi mediated biodegradation of polypropylenes. Bioresource Technology 148, pg 78-85. [En línea]. Recuperado de: https://www.sciencedirect.com/science/article/pii/S0960852413013047#b0025es_CO
    dc.relation.referencesKathiresan, K. (2003). Polythene and plastic degrading microbes in an Indian mangrove soil. Rev. Biol. Trop., 51(3-), pg 629-633.es_CO
    dc.relation.referencesKlindworth, A., Pruesse, E., Schweer, T., Peplies, J., Quast, C., Horn, M., and Glöckner, F. (2013). Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic acids research. 41(1), pg 1-11.es_CO
    dc.relation.referencesKrüger, W., Vielreicher, S., Kapitan, M., Jacobsen, I. D., & Niemiec, M. J. (2019). Fungal-Bacterial Interactions in Health and Disease. Pathogens (Basel, Switzerland). 8 (70), pg 1-41.es_CO
    dc.relation.referencesKunamneni, A, Plou, FJ, Ballesteros, A & Alcalde, M. (2008). ‘Laccases and their applications: a patent review’, Recent Patents on Biotechnology. 2, pg 10–24.es_CO
    dc.relation.referencesLi Peiqian, Pu Xiaoming, Shen Huifang, Zhang Jingxin, Huang Ning, Lin Birun. (2014). Biofilm formation by Fusarium oxysporum f. sp. cucumerinum and susceptibility to environmental stress, FEMS Microbiology Letters, 350 (2) pg 138– 145. [En línea]. Recuperado de: https://academic.oup.com/femsle/article/350/2/138/565036es_CO
    dc.relation.referencesLucas N, Bienaime C, Belloy C, Queneudec M, Silvestre F, Saucedo J. (2008). Polymer biodegradation: Mechanisms and estimation techniques – A review. Hemosphere. 73(4), pg 429-442.es_CO
    dc.relation.referencesMahalakshmi, V and Niren, A. (2012). Assessment of Physicochemically treated plastic by fungi. Annals of Biological Research, 3 (9): pg 4374-4381.es_CO
    dc.relation.referencesMalpass, D. B. (2010). Introduction to Polymers of Ethylene, in Introduction to Industrial Polyethylene: Properties, Catalysts, and Processes. John Wiley & Sons, Inc., Hoboken, NJ, USA. pg 1-12. [En línea]. Recuperado de: https://epdf.tips/queue/introduction-to-industrial-polyethylene-properties-catalysts- and-processes-wiley.htmles_CO
    dc.relation.referencesMartin B. Hocking. (2005). Synthetic vinyl addition polymers, chapter 23 - Commercial Addition (Vinyl-Type) Polymers, in Handbook of Chemical Technology and Pollution Control (Third Edition). Academic Press. pg 737-758. [En línea]. Recuperado de: https://www.sciencedirect.com/science/article/pii/B9780120887965500260es_CO
    dc.relation.referencesMedina R, Grajeda J, Escoto L, Hernandez L, Guillén J, Jones G and Bautista-de Lucio V. (2019). Proteome analysis of biofilm produced by a Fusarium falciforme keratitis infectious agent. Microbial Pathogenesis. 130, pg 232-241. [En línea]. Recuperado de: https://www.sciencedirect.com/science/article/pii/S0882401018315808es_CO
    dc.relation.referencesMéndez CR, Vergaray G, Vilma R, Karina B, Cárdenas J. (2007). Isolation and characterization of polyethylene-biodegrading mycromycetes. Rev. Peru. Biol. 13(3), pg 203-205.es_CO
    dc.relation.referencesMorsy EM, Hassan HM, Ahmed E. (2017). Biodegradative activities of fungal isolates from plastic contaminated soils. Mycosphere 8(8), pg 1071–1087.es_CO
    dc.relation.referencesMowat Eilidh, Williams Craig, Jones Brian, Mcchlery Susan and Ramage Gordon. (2009). The characteristics of Aspergillus fumigatus mycetoma development: is this a biofilm? Medical Mycology. 47(1) pg 120–126. [En línea]. Recuperado de: https://academic.oup.com/mmy/article/47/Supplement_1/S120/1070250es_CO
    dc.relation.referencesMuhonja C N, Makonde H, Magoma G, Imbuga M. (2018). Biodegradability of polyethylene by bacteria and fungi from Dandora dumpsite Nairobi-Kenya. PLoS ONE 13(7), pg 1-17. [En línea]. Recuperado de: https://doi.org/10.1371/journal.pone.0198446es_CO
    dc.relation.referencesMukherjee PK, Chandra J, Yu C, Sun Y, Pearlman E, Ghannoum MA. (2012). Characterization of Fusarium Keratitis Outbreak Isolates: Contribution of Biofilm to Antimicrobial Resistance and Pathogenesis. Invest Ophthalmol Vis Sci. 53 (8) pg 4450-4457. [En línea]. Recuperado de: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3394686/#es_CO
    dc.relation.referencesMyint B, Ravi C, Sakharkar M K, Lim CS, Sakharkar R K. (2012). Biodegradation of Low Density Polythene (LDPE) by Pseudomonas Species. Indian J Microbiol; 3, pg 411-419. [En línea]. Recuperado de: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3460136/es_CO
    dc.relation.referencesNACE Standard Practice SP0775-2018 “Preparation, Installation, Analysis and Interpretation of Corrosion Coupons in Oilfield Operations”. NACE Standard Test Method TM0194-2014. Field Monitoring of Bacteria Growth in Oil and Gas Systems.es_CO
    dc.relation.referencesNegi H, Gupta S, Zaidi M G H, Goel R. (2011). Studies on biodegradation of LDPE film in the presence of potential bacterial consortia enriched soil. Biologija. 57(4), pg 141–147.es_CO
    dc.relation.referencesOjha Nupur, Pradhan Neha, Singh Surjit, Barla Anil, Shrivastava Anamika, Khatua Pradip, Rai Vivek, Bose Sutapa. (2017). valuation of HDPE and LDPE degradation by fungus, implemented by statistical optimization. Scientific Reports. 7, pg 1-12. [En línea]. Recuperado de: https://www.nature.com/articles/srep39515es_CO
    dc.relation.referencesPitt J. I. and Hocking A. D. (1997). Key to miscellaneous genera, Chapter 5- Primary keys and miscellaneous fungi, In Fungi and Food Spoilage-Springer US. pg 64-66.es_CO
    dc.relation.referencesPramila R and Ramesh K. (2015). Potential biodegradation of low density polyethylene (LPDE) by Acinetobacter baumannii. African Journal of Bacteriology Research 7 (3), pg 24-28.es_CO
    dc.relation.referencesRichardson, M., & Rautemaa-Richardson, R. (2019). Exposure to Aspergillus in Home and Healthcare Facilities' Water Environments: Focus on Biofilms. Microorganisms, 7(7), pg 1-11.es_CO
    dc.relation.referencesRönner U. Husmark, U. and Henriksson A. (1990). Adhesion of bacillus spores in relation to hydrophobicity. Journal of Applied Bacteriology. 69, pag 550–556.es_CO
    dc.relation.referencesRoy PK, Titus S, Surekha P, Tulsi E, Deshmukh C, Rajagopal C. (2008). Degradation of abiotically aged LDPE films containing prooxidant by bacterial consortium. Polym. Degred. Stab. 93, pg 1917- 1922.es_CO
    dc.relation.referencesShah A, Hasan F, Hameed A and Akhter J. (2009). Isolation of Fusarium sp. AF4 from sewage sludge, with the ability to adhere the surface of polyethylene. African Journal of Microbiology Research. 3(10), pg 658-663.es_CO
    dc.relation.referencesShah AA, Hasan F, Hameed A, Ahmed S. (2008). Biological degradation of plastics: A comprehensive review. Biotechnology Advances. 26: pg 246-265. [En línea]. Recuperado de: https://doi.org/10.1016/j.biotechadv.2007.12.005 PMID:18337047es_CO
    dc.relation.referencesShimao, Masayuki. (2001). Biodegradation of plastics. Current Opinion in Biotechnology. 12, pg 242-247.es_CO
    dc.relation.referencesSyranidou E, Karkanorachaki K, Amorotti F, Avgeropoulos A, Kolvenbach B, Zhou N, Fava F, Corvini P, Kalogerakis N. (2019). Biodegradation of mixture of plastic films by tailored marine consortia. Journal of Hazardous Materials. 375, pg 33-42. [En línea]. Recuperado de: https://www.sciencedirect.com/science/article/pii/S0304389419305060es_CO
    dc.relation.referencesTurenne CY, Sanche SE, Hoban DJ, Karlowsky JA, Kabani AM. (1999). Rapid identification of fungi by using the ITS2 genetic region and an automated fluorescent capillary electrophoresis system. J Clin Microbiol. 37: pg 1846–1851.es_CO
    dc.relation.referencesUrbanek, A. K., Rymowicz, W., & Mirończuk, A. M. (2018). Degradation of plastics and plastic-degrading bacteria in cold marine habitats. Applied microbiology and biotechnology. 102 (18), pg 7669–7678. [En línea]. Recuperado de: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6132502/es_CO
    dc.relation.referencesVan Dyk, J. S., and Pletschke, B. I. (2012). A review of lignocellulose bioconversion using enzymatic hydrolysis and synergistic cooperation between enzymes — Factors affecting enzymes, conversion and synergy. Biotechnol. Adv. 30 (6), pg 1458–1480.es_CO
    dc.relation.referencesWarnock D.W. (2012). Chapter 61 - Fungi: Superficial, subcutaneous and systemic mycoses, in Medical Microbiology (Eighteenth Edition). pg 616. [En línea]. Recuperado de: https://www.sciencedirect.com/science/article/pii/B9780702040894000755es_CO
    dc.relation.referencesWebb, J. S., Van der Mei, H. C., Nixon, M., Eastwood, I. M., Greenhalgh, M., Read, S. J., Robson, G. D., Handley, P. S. (1999). Plasticizers increase adhesion of the deteriogenic fungus Aureobasidium pullulans to polyvinyl chloride. Applied and environmental microbiology, 65(8) pg 3575–3581. [En línea]. Recuperado de: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC91536/es_CO
    dc.relation.referencesWhite T, Bruns T, Lee S & Taylor J (1990) Amplification and Direct Sequencing of Fungal Ribosomal RNA Genes for Phylogenetics. Academic Press, New York. pg 315-322.es_CO
    dc.relation.referencesWuyts, J., Van Dijck, P., & Holtappels, M. (2018). Fungal persister cells: The basis for recalcitrant infections? PLoS pathogens. 14(10), pg 1-14.es_CO
    Appears in Collections:Microbiología

    Files in This Item:
    File Description SizeFormat 
    Hernández_2019_TG.pdfHernández_2019_TG767,94 kBAdobe PDFView/Open

    Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.