• Repositorio Institucional Universidad de Pamplona
  • Trabajos de pregrado y especialización
  • Facultad de Ingenierías y Arquitectura
  • Ingeniería Química
  • Por favor, use este identificador para citar o enlazar este ítem: http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/5552
    Registro completo de metadatos
    Campo DC Valor Lengua/Idioma
    dc.contributor.authorAcosta Dreika, Yandark.-
    dc.date.accessioned2022-12-18T21:58:22Z-
    dc.date.available2021-10-12-
    dc.date.available2022-12-18T21:58:22Z-
    dc.date.issued2022-
    dc.identifier.citationAcosta Dreika, Y. (2021). Aprovechamiento de residuos de maracuyá (Passiflora edulis) y mango (Mangífera índica) para la elaboración de un bioplástico [Trabajo de Grado Pregrado, Universidad de Pamplona] Repositorio Hulago Universidad de Pamplona. http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/5552es_CO
    dc.identifier.urihttp://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/5552-
    dc.descriptionEl autor no proporciona información sobre este ítem.es_CO
    dc.description.abstractEl autor no proporciona información sobre este ítem.es_CO
    dc.format.extent57es_CO
    dc.format.mimetypeapplication/pdfes_CO
    dc.language.isoeses_CO
    dc.publisherUniversidad de Pamplona – Facultad de Ingenieras y Arquitectura.es_CO
    dc.subjectEl autor no proporciona información sobre este ítem.es_CO
    dc.titleAprovechamiento de residuos de maracuyá (Passiflora edulis) y mango (Mangífera índica) para la elaboración de un bioplástico.es_CO
    dc.typehttp://purl.org/coar/resource_type/c_7a1fes_CO
    dc.date.accepted2021-07-12-
    dc.relation.referencesONU. Desafíos Globales - Población. Organización de las Naciones Unidas. 2019. Acceso el 4 de mayo, 2021.es_CO
    dc.relation.referencesCremonez PA, Teleken JG, Weiser Meier TR, Alves HJ. Two-Stage anaerobic digestion in agroindustrial waste treatment: A review. J Environ Manage. 2021;281:1-2.es_CO
    dc.relation.referencesFreitas LC, Barbosa JR, da Costa ALC, Bezerra FWF, Pinto RHH, Carvalho Junior RN de. From waste to sustainable industry: How can agro-industrial wastes help in the development of new products? Resour Conserv Recycl. 2021;169(February).es_CO
    dc.relation.referencesSantos LA dos, Valença RB, Silva LCS da, et al. Methane generation potential through anaerobic digestion of fruit waste. J Clean Prod. 2020;256:1-2.es_CO
    dc.relation.referencesKuittinen S, Hietaharju J, Kupiainen L, et al. Bioethanol production from short rotation S. schwerinii E. Wolf is carbon neutral with utilization of waste-based organic fertilizer and process carbon dioxide capture. J Clean Prod. 2021;293:1-8.es_CO
    dc.relation.referencesDennehy C, Lawlor PG, McCabe MS, et al. Anaerobic co-digestion of pig manure and food waste; effects on digestate biosafety, dewaterability, and microbial community dynamics. Waste Manag. 2018;71:532-541.es_CO
    dc.relation.referencesLee XJ, Ong HC, Gao W, et al. Solid biofuel production from spent coffee ground wastes: Process optimisation, characterisation and kinetic studies. Fuel. 2021;292(January):120309.es_CO
    dc.relation.referencesCui Y, Dong X, Tong J, Liu S. Degradation of lignocellulosic components in un pretreated vinegar residue using an artificially constructed fungal consortium. BioResources. 2015;10(2):3434-3450.es_CO
    dc.relation.referencesManuel BECV. DESARROLLO Y CARACTERIZACIÓN DE UN BIOPLASTICO A PARTIR DE CÁSCARA DE MARACUYÁ (Passiflora edulis). 2020.es_CO
    dc.relation.referencesCardoso MFG, Green SJ, Trespalacios RAN, Paz MS. BIOPLÁSTICOS: SOLUCIONES AMBIENTALES.; 2016.es_CO
    dc.relation.referencesRomero M, Eduardo J, Baena W. Bioplástico. 2019.es_CO
    dc.relation.referencesPrieto A. Los Bioplásticos, ¿Qué Son? ¿Cuántos Hay? ¿Cómo Se Producen?; 2020.es_CO
    dc.relation.referencesFriedrich D. Market and business-related key factors supporting the use of compostable bioplastics in the apparel industry : A cross-sector analysis. J Clean Prod. 2021;297:126716.es_CO
    dc.relation.referencesKakadellis S, Harris ZM. Don ’ t scrap the waste : The need for broader system boundaries in bioplastic food packaging life-cycle assessment e A critical review. J Clean Prod. 2020;274:122831.es_CO
    dc.relation.referencesEuropeanBioplastics. What Are Bioplastics?; 2018es_CO
    dc.relation.referencesSeenuvasan M, Malar CG, Growther L. Production of a biopolymer film from biological wastes and its statistical analysis. Bioresour Technol Reports. 2021;13(November 2020):1-5.es_CO
    dc.relation.referencesPandharipande SL, Bhagat PH, Professor A, Tech B, Semester T. Synthesis of Chitin from Crab Shells and its Utilization in Preparation of Nanostructured Film. Int J Sci Eng Technol Res. 2016;5(5):1378-1383.es_CO
    dc.relation.referencesRødde RH, Einbu A, Vårum KM. A seasonal study of the chemical composition and chitin quality of shrimp shells obtained from northern shrimp (Pandalus borealis). Carbohydr Polym. 2008;71(3):388-393.es_CO
    dc.relation.referencesKhoo CG, Dasan YK, Lam MK, Lee KT. Algae biorefinery: Review on a broad spectrum of downstream processes and products. Bioresour Technol. 2019;292:1-9.es_CO
    dc.relation.referencesKartik A, Akhil D, Lakshmi D, et al. A critical review on production of biopolymers from algae biomass and their applications. Bioresour Technol. 2021;329:1-8.es_CO
    dc.relation.referencesDevadas VV, Khoo KS, Chia WY, et al. Algae biopolymer towards sustainable circular economy. Bioresour Technol. 2021;325:1-8.es_CO
    dc.relation.referencesDianursanti, Khalis SA. The Effect of Compatibilizer Addition on Chlorella vulgaris Microalgae Utilization as a Mixture for Bioplastic. E3S Web Conf. 2018;67:2-6.es_CO
    dc.relation.referencesÁlvarez DOG. Aprovechamiento de residuos agroindustriales para la producción de alimentos funcionales: una aproximación desde la nutrición animal. 2013.es_CO
    dc.relation.referencesZoungranan Y, Lynda E, Dobi-Brice KK, Tchirioua E, Bakary C, Yannick DD. Influence of natural factors on the biodegradation of simple and composite bioplastics based on cassava starch and corn starch. J Environ Chem Eng. 2020;8(5):104396.es_CO
    dc.relation.referencesChariguamán C. JA, Ruano J, Cardona J. Caracterización de bioplástico de almidón elaborado por el método de casting reforzado con albedo de maracuyá (Passiflora edulis spp.). 2015.es_CO
    dc.relation.referencesChromatography G, Spectrometry M. Aromatic Characterization of Mangoes ( Mangifera indica L .) Using Solid Phase Extraction Coupled with. 2020.es_CO
    dc.relation.referencesRíos MD, Muñoz KG, Tabizón EF, et al. Caracterización y capacidad de adsorción de la especie vegetal Larrea tridentata como adsorbente de color. Cult Científica y Tecnológica. 2016;0(54).es_CO
    dc.relation.referencesSingh NP, Jerath N, Singh G, Gill PPS. Physico-chemical characterization of unexploited mango diversity in sub-mountane zone of northern India. Indian J Plant Genet Resour. 2012;25(3):261-269.es_CO
    dc.relation.referencesCuevas-Glory LF, Sauri-Duch E, Sosa-Moguel O, Pino JA. Characterization of odor active compounds in mango ‘Ataulfo’ (Mangifera indica L.) fruit. Chem Pap. 2020;74(11):4025-4032.es_CO
    dc.relation.referencesSutcliffe L. Applied spectroscopy reviews, volume I. Polymer (Guildf). 1969;10(June 2013):556.es_CO
    dc.relation.referencesSilva RM, Placido GR, Silva MAP, Castro CFS, Lima MS, Caliari M. Chemical characterization of passion fruit (Passiflora edulis f. flavicarpa) seeds. African J Biotechnol. 2015;14(14):1230-1233.es_CO
    dc.relation.referencesNaciones Unidas. Organización de las Naciones Unidas para la Alimentación y la Agricultura.es_CO
    dc.relation.referencesGamboa Porras J, Mora Montero J. Guía para el cultivo del mango (Mangifera indica L.) en Costa Rica. 2010:62.es_CO
    dc.relation.referencesLawson T, Lycett GW, Ali A, Foan C. Characterization of Southeast Asia mangoes ( Mangifera indica L ) according to their physicochemical attributes. Sci Hortic (Amsterdam). 2019;243(August 2018):189-196.es_CO
    dc.relation.referencesBruno de Sousa Sabino L, Leônia da Costa Gonzaga M, de Siqueira Oliveira L, et al. Polysaccharides from acerola, cashew apple, pineapple, mango and passion fruit co products: Structure, cytotoxicity and gastroprotective effects. Bioact Carbohydrates Diet Fibre. 2020;24(October 2019):1-9es_CO
    dc.relation.referencesBanerjee P, Jana S, Mukherjee S, et al. The heteropolysaccharide of Mangifera indica fruit: Isolation, chemical profile, complexation with β-lactoglobulin and antioxidant activity. Int J Biol Macromol. 2020;165:93-99.es_CO
    dc.relation.referencesCedeño J, Zambrano J. Cáscaras de piña y mango deshidratadas como fuente de Fibra Dietética en producción de galletas. Esc Super Politec Agropecu Manabi Man Felix Lopez. 2014:98.es_CO
    dc.relation.referencesÁvila FA, Funk VA. Catálogo de Plantas y Líquenes.; 2016.es_CO
    dc.relation.referencesManuel J. Lista de Especies de Passifloraceae de Colombia. Biota Colomb. 2000;1 (3)(3):320-335.es_CO
    dc.relation.referencesLandauro Leiva J (ORCID: Extractos acuosos de semilla, hoja y fruto de Passiflora edulis como antibacteriano contra Salmonella enterica frente a ciprofloxacino, in vitro. 220AD.es_CO
    dc.relation.referencesMora KRQ. Niveles de Harina de Cáscara de Maracuyá (Passiflora edulis) en Elaboración de yogur natural. J Chem Inf Model. 2013;53(9).es_CO
    dc.relation.referencesOrjuella Barquero NM, Campos Alba S, Sánchez Nieves J, Melgarejo LM, Hernández MS. Manual de manejo poscosecha de la gulupa (Passiflora edulis Sims). Poscosecha la gulupa (Passiflora edulis Sims). 2011;(April 2016):7-22.es_CO
    dc.relation.referencesKulkarni SG, Vijayanand P. LWT - Food Science and Technology Effect of extraction conditions on the quality characteristics of pectin from passion fruit peel ( Passiflora edulis f . flavicarpa L . ). LWT - Food Sci Technol. 2010;43(7):1026-1031.es_CO
    dc.relation.referencesGamonpilas C, Buathongjan C, Kirdsawasd T, et al. Pomelo pectin and fiber: Some perspectives and applications in food industry. Food Hydrocoll. 2021:38.es_CO
    dc.relation.referencesPre-proof J. Pectin-based Injectable and Biodegradable Self-Healing Hydrogels for Enhanced Synergistic Anticancer Therapy. Acta Biomater. 2021:1-30.es_CO
    dc.relation.referencesFischer G. Cultivo , Poscosecha y Comercialización de Las Pasifloráceas En Colombia : Maracuyá , Granadilla , Gulupa y Curuba.; 2009.es_CO
    dc.relation.referencesYepes A, Ochoa-bautista D, Murillo-arango W, Quintero-saumeth J, Bravo K, Osorio E. Purple passion fruit seeds ( Passiflora edulis f . edulis Sims ) as a promising source of skin anti-aging agents : Enzymatic , antioxidant and multi-level computational studies. Arab J Chem. 2021;14(1):102905.es_CO
    dc.relation.referencesMariane E, Giroux HJ, Lamothe S, et al. Use of passion fruit seed extract ( Passi fl ora edulis Sims ) to prevent lipid oxidation in dairy beverages during storage and simulated digestion. LWT - Food Sci Technol. 2020;123(October 2019):109088.es_CO
    dc.relation.referencesWidmann G. Información TA: Interpretación de Curvas TGA.; 2001.es_CO
    dc.relation.referencesWorldwide IS. Qué Es ASTM International?; 2003.es_CO
    dc.relation.referencesASTME1131-08. Standard Test Method for Compositional Analysis by Thermogravimetry 1.; 2010.es_CO
    dc.relation.referencesROBALINO HOG. CARACTERIZACIÓN DE HIDROCARBUROS Y ALCOHOLES PARA UN CICLO RANKINE ORGÁNICO MEDIANTE CALORIMETRÍA DIFERENCIAL DE BARRIDO (DSC) TRABAJO. 2016;4(4)es_CO
    dc.relation.referencesASTM International. Standard Test Method for Transition Temperatures and Enthalpies of Fusion and Crystallization of Polymers by Differential Scanning. Vol D4318-08.; 2012.es_CO
    dc.relation.referencesCosmogreen. Ficha Técnica de Ultralimpiador Desinfectante Sanity Beta.; 2018.es_CO
    dc.relation.referencesDevia Pineda J. Proceso para producir Pectinas Cítricas. Rev Univ EAFIT. 2003;39(129):21-29.es_CO
    dc.relation.referencesMali S, Grossmann MVE, Garcia MA, Martino MN, Zaritzky NE. Microstructural characterization of yam starch films. Carbohydr Polym. 2002;50(4):379-386.es_CO
    dc.relation.referencesJuliana Meneses, Catalina Corrales MV. Síntesis y caracterización de un polímero biodegradable a partir del almidón de yuca. EIA. 2007;8(5):57-67.es_CO
    dc.relation.referencesRenteria J. Procesamiento de frutas de maracuyá (Pasiflora edulis) para obtención de pectina. 2014.es_CO
    dc.relation.referencesStefanello C, Rosa C. Composición aproximada de las cáscaras de diferentes frutas. Rev Cienc y Tecnol. 2012;(17):0-0.es_CO
    dc.relation.referencesDENOYA G, BENÍTEZ C. Efecto de la aplicación de tratamientos combinados de aditivos sobre la inhibición del pardeamiento enzimático en manzanas cv. Granny Smith mínimamente procesadas. RIA Rev Investig Agropecu. 2012;38(3):263-267.es_CO
    dc.relation.referencesMorante Carriel J, Agnieszka Obrebska A, Nieto Rodríguez JE, Carranza Patiño MS, Pico-Saltos R, Bru-Martínez R. Distribución, Localización E Inhibidores De Las Polifenol Oxidasas En Frutos Y Vegetales Usados Como Alimento. Cienc y Tecnol. 2014;7(1):23-31.es_CO
    dc.relation.referencesCabezas Serrano AB. Estrategias dirigidas a retrasar el pardeamiento enzimático en productos destinados a la IV Gama: alcachofas y patatas. 2013.es_CO
    dc.relation.referencesPilla Barroso IA. Desarrollo de un material termoplástico obtenido a partir de almidón de oca (Oxalis tuberosa) y plastificantes. 2017.es_CO
    dc.relation.referencesRuiz G. Obtención y caracterización de un polímero biodegradable a partir del almidon de yuca. Ingeniría y Cienc. 2006;2:5-28.es_CO
    dc.relation.referencesBabalola R, Ayeni AO, Joshua PS, et al. Synthesis of thermal insulator using chicken feather fibre in starch-clay nanocomposites. Heliyon. 2020;6(11):e05384.es_CO
    dc.relation.referencesAhn HK, Sauer TJ, Richard TL, Glanville TD. Determination of thermal properties of composting bulking materials. Bioresour Technol. 2009;100(17):3974-3981.es_CO
    dc.relation.referencesNourbakhsh A, Karegarfard A, Ashori A, Nourbakhsh A. Effects of particle size and coupling agent concentration on mechanical properties of particulate-filled polymer composites. J Thermoplast Compos Mater. 2010;23(2):169-174.es_CO
    dc.relation.referencesLaskar IB, Gupta R, Chatterjee S, Vanlalveni C, Rokhum L. Taming waste: Waste Mangifera indica peel as a sustainable catalyst for biodiesel production at room temperature. Renew Energy. 2020;161:207-220.es_CO
    dc.relation.referencesGunindra P, Diparjun D, Kalyani R, Lalthazuala R. Exploiting waste: Towards a sustainable production of biodiesel using Musa acuminata peel ash as a heterogeneous catalyst Gunindra. Green Chem. 2018:1-9.es_CO
    dc.relation.referencesLin Y, Zheng N. Biowaste-to-biochar through microwave-assisted wet co-torrefaction of blending mango seed and passion shell with optoelectronic sludge. Energy. 2021;225:120213.es_CO
    dc.relation.referencesLin Y, Zheng N. Torrefaction of fruit waste seed and shells for biofuel production with reduced CO 2 emission. Energy. 2021;225:120226.es_CO
    dc.relation.referencesMisra NN, Yadav SK. Extraction of pectin from black carrot pomace using intermittent microwave, ultrasound and conventional heating: Kinetics, characterization and process economics. Food Hydrocoll. 2020:105592.es_CO
    dc.relation.referencesValdivia-rivera S, Herrera-pool IE, Ayora-talavera R, Alejandro M. Pectin from Mangifera indica L . cv . Haden residues : Kinetic , thermodynamic , physicochemical , and economical characterization Statement of Novelty Declarations Funding Acknowledgements. :1-21es_CO
    dc.relation.referencesMatharu A, Houghton J, Covadonga L, Moreno A. Acid-Free Microwave-Assisted Hydrothermal Extraction of Pectin and Porous Cellulose from Mango Peel Waste – Towards a Zero Waste Mango Biorefinery. Green Chem. 2016:1-9.es_CO
    dc.relation.referencesMoreira RB, Teixeira JA, Furuyama-lima AM, Souza NC De, Siqueira AB. Thermochimica Acta Preparation , characterization and evaluation of drug-delivery systems : Pectin and mefenamic acid fi lms. Elsevier BV. 2014;590:100-106.es_CO
    dc.relation.referencesLópez DF, Osorio O, Checa OE. Propiedades Mecánicas de un Material de Pectina para Revestimiento de Fibras Naturales Utilizadas en Aplicaciones Agrícolas. Inf tecnológica. 2019;30(3):189-198.es_CO
    dc.relation.referencesHazarika D, Gogoi N, Jose S, Das R, Basu G. Exploration of future prospects of Indian pineapple leaf, an agro waste for textile application. J Clean Prod. 2017;141:580-586.es_CO
    dc.relation.referencesZhuang Y, Liu J, Chen J, Fei P. Modified pineapple bran cellulose by potassium permanganate as a copper ion adsorbent and its adsorption kinetic and adsorption thermodynamic. Food Bioprod Process. 2020;122:82-88es_CO
    dc.relation.referencesKim J, Sunagawa M, Kobayashi S, Shin T, Takayama C. Developmental localization of calcitonin gene-related peptide in dorsal sensory axons and ventral motor neurons of mouse cervical spinal cord. Neurosci Res. 2016;105:42-48.es_CO
    dc.relation.referencesAzzouzi D, Rabahi W, Seddiri F, Hemis M. Experimental study of the fibres content effect on the heat insulation capacity of new vegetable composite plaster-pea pod fibres. Sustain Mater Technol. 2020;23:e00144.es_CO
    dc.rights.accessrightshttp://purl.org/coar/access_right/c_abf2es_CO
    dc.type.coarversionhttp://purl.org/coar/resource_type/c_2df8fbb1es_CO
    Aparece en las colecciones: Ingeniería Química

    Ficheros en este ítem:
    Fichero Descripción Tamaño Formato  
    Acosta_2021_TG.pdfAcosta_2021_TG3,37 MBAdobe PDFVisualizar/Abrir


    Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.