Por favor, use este identificador para citar o enlazar este ítem:
http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/5552
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | Acosta Dreika, Yandark. | - |
dc.date.accessioned | 2022-12-18T21:58:22Z | - |
dc.date.available | 2021-10-12 | - |
dc.date.available | 2022-12-18T21:58:22Z | - |
dc.date.issued | 2022 | - |
dc.identifier.citation | Acosta Dreika, Y. (2021). Aprovechamiento de residuos de maracuyá (Passiflora edulis) y mango (Mangífera índica) para la elaboración de un bioplástico [Trabajo de Grado Pregrado, Universidad de Pamplona] Repositorio Hulago Universidad de Pamplona. http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/5552 | es_CO |
dc.identifier.uri | http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/5552 | - |
dc.description | El autor no proporciona información sobre este ítem. | es_CO |
dc.description.abstract | El autor no proporciona información sobre este ítem. | es_CO |
dc.format.extent | 57 | es_CO |
dc.format.mimetype | application/pdf | es_CO |
dc.language.iso | es | es_CO |
dc.publisher | Universidad de Pamplona – Facultad de Ingenieras y Arquitectura. | es_CO |
dc.subject | El autor no proporciona información sobre este ítem. | es_CO |
dc.title | Aprovechamiento de residuos de maracuyá (Passiflora edulis) y mango (Mangífera índica) para la elaboración de un bioplástico. | es_CO |
dc.type | http://purl.org/coar/resource_type/c_7a1f | es_CO |
dc.date.accepted | 2021-07-12 | - |
dc.relation.references | ONU. Desafíos Globales - Población. Organización de las Naciones Unidas. 2019. Acceso el 4 de mayo, 2021. | es_CO |
dc.relation.references | Cremonez PA, Teleken JG, Weiser Meier TR, Alves HJ. Two-Stage anaerobic digestion in agroindustrial waste treatment: A review. J Environ Manage. 2021;281:1-2. | es_CO |
dc.relation.references | Freitas LC, Barbosa JR, da Costa ALC, Bezerra FWF, Pinto RHH, Carvalho Junior RN de. From waste to sustainable industry: How can agro-industrial wastes help in the development of new products? Resour Conserv Recycl. 2021;169(February). | es_CO |
dc.relation.references | Santos LA dos, Valença RB, Silva LCS da, et al. Methane generation potential through anaerobic digestion of fruit waste. J Clean Prod. 2020;256:1-2. | es_CO |
dc.relation.references | Kuittinen S, Hietaharju J, Kupiainen L, et al. Bioethanol production from short rotation S. schwerinii E. Wolf is carbon neutral with utilization of waste-based organic fertilizer and process carbon dioxide capture. J Clean Prod. 2021;293:1-8. | es_CO |
dc.relation.references | Dennehy C, Lawlor PG, McCabe MS, et al. Anaerobic co-digestion of pig manure and food waste; effects on digestate biosafety, dewaterability, and microbial community dynamics. Waste Manag. 2018;71:532-541. | es_CO |
dc.relation.references | Lee XJ, Ong HC, Gao W, et al. Solid biofuel production from spent coffee ground wastes: Process optimisation, characterisation and kinetic studies. Fuel. 2021;292(January):120309. | es_CO |
dc.relation.references | Cui Y, Dong X, Tong J, Liu S. Degradation of lignocellulosic components in un pretreated vinegar residue using an artificially constructed fungal consortium. BioResources. 2015;10(2):3434-3450. | es_CO |
dc.relation.references | Manuel BECV. DESARROLLO Y CARACTERIZACIÓN DE UN BIOPLASTICO A PARTIR DE CÁSCARA DE MARACUYÁ (Passiflora edulis). 2020. | es_CO |
dc.relation.references | Cardoso MFG, Green SJ, Trespalacios RAN, Paz MS. BIOPLÁSTICOS: SOLUCIONES AMBIENTALES.; 2016. | es_CO |
dc.relation.references | Romero M, Eduardo J, Baena W. Bioplástico. 2019. | es_CO |
dc.relation.references | Prieto A. Los Bioplásticos, ¿Qué Son? ¿Cuántos Hay? ¿Cómo Se Producen?; 2020. | es_CO |
dc.relation.references | Friedrich D. Market and business-related key factors supporting the use of compostable bioplastics in the apparel industry : A cross-sector analysis. J Clean Prod. 2021;297:126716. | es_CO |
dc.relation.references | Kakadellis S, Harris ZM. Don ’ t scrap the waste : The need for broader system boundaries in bioplastic food packaging life-cycle assessment e A critical review. J Clean Prod. 2020;274:122831. | es_CO |
dc.relation.references | EuropeanBioplastics. What Are Bioplastics?; 2018 | es_CO |
dc.relation.references | Seenuvasan M, Malar CG, Growther L. Production of a biopolymer film from biological wastes and its statistical analysis. Bioresour Technol Reports. 2021;13(November 2020):1-5. | es_CO |
dc.relation.references | Pandharipande SL, Bhagat PH, Professor A, Tech B, Semester T. Synthesis of Chitin from Crab Shells and its Utilization in Preparation of Nanostructured Film. Int J Sci Eng Technol Res. 2016;5(5):1378-1383. | es_CO |
dc.relation.references | Rødde RH, Einbu A, Vårum KM. A seasonal study of the chemical composition and chitin quality of shrimp shells obtained from northern shrimp (Pandalus borealis). Carbohydr Polym. 2008;71(3):388-393. | es_CO |
dc.relation.references | Khoo CG, Dasan YK, Lam MK, Lee KT. Algae biorefinery: Review on a broad spectrum of downstream processes and products. Bioresour Technol. 2019;292:1-9. | es_CO |
dc.relation.references | Kartik A, Akhil D, Lakshmi D, et al. A critical review on production of biopolymers from algae biomass and their applications. Bioresour Technol. 2021;329:1-8. | es_CO |
dc.relation.references | Devadas VV, Khoo KS, Chia WY, et al. Algae biopolymer towards sustainable circular economy. Bioresour Technol. 2021;325:1-8. | es_CO |
dc.relation.references | Dianursanti, Khalis SA. The Effect of Compatibilizer Addition on Chlorella vulgaris Microalgae Utilization as a Mixture for Bioplastic. E3S Web Conf. 2018;67:2-6. | es_CO |
dc.relation.references | Álvarez DOG. Aprovechamiento de residuos agroindustriales para la producción de alimentos funcionales: una aproximación desde la nutrición animal. 2013. | es_CO |
dc.relation.references | Zoungranan Y, Lynda E, Dobi-Brice KK, Tchirioua E, Bakary C, Yannick DD. Influence of natural factors on the biodegradation of simple and composite bioplastics based on cassava starch and corn starch. J Environ Chem Eng. 2020;8(5):104396. | es_CO |
dc.relation.references | Chariguamán C. JA, Ruano J, Cardona J. Caracterización de bioplástico de almidón elaborado por el método de casting reforzado con albedo de maracuyá (Passiflora edulis spp.). 2015. | es_CO |
dc.relation.references | Chromatography G, Spectrometry M. Aromatic Characterization of Mangoes ( Mangifera indica L .) Using Solid Phase Extraction Coupled with. 2020. | es_CO |
dc.relation.references | Ríos MD, Muñoz KG, Tabizón EF, et al. Caracterización y capacidad de adsorción de la especie vegetal Larrea tridentata como adsorbente de color. Cult Científica y Tecnológica. 2016;0(54). | es_CO |
dc.relation.references | Singh NP, Jerath N, Singh G, Gill PPS. Physico-chemical characterization of unexploited mango diversity in sub-mountane zone of northern India. Indian J Plant Genet Resour. 2012;25(3):261-269. | es_CO |
dc.relation.references | Cuevas-Glory LF, Sauri-Duch E, Sosa-Moguel O, Pino JA. Characterization of odor active compounds in mango ‘Ataulfo’ (Mangifera indica L.) fruit. Chem Pap. 2020;74(11):4025-4032. | es_CO |
dc.relation.references | Sutcliffe L. Applied spectroscopy reviews, volume I. Polymer (Guildf). 1969;10(June 2013):556. | es_CO |
dc.relation.references | Silva RM, Placido GR, Silva MAP, Castro CFS, Lima MS, Caliari M. Chemical characterization of passion fruit (Passiflora edulis f. flavicarpa) seeds. African J Biotechnol. 2015;14(14):1230-1233. | es_CO |
dc.relation.references | Naciones Unidas. Organización de las Naciones Unidas para la Alimentación y la Agricultura. | es_CO |
dc.relation.references | Gamboa Porras J, Mora Montero J. Guía para el cultivo del mango (Mangifera indica L.) en Costa Rica. 2010:62. | es_CO |
dc.relation.references | Lawson T, Lycett GW, Ali A, Foan C. Characterization of Southeast Asia mangoes ( Mangifera indica L ) according to their physicochemical attributes. Sci Hortic (Amsterdam). 2019;243(August 2018):189-196. | es_CO |
dc.relation.references | Bruno de Sousa Sabino L, Leônia da Costa Gonzaga M, de Siqueira Oliveira L, et al. Polysaccharides from acerola, cashew apple, pineapple, mango and passion fruit co products: Structure, cytotoxicity and gastroprotective effects. Bioact Carbohydrates Diet Fibre. 2020;24(October 2019):1-9 | es_CO |
dc.relation.references | Banerjee P, Jana S, Mukherjee S, et al. The heteropolysaccharide of Mangifera indica fruit: Isolation, chemical profile, complexation with β-lactoglobulin and antioxidant activity. Int J Biol Macromol. 2020;165:93-99. | es_CO |
dc.relation.references | Cedeño J, Zambrano J. Cáscaras de piña y mango deshidratadas como fuente de Fibra Dietética en producción de galletas. Esc Super Politec Agropecu Manabi Man Felix Lopez. 2014:98. | es_CO |
dc.relation.references | Ávila FA, Funk VA. Catálogo de Plantas y Líquenes.; 2016. | es_CO |
dc.relation.references | Manuel J. Lista de Especies de Passifloraceae de Colombia. Biota Colomb. 2000;1 (3)(3):320-335. | es_CO |
dc.relation.references | Landauro Leiva J (ORCID: Extractos acuosos de semilla, hoja y fruto de Passiflora edulis como antibacteriano contra Salmonella enterica frente a ciprofloxacino, in vitro. 220AD. | es_CO |
dc.relation.references | Mora KRQ. Niveles de Harina de Cáscara de Maracuyá (Passiflora edulis) en Elaboración de yogur natural. J Chem Inf Model. 2013;53(9). | es_CO |
dc.relation.references | Orjuella Barquero NM, Campos Alba S, Sánchez Nieves J, Melgarejo LM, Hernández MS. Manual de manejo poscosecha de la gulupa (Passiflora edulis Sims). Poscosecha la gulupa (Passiflora edulis Sims). 2011;(April 2016):7-22. | es_CO |
dc.relation.references | Kulkarni SG, Vijayanand P. LWT - Food Science and Technology Effect of extraction conditions on the quality characteristics of pectin from passion fruit peel ( Passiflora edulis f . flavicarpa L . ). LWT - Food Sci Technol. 2010;43(7):1026-1031. | es_CO |
dc.relation.references | Gamonpilas C, Buathongjan C, Kirdsawasd T, et al. Pomelo pectin and fiber: Some perspectives and applications in food industry. Food Hydrocoll. 2021:38. | es_CO |
dc.relation.references | Pre-proof J. Pectin-based Injectable and Biodegradable Self-Healing Hydrogels for Enhanced Synergistic Anticancer Therapy. Acta Biomater. 2021:1-30. | es_CO |
dc.relation.references | Fischer G. Cultivo , Poscosecha y Comercialización de Las Pasifloráceas En Colombia : Maracuyá , Granadilla , Gulupa y Curuba.; 2009. | es_CO |
dc.relation.references | Yepes A, Ochoa-bautista D, Murillo-arango W, Quintero-saumeth J, Bravo K, Osorio E. Purple passion fruit seeds ( Passiflora edulis f . edulis Sims ) as a promising source of skin anti-aging agents : Enzymatic , antioxidant and multi-level computational studies. Arab J Chem. 2021;14(1):102905. | es_CO |
dc.relation.references | Mariane E, Giroux HJ, Lamothe S, et al. Use of passion fruit seed extract ( Passi fl ora edulis Sims ) to prevent lipid oxidation in dairy beverages during storage and simulated digestion. LWT - Food Sci Technol. 2020;123(October 2019):109088. | es_CO |
dc.relation.references | Widmann G. Información TA: Interpretación de Curvas TGA.; 2001. | es_CO |
dc.relation.references | Worldwide IS. Qué Es ASTM International?; 2003. | es_CO |
dc.relation.references | ASTME1131-08. Standard Test Method for Compositional Analysis by Thermogravimetry 1.; 2010. | es_CO |
dc.relation.references | ROBALINO HOG. CARACTERIZACIÓN DE HIDROCARBUROS Y ALCOHOLES PARA UN CICLO RANKINE ORGÁNICO MEDIANTE CALORIMETRÍA DIFERENCIAL DE BARRIDO (DSC) TRABAJO. 2016;4(4) | es_CO |
dc.relation.references | ASTM International. Standard Test Method for Transition Temperatures and Enthalpies of Fusion and Crystallization of Polymers by Differential Scanning. Vol D4318-08.; 2012. | es_CO |
dc.relation.references | Cosmogreen. Ficha Técnica de Ultralimpiador Desinfectante Sanity Beta.; 2018. | es_CO |
dc.relation.references | Devia Pineda J. Proceso para producir Pectinas Cítricas. Rev Univ EAFIT. 2003;39(129):21-29. | es_CO |
dc.relation.references | Mali S, Grossmann MVE, Garcia MA, Martino MN, Zaritzky NE. Microstructural characterization of yam starch films. Carbohydr Polym. 2002;50(4):379-386. | es_CO |
dc.relation.references | Juliana Meneses, Catalina Corrales MV. Síntesis y caracterización de un polímero biodegradable a partir del almidón de yuca. EIA. 2007;8(5):57-67. | es_CO |
dc.relation.references | Renteria J. Procesamiento de frutas de maracuyá (Pasiflora edulis) para obtención de pectina. 2014. | es_CO |
dc.relation.references | Stefanello C, Rosa C. Composición aproximada de las cáscaras de diferentes frutas. Rev Cienc y Tecnol. 2012;(17):0-0. | es_CO |
dc.relation.references | DENOYA G, BENÍTEZ C. Efecto de la aplicación de tratamientos combinados de aditivos sobre la inhibición del pardeamiento enzimático en manzanas cv. Granny Smith mínimamente procesadas. RIA Rev Investig Agropecu. 2012;38(3):263-267. | es_CO |
dc.relation.references | Morante Carriel J, Agnieszka Obrebska A, Nieto Rodríguez JE, Carranza Patiño MS, Pico-Saltos R, Bru-Martínez R. Distribución, Localización E Inhibidores De Las Polifenol Oxidasas En Frutos Y Vegetales Usados Como Alimento. Cienc y Tecnol. 2014;7(1):23-31. | es_CO |
dc.relation.references | Cabezas Serrano AB. Estrategias dirigidas a retrasar el pardeamiento enzimático en productos destinados a la IV Gama: alcachofas y patatas. 2013. | es_CO |
dc.relation.references | Pilla Barroso IA. Desarrollo de un material termoplástico obtenido a partir de almidón de oca (Oxalis tuberosa) y plastificantes. 2017. | es_CO |
dc.relation.references | Ruiz G. Obtención y caracterización de un polímero biodegradable a partir del almidon de yuca. Ingeniría y Cienc. 2006;2:5-28. | es_CO |
dc.relation.references | Babalola R, Ayeni AO, Joshua PS, et al. Synthesis of thermal insulator using chicken feather fibre in starch-clay nanocomposites. Heliyon. 2020;6(11):e05384. | es_CO |
dc.relation.references | Ahn HK, Sauer TJ, Richard TL, Glanville TD. Determination of thermal properties of composting bulking materials. Bioresour Technol. 2009;100(17):3974-3981. | es_CO |
dc.relation.references | Nourbakhsh A, Karegarfard A, Ashori A, Nourbakhsh A. Effects of particle size and coupling agent concentration on mechanical properties of particulate-filled polymer composites. J Thermoplast Compos Mater. 2010;23(2):169-174. | es_CO |
dc.relation.references | Laskar IB, Gupta R, Chatterjee S, Vanlalveni C, Rokhum L. Taming waste: Waste Mangifera indica peel as a sustainable catalyst for biodiesel production at room temperature. Renew Energy. 2020;161:207-220. | es_CO |
dc.relation.references | Gunindra P, Diparjun D, Kalyani R, Lalthazuala R. Exploiting waste: Towards a sustainable production of biodiesel using Musa acuminata peel ash as a heterogeneous catalyst Gunindra. Green Chem. 2018:1-9. | es_CO |
dc.relation.references | Lin Y, Zheng N. Biowaste-to-biochar through microwave-assisted wet co-torrefaction of blending mango seed and passion shell with optoelectronic sludge. Energy. 2021;225:120213. | es_CO |
dc.relation.references | Lin Y, Zheng N. Torrefaction of fruit waste seed and shells for biofuel production with reduced CO 2 emission. Energy. 2021;225:120226. | es_CO |
dc.relation.references | Misra NN, Yadav SK. Extraction of pectin from black carrot pomace using intermittent microwave, ultrasound and conventional heating: Kinetics, characterization and process economics. Food Hydrocoll. 2020:105592. | es_CO |
dc.relation.references | Valdivia-rivera S, Herrera-pool IE, Ayora-talavera R, Alejandro M. Pectin from Mangifera indica L . cv . Haden residues : Kinetic , thermodynamic , physicochemical , and economical characterization Statement of Novelty Declarations Funding Acknowledgements. :1-21 | es_CO |
dc.relation.references | Matharu A, Houghton J, Covadonga L, Moreno A. Acid-Free Microwave-Assisted Hydrothermal Extraction of Pectin and Porous Cellulose from Mango Peel Waste – Towards a Zero Waste Mango Biorefinery. Green Chem. 2016:1-9. | es_CO |
dc.relation.references | Moreira RB, Teixeira JA, Furuyama-lima AM, Souza NC De, Siqueira AB. Thermochimica Acta Preparation , characterization and evaluation of drug-delivery systems : Pectin and mefenamic acid fi lms. Elsevier BV. 2014;590:100-106. | es_CO |
dc.relation.references | López DF, Osorio O, Checa OE. Propiedades Mecánicas de un Material de Pectina para Revestimiento de Fibras Naturales Utilizadas en Aplicaciones Agrícolas. Inf tecnológica. 2019;30(3):189-198. | es_CO |
dc.relation.references | Hazarika D, Gogoi N, Jose S, Das R, Basu G. Exploration of future prospects of Indian pineapple leaf, an agro waste for textile application. J Clean Prod. 2017;141:580-586. | es_CO |
dc.relation.references | Zhuang Y, Liu J, Chen J, Fei P. Modified pineapple bran cellulose by potassium permanganate as a copper ion adsorbent and its adsorption kinetic and adsorption thermodynamic. Food Bioprod Process. 2020;122:82-88 | es_CO |
dc.relation.references | Kim J, Sunagawa M, Kobayashi S, Shin T, Takayama C. Developmental localization of calcitonin gene-related peptide in dorsal sensory axons and ventral motor neurons of mouse cervical spinal cord. Neurosci Res. 2016;105:42-48. | es_CO |
dc.relation.references | Azzouzi D, Rabahi W, Seddiri F, Hemis M. Experimental study of the fibres content effect on the heat insulation capacity of new vegetable composite plaster-pea pod fibres. Sustain Mater Technol. 2020;23:e00144. | es_CO |
dc.rights.accessrights | http://purl.org/coar/access_right/c_abf2 | es_CO |
dc.type.coarversion | http://purl.org/coar/resource_type/c_2df8fbb1 | es_CO |
Aparece en las colecciones: | Ingeniería Química |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
Acosta_2021_TG.pdf | Acosta_2021_TG | 3,37 MB | Adobe PDF | Visualizar/Abrir |
Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.