• Repositorio Institucional Universidad de Pamplona
  • Trabajos de pregrado y especialización
  • Facultad de Ingenierías y Arquitectura
  • Ingeniería Industrial
  • Por favor, use este identificador para citar o enlazar este ítem: http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/5353
    Registro completo de metadatos
    Campo DC Valor Lengua/Idioma
    dc.contributor.authorRodriguez Ramos, Eduard.-
    dc.date.accessioned2022-12-14T15:18:49Z-
    dc.date.available2021-10-07-
    dc.date.available2022-12-14T15:18:49Z-
    dc.date.issued2022-
    dc.identifier.citationRodriguez Ramos, E. (2021). Manufactura aditiva para aceros inoxidables por procesos SLM [Trabajo de Grado Pregrado, Universidad de Pamplona]. Repositorio Hulago Universidad de Pamplona. http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/5353es_CO
    dc.identifier.urihttp://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/5353-
    dc.descriptionLa manufactura aditiva (AM), es una técnica usada para la creación de piezas con geometrías complejas, que ha revolucionado el área del diseño y la fabricación en la industria y se puede utilizar con materiales de diferentes propiedades como los polímeros, materiales cerámicos y materiales con propiedades metálicas como por ejemplo en aceros inoxidables. Este artículo presenta un análisis de esta técnica, utilizando información específica sobre AM en aceros inoxidables por fusión selectiva por láser (SLM). Haciendo un breve recuento sobre las ventajas de ésta y los avances que representa la AM en la elaboración de piezas usadas en la ingeniería y demás campos a fines, para luego hacer una descripción detallada sobre cómo es este proceso y en qué consiste. Posteriormente se presenta información que describe las materias primas, características físicas y moleculares del acero inoxidable elaborado mediante SLM, con la finalidad de dar a conocer más de cerca este tema en específico. Finalmente se presentan las conclusiones a las que se llegó con la realización de este estudio.es_CO
    dc.description.abstractAdditive manufacturing (AM), is a technique used for the creation of parts with complex geometries, which has revolutionized the area of manufacturing in the industry and can be used with materials of different properties such as polymers, ceramic materials and materials with metallic properties such as stainless steels. This article presents an analysis of this technique, using specific information on AM in stainless steels by selective laser melting (SLM). A brief account of the advantages of this technique and the advances that AM represents in the elaboration of parts used in engineering and other fields is presented, followed by a detailed description of what this process is and what it consists of. Subsequently, information is presented describing the raw materials, physical and molecular characteristics of stainless steel produced by SLM is presented, to get to know this specific topic more closely. Finally, the conclusions drawn from this study are presented.es_CO
    dc.format.extent16es_CO
    dc.format.mimetypeapplication/pdfes_CO
    dc.language.isoeses_CO
    dc.publisherUniversidad de Pamplona – Facultad de Ingenierías y Arquitectura.es_CO
    dc.subjectManufactura aditiva.es_CO
    dc.subjectSLM.es_CO
    dc.subjectAcero inoxidable.es_CO
    dc.subjectMolecular.es_CO
    dc.titleManufactura aditiva para aceros inoxidables por procesos SLM.es_CO
    dc.typehttp://purl.org/coar/resource_type/c_7a1fes_CO
    dc.date.accepted2021-07-07-
    dc.relation.referencesAnderson et al. (1991). Flow mechanisms in high-pressure gas atomization. Mater Sci Eng A, 101.es_CO
    dc.relation.referencesBabu et al. (2010). Characterization of interfacial microstructures in 3003 aluminum alloy blocks fabricated by ultrasonic additive manufacturing. Acta Materialia, 4305.es_CO
    dc.relation.referencesChampagne et al. (1984). (Rotating Electrode Process) atomization mechanisms. Powder Metall Int, 125.es_CO
    dc.relation.referencesDebroy et al. (2018). Additive manufacturing of metallic components – Process, structure and properties. Progress in materials science, 112.es_CO
    dc.relation.referencesFrazier et al. (2014). Metal Additive Manufacturing: A Review. Journal of Materials Engineering and Performance volume, 27.es_CO
    dc.relation.referencesGaribaldi et al. (2016). Metallurgy of high-silicon steel parts produced using Selective Laser Melting. Acta mater, 207.es_CO
    dc.relation.referencesHsu at el. (2019). Microstructure and property of a selective laser melting process induced oxide dispersion strengthened 17-4 PH stainless steel. Journal of Alloys and Compounds, 30.es_CO
    dc.relation.referencesKarlsson et al. (2013). Caracterización y comparación de materiales producidos por fusión por haz de electrones (EBM) de dos fracciones de polvo de Ti-6Al-4V diferentes. J Mater Process Technol, 2109.es_CO
    dc.relation.referencesKhalid et al. (2011). Direct metal deposition (DMD) of H13 tool steel on copper alloy substrate: Evaluation of mechanical properties. Materials Science and Engineering: A, 8.es_CO
    dc.relation.referencesKing et al. (2016). Laser powder-bed fusion additive manufacturing: Physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones. Acta Materialia,.es_CO
    dc.relation.referencesLaleh et al. (2019). On the unusual intergranular corrosion resistance of 316L stainless steel additively manufactured by selective laser melting. Corrosion Science, 7.es_CO
    dc.relation.referencesLiu at el. (2020). Effect of scanning speed on the microstructure and mechanical behavior of 316L stainless steel fabricated by selective laser melting. Materials & Design, 186.es_CO
    dc.relation.referencesManvatkar et al. (2011). Estimation of melt pool dimensions, thermal cycle, and hardness distribution in the laser-engineered net shaping process of austenitic stainless steel. Metall Mater Trans, 2080.es_CO
    dc.relation.referencesOkamoto et al. (1990). Effect of atomization variables on powder characteristics in the high pressured water atomization process. Met Powder Rep, 38.es_CO
    dc.relation.referencesPinkerton et al. (2005). Direct additive laser manufacturing using gas- and water-atomised H13 tool steel powders. Int J Adv Manuf Technol, 471.es_CO
    dc.relation.referencesSames et al. (2016). The metallurgy and processing science of metal additive manufacturing. Int Mater Rev, 315.es_CO
    dc.relation.referencesYadollahi et al. (2015). Effects of process time interval and heat treatment on the mechanical and microstructural properties of direct laser deposited 316L stainless steel. Mater Sci Eng A, 171.es_CO
    dc.relation.referencesYang et al. (2012). Microstructure and mechanical properties of laser forming repaired 17–4PH stainless steel. Mater Sci Eng A, 80.es_CO
    dc.relation.referencesZhang et al. (2017). Fabrication of inclined thin-walled parts in multi-layer single-pass GMAW based additive manufacturing with flat position deposition. Journal of Materials Processing Technology, 397es_CO
    dc.rights.accessrightshttp://purl.org/coar/access_right/c_abf2es_CO
    dc.type.coarversionhttp://purl.org/coar/resource_type/c_2df8fbb1es_CO
    Aparece en las colecciones: Ingeniería Industrial

    Ficheros en este ítem:
    Fichero Descripción Tamaño Formato  
    Rodriguez_2021_TG.pdfRodriguez_2021_TG.pdf330,03 kBAdobe PDFVisualizar/Abrir


    Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.