Por favor, use este identificador para citar o enlazar este ítem:
http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/5340
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | Villa Diaz, Cristian David. | - |
dc.date.accessioned | 2022-12-14T14:11:29Z | - |
dc.date.available | 2021-03-21 | - |
dc.date.available | 2022-12-14T14:11:29Z | - |
dc.date.issued | 2021 | - |
dc.identifier.citation | Villa Diaz, C. D. (2020). Efectos de la corrosión sobre los materiales de construcción en los canales de transporte de combustible para reactores de sales fundidas en la industria energética nuclear [Trabajo de Grado Pregrado, Universidad de Pamplona] Repositorio Hulago Universidad de Pamplona. http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/5340 | es_CO |
dc.identifier.uri | http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/5340 | - |
dc.description | El autor no proporciona la información sobre este ítem. | es_CO |
dc.description.abstract | El autor no proporciona la información sobre este ítem. | es_CO |
dc.format.extent | 56 | es_CO |
dc.format.mimetype | application/pdf | es_CO |
dc.language.iso | es | es_CO |
dc.publisher | Universidad de Pamplona – Facultad de Ingenieras y Arquitectura. | es_CO |
dc.subject | El autor no proporciona la información sobre este ítem. | es_CO |
dc.title | Efectos de la corrosión sobre los materiales de construcción en los canales de transporte de combustible para reactores de sales fundidas en la industria energética nuclear. | es_CO |
dc.type | http://purl.org/coar/resource_type/c_7a1f | es_CO |
dc.date.accepted | 2020-12-21 | - |
dc.relation.references | Abram, T., & Ion, S. (2008). Generation-IV nuclear power: A review of the state of the science. Energy Policy, 36(12), 4323–4330. https://doi.org/10.1016/j.enpol.2008.09.059 | es_CO |
dc.relation.references | Andersen, P. K., Ghassemi, A., & Ghassemi, M. (2004). Nuclear Waste. In C. J. B. T.-E. of E. Cleveland (Ed.), Encyclopedia of Energy (pp. 449–463). Elsevier. https://doi.org/10.1016/B0-12-176480-X/00414- | es_CO |
dc.relation.references | APS. (2015). APS Physics | FPS | Fusion Reactors Share Seven Drawbacks of Fission Reactors. Recuperado el 8 de mayo de 2020, de https://www.aps.org/units/fps/newsletters/201610/fusion.cfm. | es_CO |
dc.relation.references | Armarego, W. L. F., & Chai, C. L. L. (2003). Purification of Organic Chemicals. In W. L. F. Armarego & C. L. L. B. T.-P. of L. C. (Fifth E. Chai (Eds.), Purification of Laboratory Chemicals (pp. 80–388). Elsevier. https://doi.org/10.1016/B978-075067571-0/50008-9 | es_CO |
dc.relation.references | Basalla, G. (2011). La evolución de la tecnología (Editorial Crítica (Ed.); Primera ed). Editorial Crítica. Recuperado el 3 de abril de 2020, de https://books.google.com.co/books/about/La_evolución_de_la_tecnología.html?id=xxH VXwAACAAJ&source=kp_book_description&redir_esc=y | es_CO |
dc.relation.references | Beneš, O., & Konings, R. J. M. (2012). Molten Salt Reactor Fuel and Coolant. In R. Konings, T. Allen, R. Stoller, & S. Yamanaka (Eds.), Comprehensive Nuclear Materials (3ra ed., pp. 359–389). Elsevier. https://doi.org/10.1016/B978-0-08-056033-5.00062-8 | es_CO |
dc.relation.references | Beneš, O., & Souček, P. (2020). Molten salt reactor fuels. In M. H. A. Piro (Ed.), Advances in Nuclear Fuel Chemistry (pp. 249–271). Elsevier. https://doi.org/10.1016/B978-0-08- 102571-0.00007-0 | es_CO |
dc.relation.references | Chakravorty, U., & Gong, Y. (2015). The Economics of Fossil Fuels and Pollution. In Sustainable Economic Development (pp. 67–75). Elsevier. https://doi.org/10.1016/B978- 0-12-800347-3.00004-2 | es_CO |
dc.relation.references | Cheng, J.-H., Zhang, P., An, X., Wang, K., Zuo, Y., Yan, H.-W., & Li, Z. (2013). A Device for Measuring the Density and Liquidus Temperature of Molten Fluorides for Heat Transfer and Storage. Chinese Physics Letters, 30(12), 126501. https://doi.org/10.1088/0256-307X/30/12/126501 | es_CO |
dc.relation.references | Cherginets, V. L., & Rebrova, T. P. (1999). Studies of some acid–base equilibria in the molten eutectic mixture KCl–LiCl at 700°C. Electrochimica Acta, 45(3), 469–476. https://doi.org/10.1016/S0013-4686(99)00274-1 | es_CO |
dc.relation.references | CORDIS, & UE. (2020). Un nuevo diseño de reactor de sal fundida aumenta la seguridad de la energía nuclear | Result In Brief | CORDIS | European Commission. Recuperado el 9 de mayo de 2020, de https://cordis.europa.eu/article/id/413258-new-molten-salt-fast reactor-design-increases-nuclear-energy-safety/es | es_CO |
dc.relation.references | De Córdoba, G., & Caravaca, C. (2006). Potentiometric study of Sm–O compounds formation 50 in the molten LiCl–KCl eutectic at 450°C. Determination of a E-pO2− stability diagram. Journal of Physics and Chemistry of Solids, 67(8), 1862–1868. https://doi.org/10.1016/j.jpcs.2006.04.011 | es_CO |
dc.relation.references | Dean, S. O. (2013). A Piece of the Sun: The Quest for Fusion Energy by Daniel Clery. Fusion Science and Technology, 64(4), 801–801. https://doi.org/10.13182/FST13-A24099 | es_CO |
dc.relation.references | Deenadayalu, N., & Bhujrajh, P. (2008). Density, Speed of Sound, and Derived Thermodynamic Properties of Ionic Liquids [EMIM] + [BETI] − or ([EMIM] + [CH 3 (OCH 2 CH 2 ) 2 OSO 3 ] − + Methanol or + Acetone) at T = (298.15 or 303.15 or 313.15) K. Journal of Chemical & Engineering Data, 53(5), 1098–1102. https://doi.org/10.1021/je700648 | es_CO |
dc.relation.references | Doligez, X., Heuer, D., Merle-Lucotte, E., Allibert, M., & Ghetta, V. (2014). Coupled study of the Molten Salt Fast Reactor core physics and its associated reprocessing unit. Annals of Nuclear Energy, 64, 430–440. https://doi.org/10.1016/j.anucene.2013.09.009 | es_CO |
dc.relation.references | Durán-Klie, G., Rodrigues, D., & Delpech, S. (2016). Dynamic Reference Electrode development for redox potential measurements in fluoride molten salt at high temperature. Electrochimica Acta, 195, 19–26. https://doi.org/10.1016/j.electacta.2016.02.042 | es_CO |
dc.relation.references | ECCA. (2011). The Basics of Corrosion -TechnicalPaper - European Coil Coating Association. 2011. Recuperado el 26 de abril de 2020, de http://www.prepaintedmetal.eu/repository/%0AAnnina/Basic of corrosion 021211.pdf. | es_CO |
dc.relation.references | Elsheikh, B. M. (2013). Safety assessment of molten salt reactors in comparison with light water reactors. Journal of Radiation Research and Applied Sciences, 6(2), 63–70. https://doi.org/10.1016/j.jrras.2013.10.008 | es_CO |
dc.relation.references | Energía nuclear. (2017). Recuperado el 10 de abril de 2020, de https://www.sgm.gob.mx/Web/MuseoVirtual/Aplicaciones_geologicas/Energia nuclear.html | es_CO |
dc.relation.references | ENULa. (2017). “¿Cuáles son las diferencias entre los reactores de segunda y tercera generación?” | ENUla – Energía Nuclear Latinoamericana. 2017. Recuperado el 3 de agosto de 2020, de http://enula.org/2017/12/cuales-son-las-diferencias-entre-los reactores-de-segunda-y-tercera-generacion/ | es_CO |
dc.relation.references | EPN. (2012). Corrosión y degradación de los metales, Escuela Politecnica Nacional. 2012. Recuperado el 26 de abril de 2020, de http://bibdigital.epn.edu.ec/bitstream/15000/2771/1/CD-0553.pdf | es_CO |
dc.relation.references | Fernández Arias, P., Cuevas, A., & Vergara, D. (2013). Historia de la evolución tecnica de los reactores nucleares de agua a presión. ArtefaCToS, 6(1), 109–138. https://doi.org/10.14201 | es_CO |
dc.relation.references | Foro Nuclear Español. (2020). Energía nuclear en el mundo - Foro Nuclear - Foro de la Industria Nuclear Española. 2020. Recuperado el 6 de agosto de 2020, de https://www.foronuclear.org/descubre-la-energia-nuclear/energia-nuclear-en-el-mundo/ | es_CO |
dc.relation.references | Forsberg, C. W. (2004). Reactors with molten salts: options and missions. In Frederick Joliot 51 & Otto Hahn Summer School on Nuclear Reactors, Physics and Fuels Systems, Cadarache, France. Citeseer, Recuperado el 23 de agosto de 2020, de. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.532.1495&rep=rep1&type=pd f | es_CO |
dc.relation.references | Gibilaro, M., Massot, L., & Chamelot, P. (2015). A way to limit the corrosion in the Molten Salt Reactor concept: the salt redox potential control. Electrochimica Acta, 160, 209–213. https://doi.org/10.1016/j.electacta.2015.01.14 | es_CO |
dc.relation.references | GIF. (2013). GIF Portal - 2008 Annual Report. Recuperado el 22 de abril de 2020, de https://www.gen-4.org/gif/jcms/c_43523/2008-annual-report?details=true | es_CO |
dc.relation.references | Gunsing, F, Altstadt, S., Andrzejewski, J., Audouin, L., Barbagallo, M., Bécares, V., Bečvář, F., Belloni, F., Berthoumieux, E., Billowes, J., Boccone, V., Bosnar, D., Brugger, M., Calviani, M., Calviño, F., Cano-Ott, D., Carrapiço, C., Cerutti, F., Chiaveri, E., … Žugec, P. (2016). Nuclear Data for the Thorium Fuel Cycle and the Transmutation of Nuclear Waste. In J.-P. Revol, M. Bourquin, Y. Kadi, E. Lillestol, J.-C. de Mestral, & K. Samec (Eds.), Thorium Energy for the World (pp. 207–214). Springer International Publishing. https://doi.org/10.1007/978-3-319-26542-1_32 | es_CO |
dc.relation.references | Guo, S., Shay, N., Wang, Y., Zhou, W., & Zhang, J. (2017). Measurement of europium (III)/europium (II) couple in fluoride molten salt for redox control in a molten salt reactor concept. Journal of Nuclear Materials, 496, 197–206. https://doi.org/10.1016/j.jnucmat.2017.09.027 | es_CO |
dc.relation.references | Guo, S., Zhang, J., Wu, W., & Zhou, W. (2018). Corrosion in the molten fluoride and chloride salts and materials development for nuclear applications. Progress in Materials Science, 97(August 2017), 448–487. https://doi.org/10.1016/j.pmatsci.2018.05.003 | es_CO |
dc.relation.references | Guzonas, D., Novotny, R., Penttilä, S., Toivonen, A., & Zheng, W. (2018). Corrosion. In D. Guzonas, R. Novotny, S. Penttilä, A. Toivonen, & W. Zheng (Eds.), Materials and Water Chemistry for Supercritical Water-cooled Reactors (pp. 139–218). Elsevier. https://doi.org/10.1016/B978-0-08-102049-4.00005-2 | es_CO |
dc.relation.references | Holcomb, D. E., Flanagan, G. F., Mays, G. T., Pointer, W. D., Robb, K. R., & Yoder Jr, G. L. (2013). Fluoride Salt-Cooled High-Temperature Reactor Technology Development and Demonstration Roadmap. In Oak Ridge National Laboratory. https://doi.org/10.2172/1107839 | es_CO |
dc.relation.references | Huang, H. M., Li, J., & Liu, R. (2014). Temperature effect of Xe ion irradiation to 316 austenitic stainless steel. Acta Metallurgica Sinica, 50(10), 1189–1194. https://doi.org/10.11900/0412.1961.2014.00099 | es_CO |
dc.relation.references | Ignatiev, V., & Surenkov, A. (2012). Material Performance in Molten Salts. In R. J. M. Konings (Ed.), Comprehensive Nuclear Materials (pp. 221–250). Elsevier. https://doi.org/10.1016/B978-0-08-056033-5.00098-7 | es_CO |
dc.relation.references | Ignatiev, V., & Surenkov, A. (2017). Corrosion phenomena induced by molten salts in Generation IV nuclear reactors. In P. Yvon (Ed.), Structural Materials for Generation IV Nuclear Reactors (pp. 153–189). Elsevier. https://doi.org/10.1016/B978-0-08-100906- 2.00005-7 | es_CO |
dc.relation.references | Javaherdashti, R. (2008). Microbiologically Influenced Corrosion (Springer (Ed.)). Springer London. https://doi.org/10.1007/978-1-84800-074-2 | es_CO |
dc.relation.references | Knapp, V., & Pevec, D. (2018). Promises and limitations of nuclear fission energy in combating climate change. Energy Policy, 120(May), 94–99. https://doi.org/10.1016/j.enpol.2018.05.02 | es_CO |
dc.relation.references | Koger, J. W. (2003). Molten Salt Corrosion. In Corrosion: Fundamentals, Testing, and Protection (Vol. 13, pp. 216–219). ASM International. https://doi.org/10.31399/asm.hb.v13a.a0003609 | es_CO |
dc.relation.references | Koukolikova, M., Slama, P., Dlouhy, J., Cerny, J., & Marecek, M. (2018). Cold/Hot Deformation Induced Recrystallization of Nickel-Based Superalloys for Molten Salt Reactors. Metals, 8(7), 477. https://doi.org/10.3390/met8070477 | es_CO |
dc.relation.references | Lifeng, H., Yongzhong, C., Dayong, Z., Congcong, Y., Bing, G., Guoqing, H., & Fuchun, Z. (2013). Design of the distributed control system for HTS molten salt test loop. Nuclear Techniques, 36(9), 6. https://doi.org/10.11889/j.0253-3219.2013.hjs.36.090603 | es_CO |
dc.relation.references | Liu, Y., Song, Y., Ai, H., Shen, M., Liu, H., Zhao, S., Liu, Y., Fei, Z., Fu, X., & Cheng, J. (2020). Corrosion of Cr in molten salts with different fluoroacidity in the presence of CrF3. Corrosion Science, 169(March), 1–9. https://doi.org/10.1016/j.corsci.2020.108636 | es_CO |
dc.relation.references | Lyon, S. (2012). Overview of corrosion engineering, science and technology. In D. Féron (Ed.), Nuclear Corrosion Science and Engineering (pp. 3–30). Elsevier. https://doi.org/10.1533/9780857095343.1.3 | es_CO |
dc.relation.references | Manly, W. D., Adamson, Jr., G. M., Coobs, J. H., DeVan, J. H., Douglas, D. A., Hoffman, E. E., & Patriarca, P. (1958). AIRCRAFT REACTOR EXPERIMENT--METALLURGICAL ASPECTS. Oak Ridge National Lab., Tenn. https://doi.org/10.2172/4227617 | es_CO |
dc.relation.references | Manohar S. Sohal, Matthias A. Ebner, Piyush Sabharwall, & Phil Sharpe. (2010). Engineering Database of Liquid Salt Thermophysical and Thermochemical Properties. Idaho National Laboratory (INL). https://doi.org/10.2172/980801 | es_CO |
dc.relation.references | Márquez, H., & Salvador, J. (2013). Monitoreo de la protección catódica a linea submarina No. 161 de 36"Ø Rebombeo/Dos Bocas de la Región Maria Suroeste en la Sona de Campeche. Tesis de maestría. Universidad de las Americas. http://catarina.udlap.mx/u_dl_a/tales/documentos/mgd/hernandez_m_js/ | es_CO |
dc.relation.references | Muránsky, O., Yang, C., Zhu, H., Karatchevtseva, I., Sláma, P., Nový, Z., & Edwards, L. 53 (2019). Molten salt corrosion of Ni-Mo-Cr candidate structural materials for Molten Salt Reactor (MSR) systems. Corrosion Science, 159(March), 108087. https://doi.org/10.1016/j.corsci.2019.07.011 | es_CO |
dc.relation.references | Olander, D. (2002). Redox condition in molten fluoride salts. Journal of Nuclear Materials, 300(2–3), 270–272. https://doi.org/10.1016/S0022-3115(01)00742-5 | es_CO |
dc.relation.references | Olson, L. C., Fuentes, R. E., Martinez-Rodriguez, M. J., Ambrosek, J. W., Sridharan, K., Anderson, M. H., Garcia-Diaz, B. L., Gray, J., & Allen, T. R. (2015). Impact of Corrosion Test Container Material in Molten Fluorides. Journal of Solar Energy Engineering, 137(6). https://doi.org/10.1115/1.403168 | es_CO |
dc.relation.references | Olson, L., Sridharan, K., Anderson, M., & Allen, T. (2010). Intergranular corrosion of high temperature alloys in molten fluoride salts. Materials at High Temperatures, 27(2), 145– 149. https://doi.org/10.3184/096034010X12743509428336 | es_CO |
dc.relation.references | Ongena, J., & Van Oost, G. (2002). Energy for Future Centuries: Will Fusion be an Inexhaustible, Safe and Clean Energy Source? Fusion Science and Technology, 41(2), 3– 14. https://doi.org/10.13182/FST02-A11963498 | es_CO |
dc.relation.references | ONU, & DAES. (2019). La población mundial sigue en aumento, aunque sea cada vez más vieja | ONU DAES |Naciones Unidas Departamento de Asuntos Económicos y Sociales. Recuperado el 17 de abril de 2020, de https://www.un.org/development/desa/es/news/population/world-population-prospects 2019.html | es_CO |
dc.relation.references | Ouyang, F.-Y., Chang, C.-H., & Kai, J.-J. (2014). Long-term corrosion behaviors of Hastelloy N and Hastelloy-B3 in moisture-containing molten FLiNaK salt environments. Journal of Nuclear Materials, 446(1–3), 81–89. https://doi.org/10.1016/j.jnucmat.2013.11.045 | es_CO |
dc.relation.references | Patel, N. S., Pavlík, V., & Boča, M. (2017). High-Temperature Corrosion Behavior of Superalloys in Molten Salts – A Review. Critical Reviews in Solid State and Materials Sciences, 42(1), 83–97. https://doi.org/10.1080/10408436.2016.1243090 | es_CO |
dc.relation.references | Pavlík, V., Kontrík, M., & Boča, M. (2015). Corrosion behavior of Incoloy 800H/HT in the fluoride molten salt FLiNaK + MFx (MFx = CrF3, FeF2, FeF3 and NiF2). New Journal of Chemistry, 39(12), 9841–9847. https://doi.org/10.1039/C5NJ01839K | es_CO |
dc.relation.references | Pierre R, R. (2008). 59. Corrosion Engineering Principles and Practice, McGraw-Hill, New York, US. In McGraw-Hill, New York, US. https://doi.org/10.1177/0340035206070163 | es_CO |
dc.relation.references | Pint, B. A., Terrani, K. A., Brady, M. P., Cheng, T., & Keiser, J. R. (2013). High temperature oxidation of fuel cladding candidate materials in steam–hydrogen environments. Journal of Nuclear Materials, 440(1–3), 420–427. https://doi.org/10.1016/j.jnucmat.2013.05.047 | es_CO |
dc.relation.references | Piquot, J., Nithiyanantham, U., Grosu, Y., & Faik, A. (2019). Spray-graphitization as a protection method against corrosion by molten nitrate salts and molten salts based nanofluids for thermal energy storage applications. Solar Energy Materials and Solar Cells, 200, 110024. https://doi.org/10.1016/j.solmat.2019.110024 | es_CO |
dc.relation.references | Ramírez Reyes, R., & del Campo Márquez, C. M. (2006). Metodología para la Comparación Integral de Reactores Nucleares: Selección de un reactor para México. In 2006. Recuperado el 19 de mayo de 2020, de https://inis.iaea.org/search/search.aspx?orig_q=RN:38002945 | es_CO |
dc.relation.references | Ren, W., Muralidharan, G., Wilson, D. F., & Holcomb, D. E. (2011). Considerations of alloy N for fluoride salt-cooled high-temperature reactor applications. ASME 2011 Pressure Vessels and Piping Conference, 44564, 725–736. https://inis.iaea.org/search/search.aspx?orig_q=RN:42097268 | es_CO |
dc.relation.references | Romanelli, F., Barabaschi, P., Borba, D., Federici, G., Horton, L., Neu, R., Stork, D., & Zohm, H. (2013). Fusion Electricity: A roadmap to the realization of fusion energy. Efda. Recuperado el 7 de septiembre de 2020, de https://scholar.google.com/scholar?oi=bibs&cluster=2401076741725880592&btnI=1&h l=es | es_CO |
dc.relation.references | Salazar, J. A. (2015). Introducción al fenómeno de corrosión: tipos, factores que influyen y control para la protección de materiales - Nota técnica. Revista Tecnología En Marcha, 28(3), 127. https://doi.org/10.18845/tm.v28i3.2417 | es_CO |
dc.relation.references | Serp, J., Allibert, M., Beneš, O., Delpech, S., Feynberg, O., Ghetta, V., Heuer, D., Holcomb, D., Ignatiev, V., Kloosterman, J. L., Luzzi, L., Merle-Lucotte, E., Uhlíř, J., Yoshioka, R., & Zhimin, D. (2014). The molten salt reactor (MSR) in generation IV: Overview and perspectives. Progress in Nuclear Energy, 77, 308–319. https://doi.org/10.1016/j.pnucene.2014.02.014 | es_CO |
dc.relation.references | Shaffer, J. H. (1971). PREPARATION AND HANDLING OF SALT MIXTURES FOR THE MOLTEN SALT REACTOR EXPERIMENT. Oak Ridge National Lab., Tenn. https://doi.org/10.2172/4074869 | es_CO |
dc.relation.references | Speight, J. G. (2014). Mechanism of Acid Corrosion. In J. G. Speight (Ed.), High Acid Crudes (pp. 31–55). Elsevier. https://doi.org/10.1016/B978-0-12-800630-6.00002-2 | es_CO |
dc.relation.references | Sridharan, K., & Allen, T. R. (2013). Corrosion in Molten Salts. In F. Lantelme & H. Groult (Eds.), Molten Salts Chemistry (pp. 241–267). Elsevier. https://doi.org/10.1016/B978-0- 12-398538-5.00012-3 | es_CO |
dc.relation.references | Stringer, J. (1977). Hot Corrosion of High-Temperature Alloys. Annual Review of Materials Science, 7(1), 477–509. https://doi.org/10.1146/annurev.ms.07.080177.002401 | es_CO |
dc.relation.references | Szklarska-Smialowska, Z. (2002). Mechanism of pit nucleation by electrical breakdown of the passive film. Corrosion Science, 44(5), 1143–1149. https://doi.org/10.1016/S0010- 938X(01)00113-5 | es_CO |
dc.relation.references | Tait, W. S. (2018). Controlling Corrosion of Chemical Processing Equipment. In M. Kutz 55 (Ed.), Handbook of Environmental Degradation of Materials (Third Edit, pp. 583–600). Elsevier. https://doi.org/10.1016/B978-0-323-52472-8.00028-9 | es_CO |
dc.relation.references | Tristancho R, J. L., Holguín P., M. P., & Ramírez L, L. C. (2015). Corrosión a alta temperatura de los recubrimientos metálicos NiCr y NiCrBSiFe depositados mediante proyección térmica. Prospectiva, 13(1), 32. https://doi.org/10.15665/rp.v13i1.357 | es_CO |
dc.relation.references | Trujillo, M. (2013). Caracterización y evaluación de inhibidores de corrosión en la industria petrolera [Instituto Politécnico Nacional]. http://tesis.ipn.mx/handle/123456789/24861 | es_CO |
dc.relation.references | Uhlíř, J. (2007). Chemistry and technology of Molten Salt Reactors - history and perspectives. Journal of Nuclear Materials, 360(1 SPEC. ISS.), 6–11. https://doi.org/10.1016/j.jnucmat.2006.08.008 | es_CO |
dc.relation.references | Uhlíř, J. (2017). Chemical processing of liquid fuel. In T. J. Dolan (Ed.), Molten Salt Reactors and Thorium Energy (pp. 209–230). Elsevier. https://doi.org/10.1016/B978-0-08-101126- 3.00008-7 | es_CO |
dc.relation.references | Virtual Pro. (2004, September). Corrosion Electroquimica - Conceptos de corrosión electroquímica. VirtualPro - Procesos Industriales. Recuperado el 7 de agosto de 2020, de https://www.virtualpro.co/revista/corrosion-electroquimica/4 | es_CO |
dc.relation.references | Wang, M., Nai, Q., Qiu, J., Wang, B., Yang, C., Su, C., & Liang, J. (2018). Development of GH3535 Alloy for Thorium Molten Salt Reactor. In Y. Han (Ed.), Advances in Energy and Environmental Materials (pp. 137–147). Springer Singapore. https://doi.org/10.1007/978-981-13-0158-2_16 | es_CO |
dc.relation.references | Wang, Y., Wu, J., Wang, C., & Zhang, S. (2019). Electrochemical corrosion behavior of 316L stainless steel in molten fluorides with a temperature gradient. Electrochemistry Communications, 109, 106612. https://doi.org/10.1016/j.elecom.2019.106612 | es_CO |
dc.relation.references | Williams, D. F. (2006). Assessment of Candidate Molten Salt Coolants for the NGNP/NHI Heat-Transfer Loop. Oak Ridge National Lab.(ORNL), Oak Ridge, TN (United States). https://doi.org/10.2172/1360677 | es_CO |
dc.relation.references | Wilson, D. (2007). Corrosion issues in molten fluoride salts. In ANS (Ed.), ANS Annual Conference. American Nuclear Society. Recuperado el 26 de abril de 2020, de https://www.ans.org/meetings/view-2/ | es_CO |
dc.relation.references | World Nuclear Association. (2018). Molten Salt Reactors - World Nuclear Association. 2018. Recuperado el 11 de septiembre de 2020, de https://www.world-nuclear.org/information library/current-and-future-generation/molten-salt-reactors.aspx | es_CO |
dc.relation.references | World Nuclear Association. (2019). Generation IV Nuclear Reactors: WNA - World Nuclear Association. 2018. Recuperado el 11 de mayo de 2020, de https://www.world nuclear.org/information-library/nuclear-fuel-cycle/nuclear-power-reactors/generation-iv- 56 nuclear-reactors.aspx | es_CO |
dc.relation.references | Worldometer - Estadísticas mundiales en tiempo real. (2020). Recuperado el 6 de mayo de 2020, de https://www.worldometers.info/es | es_CO |
dc.relation.references | Xing, J., Song, D., & Wu, Y. (2016). HPR1000: Advanced Pressurized Water Reactor with Active and Passive Safety. Engineering, 2(1), 79–87. https://doi.org/10.1016/J.ENG.2016.01.017 | es_CO |
dc.relation.references | Ye, X.-X., Ai, H., Guo, Z., Huang, H., Jiang, L., Wang, J., Li, Z., & Zhou, X. (2016). The high temperature corrosion of Hastelloy N alloy (UNS N10003) in molten fluoride salts analysed by STXM, XAS, XRD, SEM, EPMA, TEM/EDS. Corrosion Science, 106, 249– 259. https://doi.org/10.1016/j.corsci.2016.02.010 | es_CO |
dc.relation.references | Yoshioka, R. (2013). Nuclear Energy Based on Thorium Molten Salt. In F. Lantelme & H. Groult (Eds.), Molten Salts Chemistry (pp. 471–496). Elsevier. https://doi.org/10.1016/B978-0-12-398538-5.00023-8 | es_CO |
dc.relation.references | Zhang, D. (2016). Generation IV concepts. In I. L. Pioro (Ed.), Handbook of Generation IV Nuclear Reactors (pp. 373–411). Elsevier. https://doi.org/10.1016/B978-0-08-100149- 3.00014-8 | es_CO |
dc.relation.references | Zhang, J. (2014). Electrochemistry of actinides and fission products in molten salts—Data review. Journal of Nuclear Materials, 447(1–3), 271–284. https://doi.org/10.1016/j.jnucmat.2013.12.017 | es_CO |
dc.relation.references | Zheng, G, Carpenter, D., Hu, L.-W., & Sridharan, K. (2016). High temperature corrosion of structural alloys in molten Li2BeF4 (FLiBe) salt. Ceramic Transactions, 260, 93–101. https://doi.org/10.1002/9781119323624.ch9 | es_CO |
dc.relation.references | Zheng, Guiqiu, Kelleher, B., Cao, G., Anderson, M., Allen, T., & Sridharan, K. (2015). Corrosion of 316 stainless steel in high temperature molten Li2BeF4 (FLiBe) salt. Journal of Nuclear Materials, 461, 143–150. https://doi.org/10.1016/j.jnucmat.2015.03.004 | es_CO |
dc.relation.references | Zohuri, B. (2020). Generation IV nuclear reactors. In S. U.-D. Khan & A. Nakhabov (Eds.), Nuclear Reactor Technology Development and Utilization (1st ed., pp. 213–246). Elsevier. https://doi.org/10.1016/B978-0-12-818483-7.00006-8 | es_CO |
dc.relation.references | Zong, G., Zhang, Z.-B., Sun, J.-H., & Xiao, J.-C. (2017). Preparation of high-purity molten FLiNaK salt by the hydrofluorination process. Journal of Fluorine Chemistry, 197, 134– 141. https://doi.org/10.1016/j.jfluchem.2017.03.006 | es_CO |
dc.relation.references | Zou, C., Yu, C., Wu, J., Cai, X., & Chen, J. (2020). Transition to thorium fuel cycle in a small modular molten salt reactor based on a batch reprocessing mode. Annals of Nuclear Energy, 138, 107163. https://doi.org/10.1016/j.anucene.2019.10716 | es_CO |
dc.rights.accessrights | http://purl.org/coar/access_right/c_abf2 | es_CO |
dc.type.coarversion | http://purl.org/coar/resource_type/c_2df8fbb1 | es_CO |
Aparece en las colecciones: | Ingeniería Química |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
Villa_2020_TG.pdf | Villa_2020_TG | 1,92 MB | Adobe PDF | Visualizar/Abrir |
Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.