• Repositorio Institucional Universidad de Pamplona
  • Trabajos de pregrado y especialización
  • Facultad de Ingenierías y Arquitectura
  • Ingeniería Química
  • Por favor, use este identificador para citar o enlazar este ítem: http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/5340
    Registro completo de metadatos
    Campo DC Valor Lengua/Idioma
    dc.contributor.authorVilla Diaz, Cristian David.-
    dc.date.accessioned2022-12-14T14:11:29Z-
    dc.date.available2021-03-21-
    dc.date.available2022-12-14T14:11:29Z-
    dc.date.issued2021-
    dc.identifier.citationVilla Diaz, C. D. (2020). Efectos de la corrosión sobre los materiales de construcción en los canales de transporte de combustible para reactores de sales fundidas en la industria energética nuclear [Trabajo de Grado Pregrado, Universidad de Pamplona] Repositorio Hulago Universidad de Pamplona. http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/5340es_CO
    dc.identifier.urihttp://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/5340-
    dc.descriptionEl autor no proporciona la información sobre este ítem.es_CO
    dc.description.abstractEl autor no proporciona la información sobre este ítem.es_CO
    dc.format.extent56es_CO
    dc.format.mimetypeapplication/pdfes_CO
    dc.language.isoeses_CO
    dc.publisherUniversidad de Pamplona – Facultad de Ingenieras y Arquitectura.es_CO
    dc.subjectEl autor no proporciona la información sobre este ítem.es_CO
    dc.titleEfectos de la corrosión sobre los materiales de construcción en los canales de transporte de combustible para reactores de sales fundidas en la industria energética nuclear.es_CO
    dc.typehttp://purl.org/coar/resource_type/c_7a1fes_CO
    dc.date.accepted2020-12-21-
    dc.relation.referencesAbram, T., & Ion, S. (2008). Generation-IV nuclear power: A review of the state of the science. Energy Policy, 36(12), 4323–4330. https://doi.org/10.1016/j.enpol.2008.09.059es_CO
    dc.relation.referencesAndersen, P. K., Ghassemi, A., & Ghassemi, M. (2004). Nuclear Waste. In C. J. B. T.-E. of E. Cleveland (Ed.), Encyclopedia of Energy (pp. 449–463). Elsevier. https://doi.org/10.1016/B0-12-176480-X/00414-es_CO
    dc.relation.referencesAPS. (2015). APS Physics | FPS | Fusion Reactors Share Seven Drawbacks of Fission Reactors. Recuperado el 8 de mayo de 2020, de https://www.aps.org/units/fps/newsletters/201610/fusion.cfm.es_CO
    dc.relation.referencesArmarego, W. L. F., & Chai, C. L. L. (2003). Purification of Organic Chemicals. In W. L. F. Armarego & C. L. L. B. T.-P. of L. C. (Fifth E. Chai (Eds.), Purification of Laboratory Chemicals (pp. 80–388). Elsevier. https://doi.org/10.1016/B978-075067571-0/50008-9es_CO
    dc.relation.referencesBasalla, G. (2011). La evolución de la tecnología (Editorial Crítica (Ed.); Primera ed). Editorial Crítica. Recuperado el 3 de abril de 2020, de https://books.google.com.co/books/about/La_evolución_de_la_tecnología.html?id=xxH VXwAACAAJ&source=kp_book_description&redir_esc=yes_CO
    dc.relation.referencesBeneš, O., & Konings, R. J. M. (2012). Molten Salt Reactor Fuel and Coolant. In R. Konings, T. Allen, R. Stoller, & S. Yamanaka (Eds.), Comprehensive Nuclear Materials (3ra ed., pp. 359–389). Elsevier. https://doi.org/10.1016/B978-0-08-056033-5.00062-8es_CO
    dc.relation.referencesBeneš, O., & Souček, P. (2020). Molten salt reactor fuels. In M. H. A. Piro (Ed.), Advances in Nuclear Fuel Chemistry (pp. 249–271). Elsevier. https://doi.org/10.1016/B978-0-08- 102571-0.00007-0es_CO
    dc.relation.referencesChakravorty, U., & Gong, Y. (2015). The Economics of Fossil Fuels and Pollution. In Sustainable Economic Development (pp. 67–75). Elsevier. https://doi.org/10.1016/B978- 0-12-800347-3.00004-2es_CO
    dc.relation.referencesCheng, J.-H., Zhang, P., An, X., Wang, K., Zuo, Y., Yan, H.-W., & Li, Z. (2013). A Device for Measuring the Density and Liquidus Temperature of Molten Fluorides for Heat Transfer and Storage. Chinese Physics Letters, 30(12), 126501. https://doi.org/10.1088/0256-307X/30/12/126501es_CO
    dc.relation.referencesCherginets, V. L., & Rebrova, T. P. (1999). Studies of some acid–base equilibria in the molten eutectic mixture KCl–LiCl at 700°C. Electrochimica Acta, 45(3), 469–476. https://doi.org/10.1016/S0013-4686(99)00274-1es_CO
    dc.relation.referencesCORDIS, & UE. (2020). Un nuevo diseño de reactor de sal fundida aumenta la seguridad de la energía nuclear | Result In Brief | CORDIS | European Commission. Recuperado el 9 de mayo de 2020, de https://cordis.europa.eu/article/id/413258-new-molten-salt-fast reactor-design-increases-nuclear-energy-safety/eses_CO
    dc.relation.referencesDe Córdoba, G., & Caravaca, C. (2006). Potentiometric study of Sm–O compounds formation 50 in the molten LiCl–KCl eutectic at 450°C. Determination of a E-pO2− stability diagram. Journal of Physics and Chemistry of Solids, 67(8), 1862–1868. https://doi.org/10.1016/j.jpcs.2006.04.011es_CO
    dc.relation.referencesDean, S. O. (2013). A Piece of the Sun: The Quest for Fusion Energy by Daniel Clery. Fusion Science and Technology, 64(4), 801–801. https://doi.org/10.13182/FST13-A24099es_CO
    dc.relation.referencesDeenadayalu, N., & Bhujrajh, P. (2008). Density, Speed of Sound, and Derived Thermodynamic Properties of Ionic Liquids [EMIM] + [BETI] − or ([EMIM] + [CH 3 (OCH 2 CH 2 ) 2 OSO 3 ] − + Methanol or + Acetone) at T = (298.15 or 303.15 or 313.15) K. Journal of Chemical & Engineering Data, 53(5), 1098–1102. https://doi.org/10.1021/je700648es_CO
    dc.relation.referencesDoligez, X., Heuer, D., Merle-Lucotte, E., Allibert, M., & Ghetta, V. (2014). Coupled study of the Molten Salt Fast Reactor core physics and its associated reprocessing unit. Annals of Nuclear Energy, 64, 430–440. https://doi.org/10.1016/j.anucene.2013.09.009es_CO
    dc.relation.referencesDurán-Klie, G., Rodrigues, D., & Delpech, S. (2016). Dynamic Reference Electrode development for redox potential measurements in fluoride molten salt at high temperature. Electrochimica Acta, 195, 19–26. https://doi.org/10.1016/j.electacta.2016.02.042es_CO
    dc.relation.referencesECCA. (2011). The Basics of Corrosion -TechnicalPaper - European Coil Coating Association. 2011. Recuperado el 26 de abril de 2020, de http://www.prepaintedmetal.eu/repository/%0AAnnina/Basic of corrosion 021211.pdf.es_CO
    dc.relation.referencesElsheikh, B. M. (2013). Safety assessment of molten salt reactors in comparison with light water reactors. Journal of Radiation Research and Applied Sciences, 6(2), 63–70. https://doi.org/10.1016/j.jrras.2013.10.008es_CO
    dc.relation.referencesEnergía nuclear. (2017). Recuperado el 10 de abril de 2020, de https://www.sgm.gob.mx/Web/MuseoVirtual/Aplicaciones_geologicas/Energia nuclear.htmles_CO
    dc.relation.referencesENULa. (2017). “¿Cuáles son las diferencias entre los reactores de segunda y tercera generación?” | ENUla – Energía Nuclear Latinoamericana. 2017. Recuperado el 3 de agosto de 2020, de http://enula.org/2017/12/cuales-son-las-diferencias-entre-los reactores-de-segunda-y-tercera-generacion/es_CO
    dc.relation.referencesEPN. (2012). Corrosión y degradación de los metales, Escuela Politecnica Nacional. 2012. Recuperado el 26 de abril de 2020, de http://bibdigital.epn.edu.ec/bitstream/15000/2771/1/CD-0553.pdfes_CO
    dc.relation.referencesFernández Arias, P., Cuevas, A., & Vergara, D. (2013). Historia de la evolución tecnica de los reactores nucleares de agua a presión. ArtefaCToS, 6(1), 109–138. https://doi.org/10.14201es_CO
    dc.relation.referencesForo Nuclear Español. (2020). Energía nuclear en el mundo - Foro Nuclear - Foro de la Industria Nuclear Española. 2020. Recuperado el 6 de agosto de 2020, de https://www.foronuclear.org/descubre-la-energia-nuclear/energia-nuclear-en-el-mundo/es_CO
    dc.relation.referencesForsberg, C. W. (2004). Reactors with molten salts: options and missions. In Frederick Joliot 51 & Otto Hahn Summer School on Nuclear Reactors, Physics and Fuels Systems, Cadarache, France. Citeseer, Recuperado el 23 de agosto de 2020, de. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.532.1495&rep=rep1&type=pd fes_CO
    dc.relation.referencesGibilaro, M., Massot, L., & Chamelot, P. (2015). A way to limit the corrosion in the Molten Salt Reactor concept: the salt redox potential control. Electrochimica Acta, 160, 209–213. https://doi.org/10.1016/j.electacta.2015.01.14es_CO
    dc.relation.referencesGIF. (2013). GIF Portal - 2008 Annual Report. Recuperado el 22 de abril de 2020, de https://www.gen-4.org/gif/jcms/c_43523/2008-annual-report?details=truees_CO
    dc.relation.referencesGunsing, F, Altstadt, S., Andrzejewski, J., Audouin, L., Barbagallo, M., Bécares, V., Bečvář, F., Belloni, F., Berthoumieux, E., Billowes, J., Boccone, V., Bosnar, D., Brugger, M., Calviani, M., Calviño, F., Cano-Ott, D., Carrapiço, C., Cerutti, F., Chiaveri, E., … Žugec, P. (2016). Nuclear Data for the Thorium Fuel Cycle and the Transmutation of Nuclear Waste. In J.-P. Revol, M. Bourquin, Y. Kadi, E. Lillestol, J.-C. de Mestral, & K. Samec (Eds.), Thorium Energy for the World (pp. 207–214). Springer International Publishing. https://doi.org/10.1007/978-3-319-26542-1_32es_CO
    dc.relation.referencesGuo, S., Shay, N., Wang, Y., Zhou, W., & Zhang, J. (2017). Measurement of europium (III)/europium (II) couple in fluoride molten salt for redox control in a molten salt reactor concept. Journal of Nuclear Materials, 496, 197–206. https://doi.org/10.1016/j.jnucmat.2017.09.027es_CO
    dc.relation.referencesGuo, S., Zhang, J., Wu, W., & Zhou, W. (2018). Corrosion in the molten fluoride and chloride salts and materials development for nuclear applications. Progress in Materials Science, 97(August 2017), 448–487. https://doi.org/10.1016/j.pmatsci.2018.05.003es_CO
    dc.relation.referencesGuzonas, D., Novotny, R., Penttilä, S., Toivonen, A., & Zheng, W. (2018). Corrosion. In D. Guzonas, R. Novotny, S. Penttilä, A. Toivonen, & W. Zheng (Eds.), Materials and Water Chemistry for Supercritical Water-cooled Reactors (pp. 139–218). Elsevier. https://doi.org/10.1016/B978-0-08-102049-4.00005-2es_CO
    dc.relation.referencesHolcomb, D. E., Flanagan, G. F., Mays, G. T., Pointer, W. D., Robb, K. R., & Yoder Jr, G. L. (2013). Fluoride Salt-Cooled High-Temperature Reactor Technology Development and Demonstration Roadmap. In Oak Ridge National Laboratory. https://doi.org/10.2172/1107839es_CO
    dc.relation.referencesHuang, H. M., Li, J., & Liu, R. (2014). Temperature effect of Xe ion irradiation to 316 austenitic stainless steel. Acta Metallurgica Sinica, 50(10), 1189–1194. https://doi.org/10.11900/0412.1961.2014.00099es_CO
    dc.relation.referencesIgnatiev, V., & Surenkov, A. (2012). Material Performance in Molten Salts. In R. J. M. Konings (Ed.), Comprehensive Nuclear Materials (pp. 221–250). Elsevier. https://doi.org/10.1016/B978-0-08-056033-5.00098-7es_CO
    dc.relation.referencesIgnatiev, V., & Surenkov, A. (2017). Corrosion phenomena induced by molten salts in Generation IV nuclear reactors. In P. Yvon (Ed.), Structural Materials for Generation IV Nuclear Reactors (pp. 153–189). Elsevier. https://doi.org/10.1016/B978-0-08-100906- 2.00005-7es_CO
    dc.relation.referencesJavaherdashti, R. (2008). Microbiologically Influenced Corrosion (Springer (Ed.)). Springer London. https://doi.org/10.1007/978-1-84800-074-2es_CO
    dc.relation.referencesKnapp, V., & Pevec, D. (2018). Promises and limitations of nuclear fission energy in combating climate change. Energy Policy, 120(May), 94–99. https://doi.org/10.1016/j.enpol.2018.05.02es_CO
    dc.relation.referencesKoger, J. W. (2003). Molten Salt Corrosion. In Corrosion: Fundamentals, Testing, and Protection (Vol. 13, pp. 216–219). ASM International. https://doi.org/10.31399/asm.hb.v13a.a0003609es_CO
    dc.relation.referencesKoukolikova, M., Slama, P., Dlouhy, J., Cerny, J., & Marecek, M. (2018). Cold/Hot Deformation Induced Recrystallization of Nickel-Based Superalloys for Molten Salt Reactors. Metals, 8(7), 477. https://doi.org/10.3390/met8070477es_CO
    dc.relation.referencesLifeng, H., Yongzhong, C., Dayong, Z., Congcong, Y., Bing, G., Guoqing, H., & Fuchun, Z. (2013). Design of the distributed control system for HTS molten salt test loop. Nuclear Techniques, 36(9), 6. https://doi.org/10.11889/j.0253-3219.2013.hjs.36.090603es_CO
    dc.relation.referencesLiu, Y., Song, Y., Ai, H., Shen, M., Liu, H., Zhao, S., Liu, Y., Fei, Z., Fu, X., & Cheng, J. (2020). Corrosion of Cr in molten salts with different fluoroacidity in the presence of CrF3. Corrosion Science, 169(March), 1–9. https://doi.org/10.1016/j.corsci.2020.108636es_CO
    dc.relation.referencesLyon, S. (2012). Overview of corrosion engineering, science and technology. In D. Féron (Ed.), Nuclear Corrosion Science and Engineering (pp. 3–30). Elsevier. https://doi.org/10.1533/9780857095343.1.3es_CO
    dc.relation.referencesManly, W. D., Adamson, Jr., G. M., Coobs, J. H., DeVan, J. H., Douglas, D. A., Hoffman, E. E., & Patriarca, P. (1958). AIRCRAFT REACTOR EXPERIMENT--METALLURGICAL ASPECTS. Oak Ridge National Lab., Tenn. https://doi.org/10.2172/4227617es_CO
    dc.relation.referencesManohar S. Sohal, Matthias A. Ebner, Piyush Sabharwall, & Phil Sharpe. (2010). Engineering Database of Liquid Salt Thermophysical and Thermochemical Properties. Idaho National Laboratory (INL). https://doi.org/10.2172/980801es_CO
    dc.relation.referencesMárquez, H., & Salvador, J. (2013). Monitoreo de la protección catódica a linea submarina No. 161 de 36"Ø Rebombeo/Dos Bocas de la Región Maria Suroeste en la Sona de Campeche. Tesis de maestría. Universidad de las Americas. http://catarina.udlap.mx/u_dl_a/tales/documentos/mgd/hernandez_m_js/es_CO
    dc.relation.referencesMuránsky, O., Yang, C., Zhu, H., Karatchevtseva, I., Sláma, P., Nový, Z., & Edwards, L. 53 (2019). Molten salt corrosion of Ni-Mo-Cr candidate structural materials for Molten Salt Reactor (MSR) systems. Corrosion Science, 159(March), 108087. https://doi.org/10.1016/j.corsci.2019.07.011es_CO
    dc.relation.referencesOlander, D. (2002). Redox condition in molten fluoride salts. Journal of Nuclear Materials, 300(2–3), 270–272. https://doi.org/10.1016/S0022-3115(01)00742-5es_CO
    dc.relation.referencesOlson, L. C., Fuentes, R. E., Martinez-Rodriguez, M. J., Ambrosek, J. W., Sridharan, K., Anderson, M. H., Garcia-Diaz, B. L., Gray, J., & Allen, T. R. (2015). Impact of Corrosion Test Container Material in Molten Fluorides. Journal of Solar Energy Engineering, 137(6). https://doi.org/10.1115/1.403168es_CO
    dc.relation.referencesOlson, L., Sridharan, K., Anderson, M., & Allen, T. (2010). Intergranular corrosion of high temperature alloys in molten fluoride salts. Materials at High Temperatures, 27(2), 145– 149. https://doi.org/10.3184/096034010X12743509428336es_CO
    dc.relation.referencesOngena, J., & Van Oost, G. (2002). Energy for Future Centuries: Will Fusion be an Inexhaustible, Safe and Clean Energy Source? Fusion Science and Technology, 41(2), 3– 14. https://doi.org/10.13182/FST02-A11963498es_CO
    dc.relation.referencesONU, & DAES. (2019). La población mundial sigue en aumento, aunque sea cada vez más vieja | ONU DAES |Naciones Unidas Departamento de Asuntos Económicos y Sociales. Recuperado el 17 de abril de 2020, de https://www.un.org/development/desa/es/news/population/world-population-prospects 2019.htmles_CO
    dc.relation.referencesOuyang, F.-Y., Chang, C.-H., & Kai, J.-J. (2014). Long-term corrosion behaviors of Hastelloy N and Hastelloy-B3 in moisture-containing molten FLiNaK salt environments. Journal of Nuclear Materials, 446(1–3), 81–89. https://doi.org/10.1016/j.jnucmat.2013.11.045es_CO
    dc.relation.referencesPatel, N. S., Pavlík, V., & Boča, M. (2017). High-Temperature Corrosion Behavior of Superalloys in Molten Salts – A Review. Critical Reviews in Solid State and Materials Sciences, 42(1), 83–97. https://doi.org/10.1080/10408436.2016.1243090es_CO
    dc.relation.referencesPavlík, V., Kontrík, M., & Boča, M. (2015). Corrosion behavior of Incoloy 800H/HT in the fluoride molten salt FLiNaK + MFx (MFx = CrF3, FeF2, FeF3 and NiF2). New Journal of Chemistry, 39(12), 9841–9847. https://doi.org/10.1039/C5NJ01839Kes_CO
    dc.relation.referencesPierre R, R. (2008). 59. Corrosion Engineering Principles and Practice, McGraw-Hill, New York, US. In McGraw-Hill, New York, US. https://doi.org/10.1177/0340035206070163es_CO
    dc.relation.referencesPint, B. A., Terrani, K. A., Brady, M. P., Cheng, T., & Keiser, J. R. (2013). High temperature oxidation of fuel cladding candidate materials in steam–hydrogen environments. Journal of Nuclear Materials, 440(1–3), 420–427. https://doi.org/10.1016/j.jnucmat.2013.05.047es_CO
    dc.relation.referencesPiquot, J., Nithiyanantham, U., Grosu, Y., & Faik, A. (2019). Spray-graphitization as a protection method against corrosion by molten nitrate salts and molten salts based nanofluids for thermal energy storage applications. Solar Energy Materials and Solar Cells, 200, 110024. https://doi.org/10.1016/j.solmat.2019.110024es_CO
    dc.relation.referencesRamírez Reyes, R., & del Campo Márquez, C. M. (2006). Metodología para la Comparación Integral de Reactores Nucleares: Selección de un reactor para México. In 2006. Recuperado el 19 de mayo de 2020, de https://inis.iaea.org/search/search.aspx?orig_q=RN:38002945es_CO
    dc.relation.referencesRen, W., Muralidharan, G., Wilson, D. F., & Holcomb, D. E. (2011). Considerations of alloy N for fluoride salt-cooled high-temperature reactor applications. ASME 2011 Pressure Vessels and Piping Conference, 44564, 725–736. https://inis.iaea.org/search/search.aspx?orig_q=RN:42097268es_CO
    dc.relation.referencesRomanelli, F., Barabaschi, P., Borba, D., Federici, G., Horton, L., Neu, R., Stork, D., & Zohm, H. (2013). Fusion Electricity: A roadmap to the realization of fusion energy. Efda. Recuperado el 7 de septiembre de 2020, de https://scholar.google.com/scholar?oi=bibs&cluster=2401076741725880592&btnI=1&h l=eses_CO
    dc.relation.referencesSalazar, J. A. (2015). Introducción al fenómeno de corrosión: tipos, factores que influyen y control para la protección de materiales - Nota técnica. Revista Tecnología En Marcha, 28(3), 127. https://doi.org/10.18845/tm.v28i3.2417es_CO
    dc.relation.referencesSerp, J., Allibert, M., Beneš, O., Delpech, S., Feynberg, O., Ghetta, V., Heuer, D., Holcomb, D., Ignatiev, V., Kloosterman, J. L., Luzzi, L., Merle-Lucotte, E., Uhlíř, J., Yoshioka, R., & Zhimin, D. (2014). The molten salt reactor (MSR) in generation IV: Overview and perspectives. Progress in Nuclear Energy, 77, 308–319. https://doi.org/10.1016/j.pnucene.2014.02.014es_CO
    dc.relation.referencesShaffer, J. H. (1971). PREPARATION AND HANDLING OF SALT MIXTURES FOR THE MOLTEN SALT REACTOR EXPERIMENT. Oak Ridge National Lab., Tenn. https://doi.org/10.2172/4074869es_CO
    dc.relation.referencesSpeight, J. G. (2014). Mechanism of Acid Corrosion. In J. G. Speight (Ed.), High Acid Crudes (pp. 31–55). Elsevier. https://doi.org/10.1016/B978-0-12-800630-6.00002-2es_CO
    dc.relation.referencesSridharan, K., & Allen, T. R. (2013). Corrosion in Molten Salts. In F. Lantelme & H. Groult (Eds.), Molten Salts Chemistry (pp. 241–267). Elsevier. https://doi.org/10.1016/B978-0- 12-398538-5.00012-3es_CO
    dc.relation.referencesStringer, J. (1977). Hot Corrosion of High-Temperature Alloys. Annual Review of Materials Science, 7(1), 477–509. https://doi.org/10.1146/annurev.ms.07.080177.002401es_CO
    dc.relation.referencesSzklarska-Smialowska, Z. (2002). Mechanism of pit nucleation by electrical breakdown of the passive film. Corrosion Science, 44(5), 1143–1149. https://doi.org/10.1016/S0010- 938X(01)00113-5es_CO
    dc.relation.referencesTait, W. S. (2018). Controlling Corrosion of Chemical Processing Equipment. In M. Kutz 55 (Ed.), Handbook of Environmental Degradation of Materials (Third Edit, pp. 583–600). Elsevier. https://doi.org/10.1016/B978-0-323-52472-8.00028-9es_CO
    dc.relation.referencesTristancho R, J. L., Holguín P., M. P., & Ramírez L, L. C. (2015). Corrosión a alta temperatura de los recubrimientos metálicos NiCr y NiCrBSiFe depositados mediante proyección térmica. Prospectiva, 13(1), 32. https://doi.org/10.15665/rp.v13i1.357es_CO
    dc.relation.referencesTrujillo, M. (2013). Caracterización y evaluación de inhibidores de corrosión en la industria petrolera [Instituto Politécnico Nacional]. http://tesis.ipn.mx/handle/123456789/24861es_CO
    dc.relation.referencesUhlíř, J. (2007). Chemistry and technology of Molten Salt Reactors - history and perspectives. Journal of Nuclear Materials, 360(1 SPEC. ISS.), 6–11. https://doi.org/10.1016/j.jnucmat.2006.08.008es_CO
    dc.relation.referencesUhlíř, J. (2017). Chemical processing of liquid fuel. In T. J. Dolan (Ed.), Molten Salt Reactors and Thorium Energy (pp. 209–230). Elsevier. https://doi.org/10.1016/B978-0-08-101126- 3.00008-7es_CO
    dc.relation.referencesVirtual Pro. (2004, September). Corrosion Electroquimica - Conceptos de corrosión electroquímica. VirtualPro - Procesos Industriales. Recuperado el 7 de agosto de 2020, de https://www.virtualpro.co/revista/corrosion-electroquimica/4es_CO
    dc.relation.referencesWang, M., Nai, Q., Qiu, J., Wang, B., Yang, C., Su, C., & Liang, J. (2018). Development of GH3535 Alloy for Thorium Molten Salt Reactor. In Y. Han (Ed.), Advances in Energy and Environmental Materials (pp. 137–147). Springer Singapore. https://doi.org/10.1007/978-981-13-0158-2_16es_CO
    dc.relation.referencesWang, Y., Wu, J., Wang, C., & Zhang, S. (2019). Electrochemical corrosion behavior of 316L stainless steel in molten fluorides with a temperature gradient. Electrochemistry Communications, 109, 106612. https://doi.org/10.1016/j.elecom.2019.106612es_CO
    dc.relation.referencesWilliams, D. F. (2006). Assessment of Candidate Molten Salt Coolants for the NGNP/NHI Heat-Transfer Loop. Oak Ridge National Lab.(ORNL), Oak Ridge, TN (United States). https://doi.org/10.2172/1360677es_CO
    dc.relation.referencesWilson, D. (2007). Corrosion issues in molten fluoride salts. In ANS (Ed.), ANS Annual Conference. American Nuclear Society. Recuperado el 26 de abril de 2020, de https://www.ans.org/meetings/view-2/es_CO
    dc.relation.referencesWorld Nuclear Association. (2018). Molten Salt Reactors - World Nuclear Association. 2018. Recuperado el 11 de septiembre de 2020, de https://www.world-nuclear.org/information library/current-and-future-generation/molten-salt-reactors.aspxes_CO
    dc.relation.referencesWorld Nuclear Association. (2019). Generation IV Nuclear Reactors: WNA - World Nuclear Association. 2018. Recuperado el 11 de mayo de 2020, de https://www.world nuclear.org/information-library/nuclear-fuel-cycle/nuclear-power-reactors/generation-iv- 56 nuclear-reactors.aspxes_CO
    dc.relation.referencesWorldometer - Estadísticas mundiales en tiempo real. (2020). Recuperado el 6 de mayo de 2020, de https://www.worldometers.info/eses_CO
    dc.relation.referencesXing, J., Song, D., & Wu, Y. (2016). HPR1000: Advanced Pressurized Water Reactor with Active and Passive Safety. Engineering, 2(1), 79–87. https://doi.org/10.1016/J.ENG.2016.01.017es_CO
    dc.relation.referencesYe, X.-X., Ai, H., Guo, Z., Huang, H., Jiang, L., Wang, J., Li, Z., & Zhou, X. (2016). The high temperature corrosion of Hastelloy N alloy (UNS N10003) in molten fluoride salts analysed by STXM, XAS, XRD, SEM, EPMA, TEM/EDS. Corrosion Science, 106, 249– 259. https://doi.org/10.1016/j.corsci.2016.02.010es_CO
    dc.relation.referencesYoshioka, R. (2013). Nuclear Energy Based on Thorium Molten Salt. In F. Lantelme & H. Groult (Eds.), Molten Salts Chemistry (pp. 471–496). Elsevier. https://doi.org/10.1016/B978-0-12-398538-5.00023-8es_CO
    dc.relation.referencesZhang, D. (2016). Generation IV concepts. In I. L. Pioro (Ed.), Handbook of Generation IV Nuclear Reactors (pp. 373–411). Elsevier. https://doi.org/10.1016/B978-0-08-100149- 3.00014-8es_CO
    dc.relation.referencesZhang, J. (2014). Electrochemistry of actinides and fission products in molten salts—Data review. Journal of Nuclear Materials, 447(1–3), 271–284. https://doi.org/10.1016/j.jnucmat.2013.12.017es_CO
    dc.relation.referencesZheng, G, Carpenter, D., Hu, L.-W., & Sridharan, K. (2016). High temperature corrosion of structural alloys in molten Li2BeF4 (FLiBe) salt. Ceramic Transactions, 260, 93–101. https://doi.org/10.1002/9781119323624.ch9es_CO
    dc.relation.referencesZheng, Guiqiu, Kelleher, B., Cao, G., Anderson, M., Allen, T., & Sridharan, K. (2015). Corrosion of 316 stainless steel in high temperature molten Li2BeF4 (FLiBe) salt. Journal of Nuclear Materials, 461, 143–150. https://doi.org/10.1016/j.jnucmat.2015.03.004es_CO
    dc.relation.referencesZohuri, B. (2020). Generation IV nuclear reactors. In S. U.-D. Khan & A. Nakhabov (Eds.), Nuclear Reactor Technology Development and Utilization (1st ed., pp. 213–246). Elsevier. https://doi.org/10.1016/B978-0-12-818483-7.00006-8es_CO
    dc.relation.referencesZong, G., Zhang, Z.-B., Sun, J.-H., & Xiao, J.-C. (2017). Preparation of high-purity molten FLiNaK salt by the hydrofluorination process. Journal of Fluorine Chemistry, 197, 134– 141. https://doi.org/10.1016/j.jfluchem.2017.03.006es_CO
    dc.relation.referencesZou, C., Yu, C., Wu, J., Cai, X., & Chen, J. (2020). Transition to thorium fuel cycle in a small modular molten salt reactor based on a batch reprocessing mode. Annals of Nuclear Energy, 138, 107163. https://doi.org/10.1016/j.anucene.2019.10716es_CO
    dc.rights.accessrightshttp://purl.org/coar/access_right/c_abf2es_CO
    dc.type.coarversionhttp://purl.org/coar/resource_type/c_2df8fbb1es_CO
    Aparece en las colecciones: Ingeniería Química

    Ficheros en este ítem:
    Fichero Descripción Tamaño Formato  
    Villa_2020_TG.pdfVilla_2020_TG1,92 MBAdobe PDFVisualizar/Abrir


    Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.