• Repositorio Institucional Universidad de Pamplona
  • Trabajos de pregrado y especialización
  • Facultad de Ingenierías y Arquitectura
  • Ingeniería Química
  • Por favor, use este identificador para citar o enlazar este ítem: http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/5336
    Registro completo de metadatos
    Campo DC Valor Lengua/Idioma
    dc.contributor.authorDelgado Toro, Cristian Alfonso.-
    dc.date.accessioned2022-12-14T13:49:30Z-
    dc.date.available2020-09-22-
    dc.date.available2022-12-14T13:49:30Z-
    dc.date.issued2020-
    dc.identifier.citationDelgado Toro, C. A. (2020). Estudio de diferentes tecnicas de fabricacion y aplicaciones de biosensores para la deteccion y analisis de contaminantes ambientales [Trabajo de Grado Pregrado, Universidad de Pamplona] Repositorio Hulago Universidad de Pamplona. http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/5336es_CO
    dc.identifier.urihttp://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/5336-
    dc.descriptionEl autor no proporciona la información sobre este ítem.es_CO
    dc.description.abstractEl autor no proporciona la información sobre este ítem.es_CO
    dc.format.extent40es_CO
    dc.format.mimetypeapplication/pdfes_CO
    dc.language.isoeses_CO
    dc.publisherUniversidad de Pamplona – Facultad de Ingenieras y Arquitectura.es_CO
    dc.subjectEl autor no proporciona la información sobre este ítem.es_CO
    dc.titleEstudio de diferentes tecnicas de fabricacion y aplicaciones de biosensores para la deteccion y analisis de contaminantes ambientales.es_CO
    dc.typehttp://purl.org/coar/resource_type/c_7a1fes_CO
    dc.date.accepted2020-06-22-
    dc.relation.referencesAguilar, A., & Zanella, R. (2018). Las nanopartículas bimetálicas y algunas de sus aplicaciones. Mundo Nano. Revista Interdisciplinaria En Nanociencia y Nanotecnología, 10(19), 72.es_CO
    dc.relation.referencesAhmed, S., Shaikh, N., Pathak, N., Sonawane, A., Pandey, V., & Maratkar, S. (2019). An overview of sensitivity and selectivity of biosensors for environmental applications. Tools, Techniques and Protocols for Monitoring Environmental Contaminants. Elsevier Inc. https://doi.org/10.1016/B978-0-12-814679-8.00003-0es_CO
    dc.relation.referencesAndrée, B. P. J., Chamorro, A., Spencer, P., Koomen, E., & Dogo, H. (2019). Revisiting the relation between economic growth and the environment; a global assessment of deforestation, pollution and carbon emission. Renewable and Sustainable Energy Reviews, 114, 109221.es_CO
    dc.relation.referencesAsal, M., Özen, Ö., Şahinler, M., Baysal, H. T., & Polatoğlu, İ. (2019). An overview of biomolecules, immobilization methods and support materials of biosensors. Sensor Review, 39(3), 377–386.es_CO
    dc.relation.referencesBBC Mundo. (2020). Eurythenes plasticus: el sorprendente descubrimiento en la zona más profunda del océano de una especie con partículas de plástico en su organismo. Retrieved June 14, 2020, from https://www.bbc.com/mundo/noticias-51772409es_CO
    dc.relation.referencesBettazzi, F., Marrazza, G., Minunni, M., Palchetti, I., & Scarano, S. (2017). Biosensors and Related Bioanalytical Tools. In Comprehensive Analytical Chemistry (Vol. 77, pp. 1–33). Florencia, Italia.es_CO
    dc.relation.referencesBhardwaj, T. (2014). A Review on Immobilization Techniques of Biosensors. International Journal of Engineering Research & Technology (IJERT), 3(5), 294–298es_CO
    dc.relation.referencesBo, S. (2011). A literature survey on environmental Kuznets curve. Energy Procedia, 5, 1322– 1325.es_CO
    dc.relation.referencesBussi, J. (2016). Seminario de Ingeniería Biomédica. In Biosensores para Determinaciones Analíticas (pp. 1–40). Montevideo.es_CO
    dc.relation.referencesCampuzano, S. (2011). Presente y futuro de los biosensores microbianos electroquímicos. Anales de La Real Sociedad Española de Química, 107(4), 350–357.es_CO
    dc.relation.referencesCayuela, M. B. (2016). Biosensores enzimáticos electroquímicos en la industria alimentaria. Unversidad Complutense.es_CO
    dc.relation.referencesCEPAL, C. E. para A. L. y el C. (2014). El gasto en protección ambiental en América Latina y el Caribe Bases conceptuales y experiencia regional.es_CO
    dc.relation.referencesChen, L., Zhang, J., & You, Y. (2020). Air pollution, environmental perceptions, and citizen satisfaction: A mediation analysis. Environmental Research, 184(February), 109287.es_CO
    dc.relation.referencesD’Souza, S. (2001). Microbial biosensors. Biosensors and Bioelectronics, 16(6), 373–353.es_CO
    dc.relation.referencesDas, P., Barbora, L., Das, M., & Goswami, P. (2014). Highly sensitive and stable laccase based amperometric biosensor developed on nano-composite matrix for detecting pyrocatechol in environmental samples. Sensors and Actuators, B: Chemical, 192, 737–744. https://doi.org/10.1016/j.snb.2013.11.021es_CO
    dc.relation.referencesDatta, S., Christena, L., & Rajaram, Y. (2013). Enzyme immobilization: an overview on techniques and support materials. 3 Biotech, 3(1), 1–9.es_CO
    dc.relation.referencesDe la Mora, M. B. (2018). Biosensores. Conogasi. Retrieved from http://conogasi.org/articulos/biosensores/es_CO
    dc.relation.referencesDhewa, T. (2015). Biosensors for environmental monitoring. Octa Journal of Environmental Research, 3(2), 212–218.es_CO
    dc.relation.referencesDugas, V., Elaissari, A., & Chevalier, Y. (2010). Surface Sensitization Techniques and Recognition Receptors Immobilization on Biosensors and Microarrays. In V. Dugas (Ed.), Recognition Receptors in Biosensors (pp. 47–134). https://doi.org/10.1007/978-1-4419- 0919-0es_CO
    dc.relation.referencesEstrada Paneque, A., Gallo Gonzales, M., & Nuñez Arroyo, E. (2016). CONTAMINACIÓN AMBIENTAL, SU INFLUENCIA EN EL SER HUMANO, EN ESPECIAL: EL SISTEMA RE- PRODUCTOR FEMENINO. UNIVERSIDAD Y SOCIEDAD, 8, 80–86.es_CO
    dc.relation.referencesFranek, M., & Hruska, K. (2005). Antibody based methods for environmental and food analysis: A review. Veterinarni Medicina, 50(1), 1–10.es_CO
    dc.relation.referencesGarcia Valdes, R. (2016). Efectos del cambio climático en los ecosistemas forestales: integrando inventarios y modelos. Ecosistemas, 25(3), 51–59es_CO
    dc.relation.referencesGieva, E., Nikolov, G., & Nikolova, B. (2012). BIOSENSORS FOR ENVIRONMENTAL MONITORING. Challenges in Higher Education & Research, 7(3), 465–478. Retrieved from https://www.researchgate.net/publication/285131500%0ABIOSENSORSes_CO
    dc.relation.referencesGui, Q., Lawson, T., Shan, S., Yan, L., & Liu, Y. (2017). The Application of Whole Cell-Based Biosensors for Use in Environmental Analysis and in Medical Diagnostics. Sensors, 17(7), 1623.es_CO
    dc.relation.referencesGuo, L., Li, Z., Chen, H., Wu, Y., Chen, L., Song, Z., & Lin, T. (2017). Colorimetric biosensor for the assay of paraoxon in environmental water samples based on the iodine-starch color reaction. Analytica Chimica Acta, 967, 59–63. https://doi.org/10.1016/j.aca.2017.02.028es_CO
    dc.relation.referencesHan, E., Li, X., Cai, J., Cui, H., & Zhang, X. (2014). Development of highly sensitive amperometric biosensor for glucose using carbon nanosphere/sodium alginate composite matrix for enzyme immobilization. Analytical Sciences, 30(9), 897–902es_CO
    dc.relation.referencesHasanzadeh, M., Shadjou, N., & Marandi, M. (2016). Graphene quantum dot functionalized by chitosan and beta-cyclodextrin as a new support nanocomposite material for efficient methanol electrooxidation. Journal of Alloys and Compounds, 688, 171–186.es_CO
    dc.relation.referencesHerranz, S., Marciello, M., Marco, M.-P., Garcia-Fierro, J. L., Guisan, J. M., & Moreno-Bondi, M. C. (2018). Multiplex environmental pollutant analysis using an array biosensor coated with chimeric hapten-dextran-lipase constructs. Sensors and Actuators B: Chemical, 257, 256–262.es_CO
    dc.relation.referencesJarque, S., Bittner, M., Blaha, L., & Hilscherova, K. (2016). Yeast Biosensors for Detection of Environmental Pollutants : Current State and Limitations. Trends in Biotechnology, 34(5), 408–419.es_CO
    dc.relation.referencesJustino, C. I. L., Duarte, A. C., & Rocha-Santos, T. A. P. (2017). Recent progress in biosensors for environmental monitoring: A review. Sensors (Switzerland), 17(12).es_CO
    dc.relation.referencesJustino, C. I. L., Freitas, A. C., Duarte, A. C., & Rocha, T. A. P. (2015). Sensors and biosensors for monitoring marine contaminants. Trends in Environmental Analytical Chemistry, 6– 7, 21–30.es_CO
    dc.relation.referencesKashem, M. A., Suzuki, M., Kimoto, K., & Iribe, Y. (2015). An optical biochemical oxygen demand biosensor chip for environmental monitoring. Sensors and Actuators, B: Chemical, 221, 1594–1600. https://doi.org/10.1016/j.snb.2015.07.119es_CO
    dc.relation.referencesKoedrith, P., Thasiphu, T., Weon, J. Il, Boonprasert, R., Tuitemwong, K., & Tuitemwong, P. (2015). Recent trends in rapid environmental monitoring of pathogens and toxicants: Potential of nanoparticle-based biosensor and applications. The Scientific World Journal, 2015, 12. Retrieved from https://www.hindawi.com/journals/tswj/2015/510982/es_CO
    dc.relation.referencesKumar, J., & D’Souza, S. F. (2012). Biosensors for Environmental and Clinical Monitoring. Barc Newsletter, (324), 34–38.es_CO
    dc.relation.referencesLi, X., Kaattari, S. L., Vogelbein, M. A., Vadas, G. G., & Unger, M. A. (2016). A highly sensitive monoclonal antibody based biosensor for quantifying 3-ring polycyclic aromatic hydrocarbons (PAHs) in aqueous environmental samples. Sensing and Bio-Sensing Research, 7, 115–120es_CO
    dc.relation.referencesLi, X., Li, D., Zhang, Y., Lv, P., Feng, Q., & Wei, Q. (2020). Encapsulation of enzyme by metal-organic framework for single-enzymatic biofuel cell-based self-powered biosensor. Nano Energy, 68(November 2019), 104308. https://doi.org/10.1016/j.nanoen.2019.104308es_CO
    dc.relation.referencesLiu, D., Wang, J., Wu, L., Huang, Y., Zhang, Y., Zhu, M., … Yang, C. (2020). Trends in miniaturized biosensors for point-of-care testing. TrAC - Trends in Analytical Chemistry, 122, 115701.es_CO
    dc.relation.referencesLiu, L., Shan, D., Zhou, X., Shi, H., Song, B., Falke, F., … Heideman, R. (2018). TriPleXTM waveguide-based fluorescence biosensor for multichannel environmental contaminants detection. Biosensors and Bioelectronics, 106(January), 117–121. https://doi.org/10.1016/j.bios.2018.01.066es_CO
    dc.relation.referencesLong, F., Zhu, A., & Shi, H. (2013). Recent Advances in Optical Biosensors for Environmental Monitoring and Early Warning. Sensor, 13, 13928–13948.es_CO
    dc.relation.referencesLópez, V. (2012). Biosensores Microalgales Para La Detección De Contaminantes Ambientales: Una Revisión Microalgae Biosensors for the Detection of Environmental Contaminants: a Review. Revista Complutense de Ciencias Veterinarias, 6(1), 51–67.es_CO
    dc.relation.referencesMalhotra, B. D., & Pandey, C. M. (2017). Biosensors : Fundamentals and Applications. Shawbury, Reino Unido.es_CO
    dc.relation.referencesMalvano, F., Pilloton, R., & Albanese, D. (2020). A novel impedimetric biosensor based on the antimicrobial activity of the peptide nisin for the detection of Salmonella spp. Food Chemistry, 325(April), 126868. https://doi.org/10.1016/j.foodchem.2020.126868es_CO
    dc.relation.referencesNikolelis, D. P., Varzakas, T., Erdem, A., & Nikoleli, G.-P. (Eds.). (2013). Portable Biosensing of Food Toxicants and Environmental Pollutants. Springer Science & Business Media, 38, 738.es_CO
    dc.relation.referencesOliveira, T. I. S., Oliveira, M., Viswanathan, S., Barroso, M. F., Barreiros, L., Nunes, O. C., … Delerue-Matos, C. (2013). Molinate quantification in environmental water by a glutathione-S- transferase based biosensor. Talanta, 106, 249–254. https://doi.org/10.1016/j.talanta.2012.10.07es_CO
    dc.relation.referencesPi, K., Liu, J., & Van Cappellen, P. (2020). A DNA-based biosensor for aqueous Hg(II): Performance under variable pH, temperature and competing ligand composition. Journal of Hazardous Materials, 385(October 2019), 121572.es_CO
    dc.relation.referencesPierre R, C., & Loïc J, B. (2019). Biosensor Principles and Applications. (C. Pierre R & B. Loïc J, Eds.). New York, Estados Unidoses_CO
    dc.relation.referencesPNUMA, P. de las N. U. para el M. A., & OMS, O. M. de la S. (2016). HEALTHY ENVIRONMENT , HEALTHY. Nairobi.es_CO
    dc.relation.referencesRossi, A., Wang, L., Reipa, V., & Murphy, T. (2007). Porous silicon biosensor for detection of viruses. Biosensors & Bioelectronics, 23(5), 741–745.es_CO
    dc.relation.referencesRovina, K., & Siddiquee, S. (2016). Electrochemical sensor based rapid determination of melamine using ionic liquid/ zinc oxide nanoparticles/chitosan/gold electrode. Food Controll, 59, 801–808.es_CO
    dc.relation.referencesRubio, J. (2005). Síntesis y caracterización de nuevas micropartículas poliméricas y su aplicación como sistemas de inmovilización enzimática en el diseño de biosensores amperométricos. Journal of Chemical Information and Modeling. Universidad Complutense de Madrid.es_CO
    dc.relation.referencesSerna-Cock, L., & Perenguez-Verdugo, J. (2011). Biosensors Applications in Agri-food Industry. In Environmental Biosensors. InTech.es_CO
    dc.relation.referencesSerna, L., & Perenguez, J. (2011). Biosensors Applications in Agri-food Industry. In Environmental Biosensors. InTech. https://doi.org/10.5772/16744es_CO
    dc.relation.referencesShahar, H., Tan, L. L., Ta, G. C., & Heng, L. Y. (2019). Detection of halogenated hydrocarbon pollutants using enzymatic reflectance biosensor. Sensors and Actuators, B: Chemical, 281(June 2018), 80–89.es_CO
    dc.relation.referencesSilva, L., da Costa, M., Farias, A., & Medeiros, A. (2012). Biosensors for Environmental Applications.es_CO
    dc.relation.referencesSirisha, V., & Jain, A. (2016). Chapter nine - enzyme immobilization: an overview on methods, support material, and applications of immobilized enzymes. Marine Enzymes Biotechnology: Production and Industrial Applications, 79, 179–211.es_CO
    dc.relation.referencesSwainsbury, D. J. K., Friebe, V. M., Frese, R. N., & Jones, M. R. (2014). Evaluation of a biohybrid photoelectrochemical cell employing the purple bacterial reaction centre as a biosensor for herbicides. Biosensors and Bioelectronics, 58, 172–178es_CO
    dc.relation.referencesSzamocki, R., Velichko, A., Mücklich, F., Reculusa, S., Ravaine, S., Neugebauer, S., … Kuhn, A. (2007). Improved enzyme immobilization for enhanced bioelectrocatalytic activity of porous electrodes. Electrochemistry Communications, 9(8), 2121–2127es_CO
    dc.relation.referencesToldrà, A., Alcaraz, C., Diogène, J., O’Sullivan, C. K., & Campàs, M. (2019). Detection of Ostreopsis cf. ovata in environmental samples using an electrochemical DNA-based biosensor. Science of the Total Environment, 689, 655–661. https://doi.org/10.1016/j.scitotenv.2019.06.448es_CO
    dc.relation.referencesTucci, M., Grattieri, M., Schievano, A., Cristiani, P., & Minteer, S. D. (2019). Microbial amperometric biosensor for online herbicide detection: Photocurrent inhibition of Anabaena variabilis. Electrochimica Acta, 302(2019), 102–108. https://doi.org/10.1016/j.electacta.2019.02.007es_CO
    dc.relation.referencesXu, S., Yuan, H., Chen, S., Xu, A., Wang, J., & Wu, L. (2012). Selection of DNA aptamers against polychlorinated biphenyls as potential biorecognition elements for environmental analysis. Analytical Biochemistry, 423, 195–201.es_CO
    dc.relation.referencesZhao, J., Wu, D., & Zhi, J. (2009). A novel tyrosinase biosensor based on biofunctional ZnO nanorod microarrays on the nanocrystalline diamond electrode for detection of phenolic compounds. Bioelectrochemistry, 75(1), 44–49. https://doi.org/10.1016/j.bioelechem.2009.01.00es_CO
    dc.relation.referencesZheng, H., Yan, Z., Wang, M., Chen, J., & Zhang, X. (2019). Biosensor based on polyaniline polyacrylonitrile-graphene hybrid assemblies for the determination of phenolic compounds in water samples. Journal of Hazardous Materials, 378(January), 120714. https://doi.org/10.1016/j.jhazmat.2019.05.107es_CO
    dc.relation.referencesZou, Y., Lou, D., Dou, K., He, L., Dong, Y., & Wang, S. (2016). Amperometric tyrosinase biosensor based on boron-doped nanocrystalline diamond film electrode for the detection of phenolic compounds. Journal of Solid State Electrochemistry, 20(1), 47–54es_CO
    dc.rights.accessrightshttp://purl.org/coar/access_right/c_abf2es_CO
    dc.type.coarversionhttp://purl.org/coar/resource_type/c_2df8fbb1es_CO
    Aparece en las colecciones: Ingeniería Química

    Ficheros en este ítem:
    Fichero Descripción Tamaño Formato  
    Delgado_2020_TG.pdfDelgado_2020_TG627,87 kBAdobe PDFVisualizar/Abrir


    Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.