Por favor, use este identificador para citar o enlazar este ítem:
http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/5335
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | Redondo Soto, Andres Eloy. | - |
dc.date.accessioned | 2022-12-14T02:29:07Z | - |
dc.date.available | 2020-09-22 | - |
dc.date.available | 2022-12-14T02:29:07Z | - |
dc.date.issued | 2020 | - |
dc.identifier.citation | Redondo Soto, A. E. (2020). Evaluación de Separación de Gases Fluorados (F-GASES) utilizando disolventes eutécticos profundos como absorbentes [Trabajo de Grado Pregrado, Universidad de Pamplona] Repositorio Hulago Universidad de Pamplona. http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/5335 | es_CO |
dc.identifier.uri | http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/5335 | - |
dc.description | El impacto ambiental resultante de la liberación de gases fluorados (F-gases), comúnmente utilizados en refrigeración, está impulsando el desarrollo de tecnologías para recuperarlos y reciclarlos. Los líquidos iónicos fluorados (LIFs) se han investigado como candidatos prometedores para la absorción y separación selectiva de F-gases. En este trabajo, preparamos solventes eutécticos profundos (SEPs) compuestos de LIF y ácidos perfluorados, que permitieron explorar las excelentes propiedades de solubilización de gases de los LIF con altos puntos de fusión en un rango más amplio de líquidos. Se realizó un cribado de SEP preparado a partir de 5 LIF diferentes para la solubilización de 1,1,1,2-tetrafluoroetano (R-134a) a 303,15 K, usando un sistema volumétrico de acero inoxidable. [N4444] [C4F9SO3]: C4F9CO2H y [C2C1Im] [C8F17SO3]: C4F9CO2H se seleccionaron como los sistemas con las mejores capacidades de absorción y se estudiaron tres diferentes relaciones de LIF y ácido perfluorado, para la absorción de difluorometano (R-32), pentafluoroetano (R-125) y R-134a a 303.15 K, 313.15 K y 323.15 K. Todos los SEPs estudiados tienen una selectividad ideal hacia R-134a en mezclas con los otros dos F-gases. Los resultados presentados aquí proporcionan conocimiento del comportamiento de estos nuevos solventes alternativos para la separación de mezclas de F-gases de refrigerantes comerciales, a tres temperaturas diferentes y en una amplia gama de presiones de operación. | es_CO |
dc.description.abstract | The environmental impact resulting from the release of fluorinated gases (F-gases), commonly used in refrigeration, is prompting the development of technologies to recover and recycle them. Fluorinated Ionic Liquids (FILs) have been investigated as promising candidates for the absorption and selective separation of F-gases. In this work, we prepared Deep Eutectic Solvents (DES) composed of FILs and perfluorinated acids, which allowed to explore the excellent gas solubilization properties of FILs with high melting points in a wider liquidous range. A screening of DES prepared from 5 different FILs was performed for the solubilization of 1,1,1,2- tetrafluoroethane (R-134a) at 303.15 K, using a stainless steel volumetric system. [N4444][C4F9SO3]:C4F9CO2H and [C2C1Im][C8F17SO3]:C4F9CO2H were selected as the systems with the best absorption capacities and were studied in three different FIL:perfluorinated acid ratios, for the absorption of difluoromethane (R-32), pentafluoroethane (R-125), and R-134a at 303.15 K, 313.15 K, and 323.15 K. All studied DES have ideal selectivity towards R-134a in mixtures with the other two F-gases. The results presented here provide knowledge of the behavior of these new alternative solvents for the separation of F-gases mixtures of commercial refrigerants, at three different temperatures and in a wide range of operating pressures. | es_CO |
dc.format.extent | 130 | es_CO |
dc.format.mimetype | application/pdf | es_CO |
dc.language.iso | es | es_CO |
dc.publisher | Universidad de Pamplona – Facultad de Ingenieras y Arquitectura. | es_CO |
dc.subject | Efecto invernadero. | es_CO |
dc.subject | Equilibrio vapor-liquido. | es_CO |
dc.subject | Líquidos iónicos. | es_CO |
dc.subject | Selectividad. | es_CO |
dc.subject | Solubilidad. | es_CO |
dc.title | Evaluación de Separación de Gases Fluorados (F-GASES) utilizando disolventes eutécticos profundos como absorbentes. | es_CO |
dc.type | http://purl.org/coar/resource_type/c_7a1f | es_CO |
dc.date.accepted | 2020-06-22 | - |
dc.relation.references | Abo-Hamad, A., Hayyan, M., AlSaadi, M. A. H., & Hashim, M. A. (2015). Potential applications of deep eutectic solvents in nanotechnology. In Chemical Engineering Journal (Vol. 273, pp. 551–567). Elsevier. Recuperado de: https://doi.org/10.1016/j.cej.2015.03.091 | es_CO |
dc.relation.references | Akitt, J. W. (2018). Some observations on the greenhouse effect at the Earth’s surface. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 188, 127–134. Recuperado de: https://doi.org/10.1016/j.saa.2017.06.051 | es_CO |
dc.relation.references | Akkimaradi, B. S., Prasad, M., Dutta, P., & Srinivasan, K. (2001). Adsorption of 1,1,1,2- Tetrafluoroethane on Activated Charcoal. Journal of Chemical & Engineering Data, 46(2), 417–422. Recuperado de: https://doi.org/10.1021/je000277 | es_CO |
dc.relation.references | AlMalah, K. (2016). Aspen Plus: Chemical Engineering Applications (John Wiley & Sons (ed.); 1th editio). | es_CO |
dc.relation.references | Ayres, R. U., & Walter, J. (1991). The greenhouse effect: Damages, costs and abatement. Environmental & Resource Economics, 1(3), 237–270. Recuperado de: https://doi.org/10.1007/BF00367920 | es_CO |
dc.relation.references | Bélafi-Bakó, K., Nemestóthy, N., & Bakonyi, P. (2014). Separation of Gases Using Membranes Containing Ionic Liquids. In Ionic Liquids in Separation Technology (pp. 261–273). Elsevier Ltd. Recuperado de: https://doi.org/10.1016/B978-0-444-63257-9.00008-0 | es_CO |
dc.relation.references | Brett, C. M. A. (2018). Deep eutectic solvents and applications in electrochemical sensing. In Current Opinion in Electrochemistry (Vol. 10, pp. 143–148). Elsevier B.V. Recuperado de: https://doi.org/10.1016/j.coelec.2018.05.016 | es_CO |
dc.relation.references | Calm, J. M. (2008). The next generation of refrigerants – Historical review, considerations, and outlook. International Journal of Refrigeration, 31(7), 1123–1133. Recuperado de: https://doi.org/10.1016/j.ijrefrig.2008.01.013 | es_CO |
dc.relation.references | Cardoso, B. J., Lamas, F. B., Gaspar, A. R., & Ribeiro, J. B. (2017). Frigorigènes utilisés dans l’industrie alimentaire portugaise: Statut actuel. In International Journal of Refrigeration (Vol. 83, pp. 60–74). Elsevier Ltd. Recuperado de: https://doi.org/10.1016/j.ijrefrig.2017.07.013 | es_CO |
dc.relation.references | Carvalho, P. J., & Coutinho, J. A. P. (2011). The polarity effect upon the methane solubility in ionic liquids: A contribution for the design of ionic liquids for enhanced CO 2/CH 4 and H 2S/CH 4 selectivities. Energy and Environmental Science, 4(11), 4614–4619. Recuperado de: https://doi.org/10.1039/c1ee01599k | es_CO |
dc.relation.references | Chaves, I., Guevara, J., García, L., & Robayo, L. (2015). Process Analysis and Simulation in Chemical Engineering (Springer (ed.); 1th editio) | es_CO |
dc.relation.references | Chen, C. C., & Song, Y. (2004). Solubility modeling with a nonrandom two-liquid segment activity coefficient model. Industrial and Engineering Chemistry Research, 43(26), 8354–8362. Recuperado de: https://doi.org/10.1021/ie049463 | es_CO |
dc.relation.references | Commission, E. (2019). Fluorinated greenhouse gases | Climate Action. https://ec.europa.eu/clima/policies/f-gas_e | es_CO |
dc.relation.references | Domínguez de María, P., & Maugeri, Z. (2011). Ionic liquids in biotransformations: From proof of-concept to emerging deep-eutectic-solvents. In Current Opinion in Chemical Biology (Vol. 15, Issue 2, pp. 220–225). Elsevier Current Trends. Recuperado de: https://doi.org/10.1016/j.cbpa.2010.11.008 | es_CO |
dc.relation.references | Dong, L., Zheng, D., Sun, G., & Wu, X. (2011). Vapor-liquid equilibrium measurements of difluoromethane + [Emim]OTf, difluoromethane + [Bmim]OTf, difluoroethane + [Emim]OTf, and difluoroethane + [Bmim]OTf systems. Journal of Chemical and Engineering Data, 56(9), 3663–3668. Recuperado de: https://doi.org/10.1021/je2005566 | es_CO |
dc.relation.references | EU. (2014). Regulation (EU) No 517/2014 of the European Parliament and of the Council of 16 April 2014 on fluorinated greenhouse gases and repealing Regulation (EC) No 842/2006 Text with EEA relevance. Official Journal of the European Union, 150, 195–230. Recuperado de: http://data.europa.eu/eli/reg/2014/517/oj | es_CO |
dc.relation.references | European Environment Agency. (2017). EEA greenhouse gas - data viewer — European Environment Agency (EEA). Recuperado de: https://www.eea.europa.eu/data-and maps/data/data-viewers/greenhouse-gas | es_CO |
dc.relation.references | Farajnezhad, A., Afshar, O. A., Khansary, M. A., Shirazian, S., & Ghadiri, M. (2016). Correlation of interaction parameters in Wilson, NRTL and UNIQUAC models using theoretical methods. 88 Fluid Phase Equilibria, 417, 181–186. Recuperado de: https://doi.org/10.1016/j.fluid.2016.02.041 | es_CO |
dc.relation.references | Ferreira, M. L., Pastoriza-Gallego, M. J., Araújo, J. M. M., Canongia Lopes, J. N., Rebelo, L. P. N., M Piñeiro, M., Shimizu, K., & Pereiro, A. B. (2017). Influence of Nanosegregation on the Phase Behavior of Fluorinated Ionic Liquids. Journal of Physical Chemistry C, 121(9), 5415– 5427. Recuperado de: https://doi.org/10.1021/acs.jpcc.7b00516 | es_CO |
dc.relation.references | Fukumoto, K., Yoshizawa, M., & Ohno, H. (2005). Room temperature ionic liquids from 20 natural amino acids. Journal of the American Chemical Society, 127(8), 2398–2399. Recuperado de: https://doi.org/10.1021/ja043451 | es_CO |
dc.relation.references | García, G., Aparicio, S., Ullah, R., & Atilhan, M. (2015). Deep eutectic solvents: Physicochemical properties and gas separation applications. Energy and Fuels, 29(4), 2616–2644. Recuperado de: https://doi.org/10.1021/ef5028873 | es_CO |
dc.relation.references | Gow, A. S. (1993). Calculation of Vapor-Liquid Equilibria from Infinite-Dilution Excess Enthalpy Data Using the Wilson or NRTL Equation. Industrial and Engineering Chemistry Research, 32(12), 3150–3161. Recuperado de: https://doi.org/10.1021/ie00024a028 | es_CO |
dc.relation.references | Heath, E. A. (2017). Amendment to the Montreal Protocol on Substances that Deplete the Ozone Layer (Kigali Amendment). International Legal Materials, 56(1), 193–205. Recuperado de: https://doi.org/10.1017/ilm.2016.2 | es_CO |
dc.relation.references | Hu, Y., Azevedo, E. G., & Prausnitz, J. M. (1983). Lawrence Berkeley National Laboratory Recent Work Title THE MOLECULAR BASIS FOR LOCAL COMPOSITIONS IN LIQUID MIXTURE MODELS Permalink https://escholarship.org/uc/item/3x693561 Publication Date. Recuperado de: https://escholarship.org/uc/item/3x693561 | es_CO |
dc.relation.references | Lei, Z., Dai, C., & Chen, B. (2014). Gas solubility in ionic liquids. In Chemical Reviews (Vol. 114, Issue 2, pp. 1289–1326). American Chemical Society. Recuperado de: https://doi.org/10.1021/cr300497a | es_CO |
dc.relation.references | Lepre, L. F., Andre, D., Denis-Quanquin, S., Gautier, A., Pádua, A. A. H., & Costa Gomes, M. (2019). Ionic Liquids Can Enable the Recycling of Fluorinated Greenhouse Gases. ACS Sustainable Chemistry and Engineering, 7(19). Recuperado de: https://doi.org/10.1021/acssuschemeng.9b04214 | es_CO |
dc.relation.references | Lewis, W. K., & Whitman, W. G. (1924). Principles of Gas Absorption. Industrial and Engineering Chemistry, 16(12), 1215–1220. Recuperado de: https://doi.org/10.1021/ie50180a002 | es_CO |
dc.relation.references | Lindley, A. A., & McCulloch, A. (2005). Regulating to reduce emissions of fluorinated greenhouse 90 gases. Journal of Fluorine Chemistry, 126(11), 1457–1462. Recuperado de: https://doi.org/10.1016/j.jfluchem.2005.09.011 | es_CO |
dc.relation.references | Liu, X., Pan, P., Yang, F., & He, M. (2018). Solubilities and diffusivities of R227ea, R236fa and R245fa in 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide. The Journal of Chemical Thermodynamics, 123, 158–164. Recuperado de: https://doi.org/https://doi.org/10.1016/j.jct.2018.04.004 | es_CO |
dc.relation.references | Makoś, P., Fernandes, A., Przyjazny, A., & Boczkaj, G. (2018). Sample preparation procedure using extraction and derivatization of carboxylic acids from aqueous samples by means of deep eutectic solvents for gas chromatographic-mass spectrometric analysis. Journal of Chromatography A, 1555, 10–19. Recuperado de: https://doi.org/10.1016/j.chroma.2018.04.054 | es_CO |
dc.relation.references | Makoś, P., Przyjazny, A., & Boczkaj, G. (2018). Hydrophobic deep eutectic solvents as “green” extraction media for polycyclic aromatic hydrocarbons in aqueous samples. Journal of Chromatography A, 1570, 28–37. Recuperado de: https://doi.org/10.1016/j.chroma.2018.07.070 | es_CO |
dc.relation.references | Mitchell, J. F. B. (1989). The “Greenhouse” effect and climate change. In Reviews of Geophysics (Vol. 27, Issue 1, pp. 115–139). John Wiley & Sons, Ltd. Recuperado de: https://doi.org/10.1029/RG027i001p00115 | es_CO |
dc.relation.references | Mokhtar, W. N. A. W., Bakar, W. A. W. A., Ali, R., & Kadir, A. A. A. (2014). Deep desulfurization of model diesel by extraction with N,N-dimethylformamide: Optimization by Box-Behnken design. Journal of the Taiwan Institute of Chemical Engineers, 45(4), 1542–1548. Recuperado de: https://doi.org/10.1016/j.jtice.2014.03.017 | es_CO |
dc.relation.references | Mota-Babiloni, A., Makhnatch, P., & Khodabandeh, R. (2017). Études récentes sur la substitution des HFC par des frigorigènes synthétiques alternatifs à faible GWP : performances énergétiques et impacts environnementaux. In International Journal of Refrigeration (Vol. 82, pp. 288–301). Elsevier Ltd. Recuperado de: https://doi.org/10.1016/j.ijrefrig.2017.06.026 | es_CO |
dc.relation.references | Motkuri, R. K., Annapureddy, H. V. R., Vijaykumar, M., Schaef, H. T., Martin, P. F., McGrail, B. P., Dang, L. X., Krishna, R., & Thallapally, P. K. (2014). Fluorocarbon adsorption in hierarchical porous frameworks. Nature Communications, 5(1), 1–6. Recuperado de: https://doi.org/10.1038/ncomms5368 | es_CO |
dc.relation.references | Muldoon, M. J., Aki, S. N. V. K., Anderson, J. L., Dixon, J. K., & Brennecke, J. F. (2007). Improving carbon dioxide solubility in ionic liquids. Journal of Physical Chemistry B, 111(30), 9001–9009. Recuperado de: https://doi.org/10.1021/jp071897q | es_CO |
dc.relation.references | NIST. (2020). National Institute of Standards and Technology (NIST). https://www.nist.gov/ | es_CO |
dc.relation.references | Nkuku, C. A., & LeSuer, R. J. (2007). Electrochemistry in deep eutectic solvents. Journal of Physical Chemistry B, 111(46), 13271–13277. Recuperado de: https://doi.org/10.1021/jp075794 | es_CO |
dc.relation.references | Ochoa-Herrera, V., & Sierra-Alvarez, R. (2008). Removal of perfluorinated surfactants by sorption onto granular activated carbon, zeolite and sludge. Chemosphere, 72(10), 1588–1593. Recuperado de: https://doi.org/10.1016/j.chemosphere.2008.04.029 | es_CO |
dc.relation.references | Ohlin, C. A., Dyson, P. J., & Laurenczy, G. (2004). Carbon monoxide solubility in ionic liquids: determination, prediction and relevance to hydroformylation. Chemical Communications, 4(9), 1070–1071. Recuperado de: https://doi.org/10.1039/b401537a | es_CO |
dc.relation.references | Pereiro, A., Araújo, J. M. M., Esperança, J. M. S. S., & Rebelo, L. P. N. (2018). Surfactant Fluorinated Ionic Liquids. In RSC Smart Materials (Vols. 2018-Janua, Issue 28, pp. 79–102). Royal Society of Chemistry. Recuperado de: https://doi.org/10.1039/9781788011839-00079 | es_CO |
dc.relation.references | Pereiro, A., Araújo, J. M. M., Martinho, S., Alves, F., Nunes, S., Matias, A., Duarte, C. M. M., Rebelo, L. P. N., & Marrucho, I. M. (2013). Fluorinated ionic liquids: Properties and applications. ACS Sustainable Chemistry and Engineering, 1(4), 427–439. Recuperado de: https://doi.org/10.1021/sc300163Pereiro, A., Araújo, J. M. M., Martinho, S., Alves, F., Nunes, S., Matias, A., Duarte, C. M. M., Rebelo, L. P. N., & Marrucho, I. M. (2013). Fluorinated ionic liquids: Properties and applications. ACS Sustainable Chemistry and Engineering, 1(4), 427–439. Recuperado de: https://doi.org/10.1021/sc300163 | es_CO |
dc.relation.references | Pereiro, A. B., Araújo, J. M. M., Teixeira, F. S., Marrucho, I. M., Piñeiro, M. M., & Rebelo, L. P. N. (2015). Aggregation behavior and total miscibility of fluorinated ionic liquids in water. Langmuir, 31(4), 1283–1295. Recuperado de: https://doi.org/10.1021/la503961h | es_CO |
dc.relation.references | Pereiro, A., Pastoriza-Gallego, M. J., Shimizu, K., Marrucho, I. M., Lopes, J. N. C., Piñeiro, M. M., & Rebelo, L. P. N. (2013). On the formation of a third, nanostructured domain in ionic liquids. Journal of Physical Chemistry B, 117(37), 10826–10833. Recuperado de: https://doi.org/10.1021/jp402300c | es_CO |
dc.relation.references | Pereiro, A., Tomé, L. C., Martinho, S., Rebelo, L. P. N., & Marrucho, I. M. (2013). Gas permeation properties of fluorinated ionic liquids. Industrial and Engineering Chemistry Research, 52(14), 4994–5001. Recuperado de: https://doi.org/10.1021/ie4002469 | es_CO |
dc.relation.references | Randall, M., & Failey, C. F. (1927). The activity coefficient of gases in aqueous salt solutions. Chemical Reviews, 4(3), 271–284. Recuperado de: https://doi.org/10.1021/cr60015a003 | es_CO |
dc.relation.references | Regel-Rosocka, M., & Materna, K. (2014). Ionic Liquids for Separation of Metal Ions and Organic Compounds from Aqueous Solutions. In Ionic Liquids in Separation Technology (pp. 153– 188). Elsevier Ltd. Recuperado de: https://doi.org/10.1016/B978-0-444-63257-9.00004-3 | es_CO |
dc.relation.references | Ribeiro, R. P. P. L., Silva, R. J. S., Esteves, I. A. A. C., & Mota, J. P. B. (2015). Development, construction, and operation of a multisample volumetric apparatus for the study of gas adsorption equilibrium. Journal of Chemical Education, 92(4), 757–761. Recuperado de: https://doi.org/10.1021/ed500633h | es_CO |
dc.relation.references | Rocha, M. A., & Shiflett, M. B. (2019). Water Sorption and Diffusivity in [C 2 C 1 im][BF 4 ], [C 4 C 1 im][OAc], and [C 4 C 1 im][Cl]. Industrial and Engineering Chemistry Research, 58(4), 1743–1753. Recuperado de: https://doi.org/10.1021/acs.iecr.8b05689 | es_CO |
dc.relation.references | Saha, B. B., El-Sharkawy, I. I., Thorpe, R., & Critoph, R. E. (2012). Accurate adsorption isotherms of R134a onto activated carbons for cooling and freezing applications. International Journal of Refrigeration, 35(3), 499–505. Recuperado de: https://doi.org/10.1016/j.ijrefrig.2011.05.002 | es_CO |
dc.relation.references | Sandler, S. (2015). Using Aspen Plus in Thermodynamics Instruction: A Step-by-Step Guide (Wiley & Sons (ed.); 1th editio). | es_CO |
dc.relation.references | Shiflett, M. B., Harmer, M. A., Junk, C. P., & Yokozeki, A. (2006). Solubility and diffusivity of difluoromethane in room-temperature ionic liquids. Journal of Chemical and Engineering Data, 51(2), 483–495. Recuperado de: https://doi.org/10.1021/je050386z | es_CO |
dc.relation.references | Shiflett, M. B., & Yokozeki, A. (2006a). Solubility and diffusivity of hydrofluorocarbons in room temperature ionic liquids. AIChE Journal, 52(3), 1205–1219. Recuperado de: https://doi.org/10.1002/aic.1068 | es_CO |
dc.relation.references | Shiflett, M. B., & Yokozeki, A. (2006b). Solubility and diffusivity of hydrofluorocarbons in room temperature ionic liquids. AIChE Journal, 52(3), 1205–1219. Recuperado de: https://doi.org/10.1002/aic.10685 | es_CO |
dc.relation.references | Shiflett, M. B., & Yokozeki, A. (2008). Binary Vapor–Liquid and Vapor–Liquid–Liquid Equilibria of Hydrofluorocarbons (HFC-125 and HFC-143a) and Hydrofluoroethers (HFE-125 and HFE-143a) with Ionic Liquid [emim][Tf2N]. Journal of Chemical & Engineering Data, 53(2), 492–497. Recuperado de: https://doi.org/10.1021/je700588d | es_CO |
dc.relation.references | Shishov, A., Bulatov, A., Locatelli, M., Carradori, S., & Andruch, V. (2017). Application of deep eutectic solvents in analytical chemistry. A review. In Microchemical Journal (Vol. 135, pp. 33–38). Elsevier Inc. Recuperado de: https://doi.org/10.1016/j.microc.2017.07.015 | es_CO |
dc.relation.references | Silva, J. M., Reis, R. L., Paiva, A., & Duarte, A. R. C. (2018). Design of Functional Therapeutic Deep Eutectic Solvents Based on Choline Chloride and Ascorbic Acid. ACS Sustainable Chemistry and Engineering, 6(8), 10355–10363. Recuperado de: https://doi.org/10.1021/acssuschemeng.8b01687 | es_CO |
dc.relation.references | Silverman, N., & Tasslos, D. (1984). Prediction of Mufticomponent Vapor-Liquid Equilibrium with the Wilson Equation: Effect of the Minimization Function and of the Quality of Binary Data. Industrial and Engineering Chemistry Process Design and Development, 23(3), 586– 589. https://doi.org/10.1021/i200026a030 | es_CO |
dc.relation.references | Sircar, S. (1999). Gibbsian surface excess for gas adsorption - Revisited. Industrial and 95 Engineering Chemistry Research, 38(10), 3670–3682. Recuperado de: https://doi.org/10.1021/ie9900871 | es_CO |
dc.relation.references | Sircar, Shivaji. (1985). Excess properties and thermodynamics of multicomponent gas adsorption. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 81(7), 1527–1540. Recuperado de: https://doi.org/10.1039/F19858101527 | es_CO |
dc.relation.references | Sosa, J. E., Malheiro, C., Ribeiro, R. P. P. L., Castro, P. J., Piñeiro, M. M., Araújo, J. M. M., Plantier, F., Mota, J. P. B., & Pereiro, A. B. (2020). Adsorption of Fluorinated Greenhouse Gases on Activated Carbons: Evaluation of their Potential for Gas Separation. Journal of Chemical Technology & Biotechnology, jctb.6371. Recuperado de: https://doi.org/10.1002/jctb.6371 | es_CO |
dc.relation.references | Sosa, J. E., Ribeiro, R. P. P. L., Castro, P. J., Mota, J. P. B., Araújo, J. M. M., & Pereiro, A. B. (2019). Absorption of Fluorinated Greenhouse Gases Using Fluorinated Ionic Liquids. Industrial and Engineering Chemistry Research, 58(45), 20769–20778. Recuperado de: https://doi.org/10.1021/acs.iecr.9b0464 | es_CO |
dc.relation.references | Tomé, L. I. N., Baião, V., da Silva, W., & Brett, C. M. A. (2018). Deep eutectic solvents for the production and application of new materials. In Applied Materials Today (Vol. 10, pp. 30– 50). Elsevier Ltd. Recuperado de: https://doi.org/10.1016/j.apmt.2017.11.005 | es_CO |
dc.relation.references | United Nations. (2012). Handbook for the Montreal Protocol on Substances that Deplete the Ozone Layer (Ninth Edition). Recuperado de: https://books.google.com/books?hl=es&lr=&id=nxeVIMFWd8UC&oi=fnd&pg=PR9&dq= Montreal+Protocol+on+Substances+That+Deplete+the+Ozone+Layer&ots=Sf136QC2kp&s ig=EXsEv21OQqgDsd48HUkZB0toVCE | es_CO |
dc.relation.references | United Nations Environment Programme. (2016). The Kigali Amendment to the Montreal protocol: another global commitment to stop climate change. UN Environment. Recuperado de: https://www.unenvironment.org/es/node/20806 | es_CO |
dc.relation.references | Vekariya, R. L. (2017). A review of ionic liquids: Applications towards catalytic organic transformations. In Journal of Molecular Liquids (Vol. 227, p. 44). Elsevier B.V. Recuperado de: https://doi.org/10.1016/j.molliq.2016.11.123 | es_CO |
dc.relation.references | Vieira, N. S.M., Luís, A., Reis, P. M., Carvalho, P. J., Lopes-Da-Silva, J. A., Esperança, J. M. S. S., Araújo, J. M. M., Rebelo, L. P. N., Freire, M. G., & Pereiro, A. B. (2016). Fluorination effects on the thermodynamic, thermophysical and surface properties of ionic liquids. Journal of Chemical Thermodynamics, 97, 354–361. Recuperado de: https://doi.org/10.1016/j.jct.2016.02.013 | es_CO |
dc.relation.references | Vieira, N. S.M., Reis, P. M., Shimizu, K., Cortes, O. A., Marrucho, I. M., Araújo, J. M. M., Esperança, J. M. S. S., Lopes, J. N. C., Pereiro, A. B., & Rebelo, L. P. N. (2015). A thermophysical and structural characterization of ionic liquids with alkyl and perfluoroalkyl side chains. RSC Advances, 5(80), 65337–65350. Recuperado de: https://doi.org/10.1039/c5ra13869h | es_CO |
dc.relation.references | Vieira, Nicole S.M., Bastos, J. C., Rebelo, L. P. N., Matias, A., Araújo, J. M. M., & Pereiro, A. B. (2019). Human cytotoxicity and octanol/water partition coefficients of fluorinated ionic liquids. Chemosphere, 216, 576–586. Recuperado de: https://doi.org/10.1016/j.chemosphere.2018.10.159 | es_CO |
dc.relation.references | Vieira, Nicole S.M., Stolte, S., Araújo, J. M. M., Rebelo, L. P. N., Pereiro, A. B., & Markiewicz, M. (2019). Acute Aquatic Toxicity and Biodegradability of Fluorinated Ionic Liquids. ACS 97 Sustainable Chemistry and Engineering, 7(4), 3733–3741. Recuperado de: https://doi.org/10.1021/acssuschemeng.8b03653 | es_CO |
dc.relation.references | WALDEN, P. (1914). Molecular weights and electrical conductivity of several fused salts. Bull. Acad. Imper. Sci. (St. Petersburg), 1800 | es_CO |
dc.relation.references | Wanigarathna, D. J. A., Gao, J., Takanami, T., Zhang, Q., & Liu, B. (2016). Adsorption Separation of R-22, R-32 and R-125 Fluorocarbons using 4A Molecular Sieve Zeolite. ChemistrySelect, 1(13), 3718–3722. Recuperado de: https://doi.org/10.1002/slct.201600689 | es_CO |
dc.relation.references | Wanigarathna, D. K. J. A., Gao, J., & Liu, B. (2018). Fluorocarbon Separation in a Thermally Robust Zirconium Carboxylate Metal-Organic Framework. Chemistry - An Asian Journal, 13(8), 977–981. Recuperado de: https://doi.org/10.1002/asia.201800337 | es_CO |
dc.relation.references | Wanigarathna, D. K. J. A., Liu, B., & Gao, J. (2018). Adsorption separation of R134a, R125, and R143a fluorocarbon mixtures using 13X and surface modified 5A zeolites. AIChE Journal, 64(2), 640–648. Recuperado de: https://doi.org/10.1002/aic.15955 | es_CO |
dc.relation.references | Warrag, S. E. E., Peters, C. J., & Kroon, M. C. (2017). Deep eutectic solvents for highly efficient separations in oil and gas industries. In Current Opinion in Green and Sustainable Chemistry (Vol. 5, pp. 55–60). Elsevier B.V. Recuperado de: https://doi.org/10.1016/j.cogsc.2017.03.013 | es_CO |
dc.relation.references | Wilhelm, E., Battino, R., & Wilcock, R. J. (1977). Low-Pressure Solubility of Gases in Liquid Water. Chemical Reviews, 77(2), 219–262. Recuperado de: https://doi.org/10.1021/cr60306a003 | es_CO |
dc.relation.references | Wilkes, J. S. (2002). A short history of ionic liquids - From molten salts to neoteric solvents. In Green Chemistry (Vol. 4, Issue 2, pp. 73–80). Royal Society of Chemistry. Recuperado de: 98 https://doi.org/10.1039/b110838g | es_CO |
dc.relation.references | Williamson, S. T., Shahbaz, K., Mjalli, F. S., AlNashef, I. M., & Farid, M. M. (2017). Application of deep eutectic solvents as catalysts for the esterification of oleic acid with glycerol. Renewable Energy, 114, 480–488. Recuperado de: https://doi.org/10.1016/j.renene.2017.07.046 | es_CO |
dc.relation.references | Yoo, C. G., Pu, Y., & Ragauskas, A. J. (2017). Ionic liquids: Promising green solvents for lignocellulosic biomass utilization. In Current Opinion in Green and Sustainable Chemistry (Vol. 5, pp. 5–11). Elsevier B.V. Recuperado de: https://doi.org/10.1016/j.cogsc.2017.03.003 | es_CO |
dc.relation.references | Zhang, Q., De Oliveira Vigier, K., Royer, S., & Jérôme, F. (2012). Deep eutectic solvents: Syntheses, properties and applications. In Chemical Society Reviews (Vol. 41, Issue 21, pp. 7108–7146). The Royal Society of Chemistry. Recuperado de: https://doi.org/10.1039/c2cs35178 | es_CO |
dc.relation.references | Zhang, Yao, Yin, J., & Wang, X. (2018). Vapor-liquid equilibrium of 2,3,3,3-tetrafluoroprop-1- ene with 1-butyl-3-methylimidazolium hexafluorophosphate, 1-hexyl-3-methyl imidazolium hexafluorophosphate, and 1-octyl-3-methylimidazolium hexafluorophosphate. Journal of Molecular Liquids, 260, 203–208. Recuperado de: https://doi.org/https://doi.org/10.1016/j.molliq.2018.03.112 | es_CO |
dc.relation.references | Zhang, Yingying, Ji, X., & Lu, X. (2015). Choline-Based Deep Eutectic Solvents for Mitigating Carbon Dioxide Emissions. In Novel Materials for Carbon Dioxide Mitigation Technology (pp. 87–116). Elsevier. Recuperado de: https://doi.org/10.1016/b978-0-444-63259-3.00003-3 | es_CO |
dc.relation.references | Zheng, J., Vemuri, R. S., Estevez, L., Koech, P. K., Varga, T., Camaioni, D. M., Blake, T. A., McGrail, B. P., & Motkuri, R. K. (2017). Pore-Engineered Metal-Organic Frameworks with 99 Excellent Adsorption of Water and Fluorocarbon Refrigerant for Cooling Applications. Journal of the American Chemical Society, 139(31), 10601–10604. Recuperado de: https://doi.org/10.1021/jacs.7b04872 | es_CO |
dc.relation.references | Zoubeik, M., Mohamedali, M., & Henni, A. (2016). Experimental solubility and thermodynamic modeling of CO2 in four new imidazolium and pyridinium-based ionic liquids. Fluid Phase Equilibria, 419, 67–74. Recuperado de: https://doi.org/10.1016/j.fluid.2016.03.009 | es_CO |
dc.rights.accessrights | http://purl.org/coar/access_right/c_abf2 | es_CO |
dc.type.coarversion | http://purl.org/coar/resource_type/c_2df8fbb1 | es_CO |
Aparece en las colecciones: | Ingeniería Química |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
Redondo_2020_TG.pdf | Redondo_2020_TG | 1,47 MB | Adobe PDF | Visualizar/Abrir |
Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.