• Repositorio Institucional Universidad de Pamplona
  • Trabajos de pregrado y especialización
  • Facultad de Ingenierías y Arquitectura
  • Ingeniería Química
  • Por favor, use este identificador para citar o enlazar este ítem: http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/5192
    Registro completo de metadatos
    Campo DC Valor Lengua/Idioma
    dc.contributor.authorChona Lozano, Juan Sebastian.-
    dc.contributor.authorPuchana Torrado, Lidia Marcela.-
    dc.date.accessioned2022-12-07T13:26:36Z-
    dc.date.available2019-06-23-
    dc.date.available2022-12-07T13:26:36Z-
    dc.date.issued2019-
    dc.identifier.citationChona Lozano, J. S.; Puchana Torrado, L. M. (2019). Estudio de pirolisis catalítica de residuos plásticos, en termo balanza, sobre zeolitas HZSM-5 [Trabajo de Grado Pregrado, Universidad de Pamplona] Repositorio Hulago Universidad de Pamplona. http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/5192es_CO
    dc.identifier.urihttp://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/5192-
    dc.descriptionEn la presente investigación se estudió la pirólisis de residuos plásticos de polipropileno (PP) y poliestireno (PS) en presencia de catalizadores zeolíticos HZSM-5 sintetizados con relaciones molares Si/Al de 63, 60 y 57, y a concentraciones del 2, 5 y 10% en masa con respecto al polímero, utilizando un horno abierto con temperatura máxima de 500°C. El seguimiento de la pirolisis se realizó por espectroscopía infrarroja utilizando la técnica de muestreo reflexión total atenuada (FTIR-ATR), a partir de los cuales se escogió la mejor relación molar de zeolita y mejor porcentaje de catalizador. Los datos se cruzaron con los reportes termogravimetricos en una termobalanza en atmósfera de Nitrógeno a una velocidad de calentamiento de 10°C/min. Los estudios de caracterización de las zeolitas sintetizadas permitieron establecer que la fase que compone los materiales es del tipo HZSM-5 con estructura amorfa según Difracción de rayos-X de muestras policristalinas y un área superficial superior a 600m2 /g, con curvas de desorción y absorción de nitrógeno tipo IV, lo cual convierte al material en un buen catalizador. El proceso de la catálisis permitió establecer que la zeolita con la relación molar Si/Al de 63, en un porcentaje del 5% en masa para el polipropileno promueve la descomposición del polímero 101°C por debajo de lo que se presenta sin la presencia del catalizador, y para el poliestireno relación molar Si/Al de 60, en porcentaje del 2% en masa, sin reducción de temperatura, la ruta de descomposición promovida por el catalizador, se fundamenta por la despolimerización y respectiva presencia de carbonilos en las cadenas monoméricas.es_CO
    dc.description.abstractIn the present investigation, the pyrolysis of polypropylene (PP) and polystyrene (PS) plastic waste was studied in the presence of HZSM-5 zeolitic catalysts synthesized with Si / Al molar ratios of 63, 60 and 57, and at concentrations of 2, 5 and 10% by mass with respect to the polymer, using an open oven with a maximum temperature of 500 ° C. The monitoring of the pyrolysis was performed by infrared spectroscopy using the attenuated total reflection sampling technique (FTIR-ATR), from which the best molar ratio of zeolite and best percentage of catalyst was chosen. The data was crossed with the thermogravimetric reports in a thermobalance in Nitrogen atmosphere at a heating rate of 10 ° C / min. The characterization studies of the synthesized zeolites allowed to establish that the phase that composes the materials is of type HZSM-5 with amorphous structure according to X-ray diffraction of polycrystalline samples and a surface area greater than 600m2 / g, with desorption curves and absorption of type IV nitrogen, which makes the material a good catalyst. The catalysis process allowed to establish that the zeolite with the Si / Al molar ratio of 63, in a percentage of 5% by mass for the polypropylene promotes the decomposition of the polymer 101 ° C below what occurs without the presence of the catalyst, and for the polystyrene Si / Al molar ratio of 60, in percentage of 2% by mass, without reduction of temperature, the decomposition path promoted by the catalyst, is based on the depolymerization and the respective presence of carbonyls in the monomeric chains.es_CO
    dc.format.extent84es_CO
    dc.format.mimetypeapplication/pdfes_CO
    dc.language.isoeses_CO
    dc.publisherUniversidad de Pamplona – Facultad de Ingenieras y Arquitectura.es_CO
    dc.subjectDespolimerización.es_CO
    dc.subjectPirolisis.es_CO
    dc.subjectPoliestireno.es_CO
    dc.subjectPolipropileno.es_CO
    dc.subjectZEOLITA HZSM-5es_CO
    dc.titleEstudio de pirolisis catalítica de residuos plásticos, en termo balanza, sobre zeolitas HZSM-5.es_CO
    dc.typehttp://purl.org/coar/resource_type/c_7a1fes_CO
    dc.date.accepted2019-03-23-
    dc.relation.referencesArabiourrutia, M., et al., Characterization of the waxes obtained by the pyrolysis of polyolefin plastics in a conical spouted bed reactor. Journal of Analytical and Applied Pyrolysis, 2012. 94: p. 230-237.es_CO
    dc.relation.referencesKaminsky, W., M. Predel, and A. Sadiki, Feedstock recycling of polymers by pyrolysis in a fluidised bed. Polymer Degradation and Stability, 2004. 85(3): p. 1045-1050.es_CO
    dc.relation.referencesKaminsky, W., H. Schmidt, and C.M. Simon, Recycling of mixed plastics by pyrolysis in a fluidised bed. Vol. 152. 2000. 191-199.es_CO
    dc.relation.referencesWitkowski, A., A.A. Stec, and T.R. Hull, Thermal Decomposition of Polymeric Materials, in SFPE Handbook of Fire Protection Engineering, M.J. Hurley, et al., Editors. 2016, Springer New York: New York, NY. p. 167-254.es_CO
    dc.relation.referencesWilliams, E.A. and P.T. Williams, Analysis of products derived from the fast pyrolysis of plastic waste. Journal of Analytical and Applied Pyrolysis, 1997. 40-41: p. 347-363.es_CO
    dc.relation.referencesBeltrame, P.L., et al., Hydrous pyrolysis of polystyrene. Journal of Analytical and Applied Pyrolysis, 1997. 40-41: p. 451-461.es_CO
    dc.relation.referencesUddin, M.A., et al., Thermal and catalytic degradation of structurally different types of polyethylene into fuel oil. Polymer Degradation and Stability, 1997. 56(1): p. 37-44.es_CO
    dc.relation.referencesJakab, E., G. Várhegyi, and O. Faix, Thermal decomposition of polypropylene in the presence of wood-derived materials. Journal of Analytical and Applied Pyrolysis, 2000. 56(2): p. 273-285.es_CO
    dc.relation.referencesMordi, R.C., R. Fields, and J. Dwyer, Thermolysis of low density polyethylene catalysed by zeolites. Journal of Analytical and Applied Pyrolysis, 1994. 29(1): p. 45-55.es_CO
    dc.relation.referencesHwang, E.-Y., et al., Performance of acid treated natural zeolites in catalytic degradation of polypropylene. Journal of Analytical and Applied Pyrolysis, 2002. 62(2): p. 351-364.es_CO
    dc.relation.referencesManos, G., A. Garforth, and J. Dwyer, Catalytic Degradation of High-Density Polyethylene over Different Zeolitic Structures. Industrial & Engineering Chemistry Research, 2000. 39(5): p. 1198-1202.es_CO
    dc.relation.referencesFernandes, G.J.T., V.J. Fernandes, and A.S. Araujo, Catalytic degradation of polyethylene over SAPO-37 molecular sieve. Catalysis Today, 2002. 75(1): p. 233-238.es_CO
    dc.relation.referencesZhou, Q., et al., Modifications of ZSM-5 zeolites and their applications in catalytic degradation of LDPE. Polymer Degradation and Stability, 2003. 80(1): p. 23-30.es_CO
    dc.relation.referencesKim, J.R., et al., Catalytic degradation of polypropylene: effect of dealumination of clinoptilolite catalyst. Polymer Degradation and Stability, 2002. 75(2): p. 287-294.es_CO
    dc.relation.referencesGobin, K. and G. Manos, Polymer degradation to fuels over microporous catalysts as a novel tertiary plastic recycling method. Polymer Degradation and Stability, 2004. 83(2): p. 267-279es_CO
    dc.relation.referencesC. Córdoba, J.M., J. Rodríguez, D.M. Hernnandez. , Empleo de residuos plásticos reciclados para la fabircación de productos sostenibles ambientalmente. InvestigiumIRE 2010. 1: p. 60-69es_CO
    dc.relation.referencesMaldonado., A.T., La complejidad de la problemáítica ambiental de los residuos pláísticos: una aproximación al anáílisis narrativo de política pública en Bogotá. 2012, Universidad Nacional de Colombia.: Bogotá.es_CO
    dc.relation.referencesJ.M. Arandes, J.B., D. López-Valerio. , Reciclado de residuos plásticos, Revista Iberoamericana De Polímeros. 2004. 5: p. 10-11.es_CO
    dc.relation.referencesA. López a, I.d.M., B.M. Caballeroa, M.F. Laresgoiti , A. Adrados , A. Aranzabal., Catalytic pyrolysis of plastic wastes with two different types of catalysts: ZSM-5 zeolite and Red Mud. elsevier, 2011. 104: p. 211–219es_CO
    dc.relation.referencesJong-Ryeol Kim, J.-H.Y., Dae-Won Park. , Catalytic recycling of the mixture of polypropylene and polystyrene. Polymer Degradation and Stability, 2002. 76: p.,61–67.es_CO
    dc.relation.referencesKokotailo, G.T., et al., Structure of synthetic zeolite ZSM-5. Nature, 1978. 272(5652): p. 437-438.es_CO
    dc.relation.referencesKokotailo, G.T., et al., Synthesis and structure of synthetic zeolite ZSM-11. Nature, 1978. 275(5676): p. 119-120.es_CO
    dc.relation.referencesDing, W., J. Liang, and L.L. Anderson, Hydrocracking and Hydroisomerization of High-Density Polyethylene and Waste Plastic over Zeolite and Silica−Alumina-Supported Ni and Ni−Mo Sulfides. Energy & Fuels, 1997. 11(6): p. 1219-1224.es_CO
    dc.relation.referencesHakki Metecan, I., et al., Naphtha derived from polyolefins. Fuel, 2005. 84(5): p. 619-628.es_CO
    dc.relation.referencesDing, W., J. Liang, and L.L. Anderson, Thermal and catalytic degradation of high density polyethylene and commingled post-consumer plastic waste. Fuel Processing Technology, 1997. 51(1): p. 47-62.es_CO
    dc.relation.referencesRobert j, A., Kensington, Md and George R CRISTALLINE ZEOLITE ZSM-5 AND METHOD OF PREPARING THE SAME, M.O. Corporation, Editor. 1972: U.S. p. 9.es_CO
    dc.relation.referencesKatada, N., H. Igi, and J.-H. Kim, Determination of the Acidic Properties of Zeolite by Theoretical Analysis of Temperature-Programmed Desorption of Ammonia Based on Adsorption Equilibrium. The Journal of Physical Chemistry B, 1997. 101(31): p. 5969-5977.es_CO
    dc.relation.referencesBerteau, P., Modified Aluminas : Relationship between activity in 1-butanol dehydration and acidity measured by NH3 TPD. Vol. 5. 1989. 121-137es_CO
    dc.relation.referencesBibby, D.M. and C.G. Pope, Sorption studies of coke deposited on ZSM-5. Journal of Catalysis, 1989. 116(2): p. 407-414es_CO
    dc.relation.referencesWarren, B.E., XRay Diffraction Methods. Journal of Applied Physics 1941. 12: p. 375-386.es_CO
    dc.relation.referencesFlory, P.J., PRINCIPLES OF POLYMER CHEMISTRY C. University, Editor. 1953. p. 649.es_CO
    dc.relation.referencesAnaip, los plásticos materiales de nuestro tempo. 1991, confederación española de fabricantes de plástico.es_CO
    dc.relation.referencesH., A.D.G., Plasticos para arquitectos y constructores. 1972. 160.es_CO
    dc.relation.referencesJ. M. Arandes, J.B., D. López., Reciclado de residuos plásticos. Revista Iberoemericana de Polímeros., 2004. 5: p. 5 -28.es_CO
    dc.relation.referencesVelandia, J., Identificación de polímeros por espectroscopía infrarroja. Vol. 5. 2018.es_CO
    dc.relation.referencesBlair Crawford, C.Q., Brian., Microplastic Pollutants. 2016: Elsevier Science.es_CO
    dc.relation.referencesMitchell, G.R., Encyclopedia of Materials: Science and Technology. 2001: p. 3209-3215.es_CO
    dc.relation.referencesFisher, M., Plastics recycling., in In Plastics and the environmen., Andrady, Editor. 2003. p. 563 –627.es_CO
    dc.relation.referencesHopewell, J., R. Dvorak, and E. Kosior, Plastics recycling: challenges and opportunities. Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 2009. 364(1526): p. 2115-2126.es_CO
    dc.relation.referencesRich, V., The international scrap and recyclingindustry handbook. 2001, Cambridge, England: Woodhead Publishing Limited.es_CO
    dc.relation.referencesP. Aznar, M., et al., Plastic waste elimination by co-gasification with coal and biomass in fluidized bed with air in pilot plant. Vol. 87. 2006. 409–420.es_CO
    dc.relation.referencesKirim, O.S.a.Y., Comprehensive Energy Systems. Vol. 2. 2018, Siirt University. 1020.es_CO
    dc.relation.referencesSadat-Shojai, M. and G.-R. Bakhshandeh, Recycling of PVC wastes. Vol. 96. 2011. 404-415es_CO
    dc.relation.referencesAl-Salem, S.M., P. Lettieri, and J. Baeyens, Recycling and recovery routes of plastic solid waste (PSW): A review. Waste Management, 2009. 29(10): p. 2625-2643es_CO
    dc.relation.referencesLoeffe, C.V., Conservation and Recycling of Resources: New Research. 2006: Nova Science Publishers.es_CO
    dc.relation.referencesZaccariello, L. and M. Mastellone, Fluidized-Bed Gasification of Plastic Waste, Wood, and Their Blends with Coal. Vol. 2015. 2015. 8052-8068.es_CO
    dc.relation.referencesGuanghan, S., et al., Recycling and Disposal Technology for Non-mentallic Materials from Waste Printed Circuit Boards(WPCBs) in China. Procedia Environmental Sciences, 2016. 31: p. 935-940.es_CO
    dc.relation.referencesPickering, S.J., Recycling Technologies for Thermoset Composite Materials—Current Status, in Composites Part A: Applied Science and Manufacturing. 2006. p. 1206-1215.es_CO
    dc.relation.referencesJamradloedluk, J. and C. Lertsatitthanakorn, Characterization and Utilization of Char Derived from Fast Pyrolysis of Plastic Wastes. Vol. 69. 2014. 1437- 1442.es_CO
    dc.relation.referencesCullis, C.F. and M. Hirschler, Char formation from polyolefins. Correlations with low-temperature oxygen uptake and with flammability in the presence of metal halogen systems. Vol. 20. 1984. 53-60es_CO
    dc.relation.referencesJohn Scheirs, W.K., Feedstock Recycling and Pyrolysis of Waste Plastics: Converting Waste Plastics into Diesel and Other Fuels. 2006.es_CO
    dc.relation.referencesObeid F., Z.J., Al-Muhtaseb A.H., Bouhadir K., Thermo-catalytic pyrolysis of waste polyethylene bottles in a packed bed reactor with different bed materials and catalysts. Energy Conversion and Management, 2014. 785: p. 1-6.es_CO
    dc.relation.referencesWallis, M. and S. Bhatia, Kinetic study of the thermal degradation of high density polyethylene. Vol. 91. 2006. 1476-1483.es_CO
    dc.relation.referencesPanagiotis, G., et al., Pyrolysis kinetics and combustion characteristics of waste recovered fuels. Vol. 88. 2009. 195-205.es_CO
    dc.relation.referencesKhedri, S. and S. Elyasi, Kinetic analysis for thermal cracking of HDPE: A new isoconversional approach. Vol. 129. 2016.es_CO
    dc.relation.referencesRuren Xu, W.P., Jihong Yu, Qisheng Huo, Jiesheng Chen Chemistry of Zeolites and Related Porous Materials: Synthesis and Structure. 2007.es_CO
    dc.relation.referencesDavis, M.E., Ordered porous materials for emerging applications. Nature, 2002. 417: p. 813.es_CO
    dc.relation.referencesSmith, J.V., Topochemistry of zeolites and related materials. 1. Topology and geometry. Chemical Reviews, 1988. 88(1): p. 149-182.es_CO
    dc.relation.referencesMeier, C.B.D.H.O.W.M., Atlas of Zeolite Framework Types (formerly: Atlas of Zeolite Structure Types). 1 ed. 2001. 308.es_CO
    dc.relation.referencesSchwarz, J.A., C. Contescu, and A. Contescu, Methods for Preparation of Catalytic Materials. Chemical Reviews, 1995. 95(3): p. 477-510.es_CO
    dc.relation.referencesCorma, A., From Microporous to Mesoporous Molecular Sieve Materials and Their Use in Catalysis. Chemical Reviews, 1997. 97(6): p. 2373-2420.es_CO
    dc.relation.referencesSchmidt, F., New catalyst preparation technologies—observed from an industrial viewpoint. Applied Catalysis A: General, 2001. 221(1): p. 15-21.es_CO
    dc.relation.referencesSuib, S.L., Zeolitic and layered materials. Chemical Reviews, 1993. 93(2): p. 803-826.es_CO
    dc.relation.referencesPatarin, J., H. Kessler, and J.L. Guth, Iron distribution in iron MFI-type zeolite samples synthesized in fluoride medium: Influence of the synthesis procedure. Zeolites, 1990. 10(7): p. 674-679.es_CO
    dc.relation.referencesvan Koningsveld, H., J.C. Jansen, and H. van Bekkum, The monoclinic framework structure of zeolite H-ZSM-5. Comparison with the orthorhombic framework of as-synthesized ZSM-5. Zeolites, 1990. 10(4): p. 235-242.es_CO
    dc.relation.referencesvan Koningsveld, H., H. Bekkum, and J. C. Jansen, On the Location and Disorder of the Tetrapropylammonium (TPA) Ion in Zeolite ZSM-5 with Improved Framework Accuracy. Vol. 43. 1987. 127-132.es_CO
    dc.relation.referencesAwate, S.V., et al., Synthesis and characterization of gallosilicate pentasil (MFI) framework zeolites. Journal of inclusion phenomena and molecular recognition in chemistry, 1992. 13(3): p. 207-218.es_CO
    dc.relation.referencesOlson, D.H., et al., Crystal structure and structure-related properties of ZSM 5. The Journal of Physical Chemistry, 1981. 85(15): p. 2238-2243es_CO
    dc.relation.referencesZones, S.I., Synthesis of pentasil zeolites from sodium silicate solutions in the presence of quaternary imidazole compounds. Zeolites, 1989. 9(6): p. 458- 467.es_CO
    dc.relation.referencesVan Grieken, R., et al., Anomalous crystallization mechanism in the synthesis of nanocrystalline ZSM-5. Microporous and Mesoporous Materials, 2000. 39(1): p. 135-147.es_CO
    dc.relation.referencesKustova, M., et al., Synthesis and characterization of mesoporous ZSM-5 core-shell particles for improved catalytic properties, in Studies in Surface Science and Catalysis, A. Gédéon, P. Massiani, and F. Babonneau, Editors. 2008, Elsevier. p. 117-122.es_CO
    dc.relation.referencesVerduijn, J.P., WO 1997.es_CO
    dc.relation.referencesJ, M.S., Oligomerization of liquid olefin over a nickelcontaining silicaceous crystalline molecular sieve. 1985 p. 9.es_CO
    dc.relation.referencesÖhman, L.O., et al., Catalyst preparation through ion-exchange of zeolite Cu- , Ni-, Pd-, CuNi- and CuPd-ZSM-5. Materials Chemistry and Physics, 2002. 73(2): p. 263-267.es_CO
    dc.relation.referencesCharles J. Plank, W.E.J.R., Pedricktown;Edwin N. Givens, Pitmani, all of N.J., Convertinglow molecular weight olefens over zeolites. 1977: US. p. 7.es_CO
    dc.relation.referencesvan den Berg, J.P., et al., Low-temperature oligomerization of small olefins on zeolite H-ZSM-5. An investigation with high-resolution solid-state 13C NMR. Journal of Catalysis, 1983. 80(1): p. 130-138es_CO
    dc.relation.referencesde Klerk, A., Oligomerization of 1-Hexene and 1-Octene over Solid Acid Catalysts. Industrial & Engineering Chemistry Research, 2005. 44(11): p. 3887-3893.es_CO
    dc.relation.referencesY Franco, E.H., O Gutiérrez, Effect of acidity on the catalytic activity of HZSM 5 zeolites for its application in chemical recycling of polypropoylene plastic wastes. Actas de Ingeniería, 2016. 2: p. 8.es_CO
    dc.relation.referencesMarcilla, A., et al., Kinetic study of polypropylene pyrolysis using ZSM-5 and an equilibrium fluid catalytic cracking catalyst. Journal of Analytical and Applied Pyrolysis, 2003. 68-69: p. 467-480.es_CO
    dc.relation.referencesTarach, K.A., et al., Acidity and accessibility studies of desilicated ZSM-5 zeolites in terms of their effectiveness as catalysts in acid-catalyzed cracking processes. Catalysis Science & Technology, 2017. 7(4): p. 858-873.es_CO
    dc.relation.referencesXiao, W., F. Wang, and G. Xiao, Performance of hierarchical HZSM-5 zeolites prepared by NaOH treatments in the aromatization of glycerol. RSC Advances, 2015. 5(78): p. 63697-63704.es_CO
    dc.relation.referencesWang, J., et al., Single-template synthesis of zeolite ZSM-5 composites wites_CO
    dc.relation.referencesNeimark, A.V., Foreword. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2004. 241(1): p. 1-2es_CO
    dc.relation.referencesNi, Y., et al., Preparation of hierarchical mesoporous Zn/HZSM-5 catalyst and its application in MTG reaction. Journal of Natural Gas Chemistry, 2011. 20(3): p. 237-242es_CO
    dc.relation.referencesLi, Y., et al., Thermal and hydrothermal stabilities of the alkali-treated HZSM 5 zeolites. Journal of Natural Gas Chemistry, 2008. 17(1): pes_CO
    dc.relation.referencesSandoval-Díaz, L.-E., J.-A. González-Amaya, and C.-A. Trujillo, General aspects of zeolite acidity characterization. Microporous and Mesoporous Materials, 2015. 215: p. 229-243.es_CO
    dc.relation.referencesSegawa, K., M. Sakaguchi, and Y. Kurusu, Investigation of Acidic Properties of H-Zeolites as a Function of Si/Al Ratio, in Studies in Surface Science and Catalysis, D.M. Bibby, et al., Editors. 1988, Elsevier. p. 579-588.es_CO
    dc.relation.referencesTopsøe, N.-Y., K. Pedersen, and E.G. Derouane, Infrared and temperature programmed desorption study of the acidic properties of ZSM-5-type zeolites. Journal of Catalysis, 1981. 70(1): p. 41-52.es_CO
    dc.relation.referencesEisenreich, N. and T. Rohe, Infrared spectroscopy in analysis of plastics recycling. En encyclopedia of analytical chemistry: Applications, theory and instrumentation. . Hoboken, NJ:, ed. J.W. Sons. 2006.es_CO
    dc.relation.referencesCoudurier, G., C. Naccache, and J.C. Vedrine, Uses of i.r. spectroscopy in identifying ZSM zeolite structure. Journal of the Chemical Society, Chemical Communications, 1982(24): p. 1413-1415.es_CO
    dc.relation.referencesHuang, L., et al., Investigation of Synthesizing MCM-41/ZSM-5 Composites. The Journal of Physical Chemistry B, 2000. 104(13): p. 2817-2823.es_CO
    dc.relation.referencesDutta, P.K., K.M. Rao, and J.Y. Park, Correlation of Raman spectra of zeolites with framework architecture. The Journal of Physical Chemistry, 1991. 95(17): p. 6654-6656.es_CO
    dc.relation.referencesSang, Y., et al., HZSM-5/MCM-41 composite molecular sieves for the catalytic cracking of endothermic hydrocarbon fuels: nano-ZSM-5 zeolites as the source. Journal of Nanoparticle Research, 2014. 16(12): p. 2755.es_CO
    dc.relation.referencesAl-Dughaither, A.S. and H. de Lasa, HZSM-5 Zeolites with Different SiO2/Al2O3 Ratios. Characterization and NH3 Desorption Kinetics. Industrial & Engineering Chemistry Research, 2014. 53(40): p. 15303-15316.es_CO
    dc.relation.referencesLouis, B., et al., Hierarchical pore ZSM-5 zeolite structures: From micro- to macro-engineering of structured catalysts. Chemical Engineering Journal, 2010. 161(3): p. 397-402.es_CO
    dc.relation.referencesSad, M., Síntesis catalítica de intermediarios de química fina mediante alquilación para-selectiva., in Facultad de ingeniería química. 2007, Universidad Nacional del Litoral. : Barranqulla-Atlantico. . p. 479.es_CO
    dc.relation.referencesA.L., Estudio de la acidez de zeolitas en la reacción de isomerización del α pineno. Researchgate, 2016: p. 11.es_CO
    dc.relation.referencesal, A.M.e., Study of the influence of the characteristics of different acid solids in the catalytic pyrolysis of different polymers. Applied Catalysis A: General 2006. 301: p. 222–231es_CO
    dc.rights.accessrightshttp://purl.org/coar/access_right/c_abf2es_CO
    dc.type.coarversionhttp://purl.org/coar/resource_type/c_2df8fbb1es_CO
    Aparece en las colecciones: Ingeniería Química

    Ficheros en este ítem:
    Fichero Descripción Tamaño Formato  
    Chona_ Puchana_2019_TG.pdfChona_ Puchana_2019_TG2,05 MBAdobe PDFVisualizar/Abrir


    Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.