• Repositorio Institucional Universidad de Pamplona
  • Tesis de maestría y doctorado
  • Facultad de Ingenierías y Arquitectura
  • Maestría en Gestión de Proyectos Informáticos
  • Por favor, use este identificador para citar o enlazar este ítem: http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/4630
    Registro completo de metadatos
    Campo DC Valor Lengua/Idioma
    dc.contributor.authorContreras Pabon, Duber Mauricio.-
    dc.date.accessioned2022-11-21T20:34:18Z-
    dc.date.available2018-10-30-
    dc.date.available2022-11-21T20:34:18Z-
    dc.date.issued2019-
    dc.identifier.citationContreras Pabon, D. M. (2018). Estado del arte de la minería de datos aplicada a la inteligencia de negocios [Trabajo de Grado Maestría, Universidad de Pamplona]. Repositorio Hulago Universidad de Pamplona. http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/4630es_CO
    dc.identifier.urihttp://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/4630-
    dc.descriptionEste documento presenta una completa revisión bibliográfica sobre trabajos desarrollados, las últimas tendencias, técnicas y aplicaciones de la minería de datos enfocada a la inteligencia de negocios; una revisión teórica que estableció el conocimiento generalmente aceptado, se efectuó exploración de la literatura generada en los últimos 5 años, tanto a nivel nacional como internacional. La revisión fue organizada y analizada desde diferentes puntos de vista, como el tiempo (orden cronológico), las fuentes de datos, selección, exploración y visualización de los datos. Una categorización de los aportes en relación con los modelos predictivos y descriptivos en torno a la minería de datos, categorizando técnicas orientadas a: clasificación, clustering, regresión y reglas de asociación. Fue posible establecer el estado actual del área de estudio y así mismo plantear posibles trabajos futuros, potenciales campos de aplicación, oportunidades de negocio y líneas de profundización e investigación.es_CO
    dc.description.abstractThis document presents a complete bibliographical review on developed works, the latest trends, techniques and applications of data mining focused on business intelligence; a theoretical review that established the generally accepted knowledge, was carried out exploration of the literature generated in the last 5 years, both nationally and internationally. The review was organized and analyzed from different points of view, such as time (chronological order), data sources, selection, exploration and visualization of the data. A categorization of the contributions in relation to the predictive and descriptive models around data mining, categorizing techniques oriented to: classification, clustering, regression and association rules. It was possible to establish the current status of the study area and also propose possible future work, potential fields of application, business opportunities and lines of research and deepening.es_CO
    dc.format.extent83es_CO
    dc.format.mimetypeapplication/pdfes_CO
    dc.language.isoeses_CO
    dc.publisherUniversidad de Pamplona – Facultad de Ingenierías y Arquitectura.es_CO
    dc.subjectMinería de datos,es_CO
    dc.subjectInteligencia de negocios,es_CO
    dc.subjectTécnicas de minería de datos,es_CO
    dc.subjectHerramientas de minería de datos.es_CO
    dc.titleEstado del arte de la minería de datos aplicada a la inteligencia de negocios.es_CO
    dc.typehttp://purl.org/coar/resource_type/c_bdcces_CO
    dc.date.accepted2018-07-30-
    dc.relation.referencesAlsultanny, Y. A. (2013). Labor market forecasting by using data mining. In Procedia Computer Science (Vol. 18, pp. 1700–1709). https://doi.org/10.1016/j.procs.2013.05.338es_CO
    dc.relation.referencesAluja, t. (2001). la mine ia de datos, entre la esta istica y la inteligencia artificial, 25(3), 479–498.es_CO
    dc.relation.referencesAmarouche, K., Benbrahim, H., & Kassou, I. (2015). Product Opinion Mining for Competitive Intelligence. Procedia Computer Science, 73(Awict), 358–365. https://doi.org/10.1016/j.procs.2015.12.004es_CO
    dc.relation.referencesBahari, T. F., & Elayidom, M. S. (2015). An Efficient CRM-Data Mining Framework for the Prediction of Customer Behaviour. Procedia Computer Science, 46, 725–731. https://doi.org/10.1016/j.procs.2015.02.136es_CO
    dc.relation.referencesBarrientos, F. S. R. (2013). Aplicación de Minería de Datos para Predecir Fuga de Clientes en la Industria de las Telecomunicaciones. Revista Ingeniería de Sistemas, XXVII, 73–108.es_CO
    dc.relation.referencesBeltrán Martínez, M. B. (2003). Minería de datos, 67.es_CO
    dc.relation.referencesBen-David, S., & Shalev-Shwartz, S. (2014). Understanding Machine Learning: From Theory to Algorithms. Understanding Machine Learning: From Theory to Algorithms. https://doi.org/10.1017/CBO9781107298019es_CO
    dc.relation.referencesBhattacharyya, S., Jha, S., Tharakunnel, K., & Westland, J. C. (2011). Data mining for credit card fraud: A comparative study. Decision Support Systems, 50(3), 602–613. https://doi.org/10.1016/j.dss.2010.08.008es_CO
    dc.relation.referencesCano, J. L. (2007). Business Intelligence: Competir Con Información. Banesto, Fundación cultural. Retrieved from http://itemsweb.esade.edu/biblioteca/archivo/Business_Intelligence_competir_con_informa cion.pdfes_CO
    dc.relation.referencesCarmona Suárez, E. J. (2014). Tutorial sobre Máquinas de Vectores Soporte (SVM), 1–25.es_CO
    dc.relation.referencesChemchem, A., & Drias, H. (2015). From data mining to knowledge mining: Application to intelligent agents. Expert Systems with Applications, 42(3), 1436–1445. https://doi.org/10.1016/j.eswa.2014.08.024es_CO
    dc.relation.referencesChen, C. H., Li, A. F., & Lee, Y. C. (2013). A fuzzy coherent rule mining algorithm. Applied Soft Computing Journal, 13(7), 3422–3428. https://doi.org/10.1016/j.asoc.2012.12.031es_CO
    dc.relation.referencesChen, F., Wang, Y., Li, M., Wu, H., & Tian, J. (2014). Principal association mining: An efficient classification approach. Knowledge-Based Systems, 67, 16–25. https://doi.org/10.1016/j.knosys.2014.06.013es_CO
    dc.relation.referencesChen, L., Qi, L., & Wang, F. (2012). Comparison of feature-level learning methods for mining online consumer reviews. Expert Systems with Applications, 39(10), 9588–9601. https://doi.org/10.1016/j.eswa.2012.02.158es_CO
    dc.relation.referencesChen, L., & Wang, F. (2013). Preference-based clustering reviews for augmenting e-commerce recommendation. Knowledge-Based Systems, 50, 44–59. https://doi.org/10.1016/j.knosys.2013.05.006es_CO
    dc.relation.referencesChen, Z.-Y., Fan, Z.-P., & Sun, M. (2015). Behavior-aware user response modeling in social media: Learning from diverse heterogeneous data. European Journal of Operational Research, 241(2), 422–434. https://doi.org/10.1016/j.ejor.2014.09.008es_CO
    dc.relation.referencesCheng, C. J., Chiu, S. W., Cheng, C. B., & Wu, J. Y. (2012). Customer lifetime value prediction by a Markov chain based data mining model: Application to an auto repair and maintenance company in Taiwan. Scientia Iranica, 19(3), 849–855. https://doi.org/10.1016/j.scient.2011.11.045es_CO
    dc.relation.referencesCheung, C. F., & Li, F. L. (2012). A quantitative correlation coefficient mining method for business intelligence in small and medium enterprises of trading business. Expert Systems with Applications, 39(7), 6279–6291. https://doi.org/10.1016/j.eswa.2011.10.021es_CO
    dc.relation.referencesCorley, C. D., Cook, D. J., Mikler, A. R., & Singh, K. P. (2010). Text and structural data mining of influenza mentions in web and social media. International Journal of Environmental Research and Public Health, 7(2), 596–615.es_CO
    dc.relation.referencesDelgado, M. R., Mata, N. Ú. C., Yepes-Baldó, M., Montesinos, J. V. P., & Olmos, J. G. (2013). Data mining and mall users profile. Universitas Psychologica, 12(1), 195–207.es_CO
    dc.relation.referencesDevi, B. N., Devi, Y. R., Rani, B. P., & Rao, R. R. (2012). Design and implementation of web usage mining intelligent system in the field of e-commerce. Procedia Engineering, 30(2011), 20–27. https://doi.org/10.1016/j.proeng.2012.01.829es_CO
    dc.relation.referencesDo, N., Bae, S., & Park, C. (2015). Interactive analysis of product development experiments using On-line Analytical Mining. Computers in Industry, 66, 52–62. https://doi.org/10.1016/j.compind.2014.09.003es_CO
    dc.relation.referencesEduardo, L., & Vega, G. (2011). Modeling of bidding prices in power markets using clustering and fuzzy association rules, 108–117.es_CO
    dc.relation.referencesEspino Timón, C. (2017). Análisis predictivo: técnicas y modelos utilizados y aplicaciones del mismo - herramientas Open Source que permiten su uso, 65. Retrieved from http://openaccess.uoc.edu/webapps/o2/bitstream/10609/59565/6/caresptimTFG0117memòri a.pdfes_CO
    dc.relation.referencesGalit Shmueli, Peter C. Bruce, Mia L, N. R. P. (2014). Data Mining for Bussines Analytics concepts, techniques, and applications whit JMP PRO. Accv. https://doi.org/10.1007/978-1- 4614-7669-6es_CO
    dc.relation.referencesGordillo-Ruiz, J. L., Martínez-Miranda, E., & Stephens, C. R. (2012). Develando estrategias de mercado: minería de datos aplicada al análisis de mercados financieros. Computacion Y Sistemas, 16(2), 221–231.es_CO
    dc.relation.referencesHand, D., Hand, D., Mannila, H., Mannila, H., Smyth, P., & Smyth, P. (2001). Principles of data mining. Drug safety : an international journal of medical toxicology and drug experience(Vol. 30). https://doi.org/10.2165/00002018-200730070-00010es_CO
    dc.relation.referencesJosé Solano Rojas, B. (2010). Tareas de la minería de datos: clasificación CI-2352 Intr. a la minería de datos.es_CO
    dc.relation.referencesKhader, N., Lashier, A., & Yoon, S. W. (2016). Pharmacy robotic dispensing and planogram analysis using association rule mining with prescription data. Expert Systems with Applications, 57, 296–310. https://doi.org/10.1016/j.eswa.2016.02.045es_CO
    dc.relation.referencesKhalifelu, Z. A., & Gharehchopogh, F. S. (2012). Comparison and evaluation of data mining techniques with algorithmic models in software cost estimation. Procedia Technology, 1, 65–71. https://doi.org/10.1016/j.protcy.2012.02.013es_CO
    dc.relation.referencesKim, J., Han, M., Lee, Y., & Park, Y. (2016). Futuristic data-driven scenario building: Incorporating text mining and fuzzy association rule mining into fuzzy cognitive map. Expert Systems with Applications, 57, 311–323. https://doi.org/10.1016/j.eswa.2016.03.043es_CO
    dc.relation.referencesKim, K. Y., & Lee, B. G. (2014). Marketing insights for mobile advertising and consumer segmentation in the cloud era: A Q-R hybrid methodology and practices. Technological Forecasting and Social Change, 91, 78–92. https://doi.org/10.1016/j.techfore.2014.01.011es_CO
    dc.relation.referencesKopaneli, A. (2014). Finance, Marketing, Management and Strategy Planning. A Qualitative Research Method Analysis of Case Studies in Business Hotels in Patras and in Athens. Procedia Economics and Finance, 9(Ebeec 2013), 472–487. https://doi.org/10.1016/S2212- 5671(14)00049-5es_CO
    dc.relation.referencesLee, K. C., Lee, H., Lee, N., & Lim, J. (2013). An agent-based fuzzy cognitive map approach to the strategic marketing planning for industrial firms. Industrial Marketing Management, 42(4), 552–563. https://doi.org/10.1016/j.indmarman.2013.03.007es_CO
    dc.relation.referencesLeung, C. K., MacKinnon, R. K., & Tanbeer, S. K. (2014). Tightening Upper Bounds to the Expected Support for Uncertain Frequent Pattern Mining. Procedia Computer Science, 35, 328–337. https://doi.org/10.1016/j.procs.2014.08.113es_CO
    dc.relation.referencesLi, Y. M., Lin, C. H., & Lai, C. Y. (2010). Identifying influential reviewers for word-of-mouth marketing. Electronic Commerce Research and Applications, 9(4), 294–304. https://doi.org/10.1016/j.elerap.2010.02.004es_CO
    dc.relation.referencesLiao, S. H., & Chou, S. Y. (2013). Data mining investigation of co-movements on the Taiwan and China stock markets for future investment portfolio. Expert Systems with Applications, 40(5), 1542–1554. https://doi.org/10.1016/j.eswa.2012.08.075es_CO
    dc.relation.referencesLiao, S. H., Chu, P. H., Chen, Y. J., & Chang, C. C. (2012). Mining customer knowledge for exploring online group buying behavior. Expert Systems with Applications, 39(3), 3708– 3716. https://doi.org/10.1016/j.eswa.2011.09.066es_CO
    dc.relation.referencesLoshin, D. (2013). Business Intelligence: The Savvy Manager’s Guide. Morgan Kauf. https://doi.org/10.1016/B978-0-12-385889-4.00001-6es_CO
    dc.relation.referencesLuki, J., Radenkovi, M., Despotovi-Zraki, M., Labus, A., & Bogdanovi, Z. (2016). A hybrid approach to building a multi-dimensional business intelligence system for electricity grid operators. Utilities Policy, 41, 95–106. https://doi.org/10.1016/j.jup.2016.06.010es_CO
    dc.relation.referencesMarín, J. (1982). Los mapas auto-organizados de Kohonen (SOM) Introducción, 1–13.es_CO
    dc.relation.referencesMoro, S., Cortez, P., & Rita, P. (2015). Business intelligence in banking: A literature analysis from 2002 to 2013 using text mining and latent Dirichlet allocation. Expert Systems with Applications, 42(3), 1314–1324. https://doi.org/10.1016/j.eswa.2014.09.024es_CO
    dc.relation.referencesNafari, M., & Shahrabi, J. (2010). A temporal data mining approach for shelf-space allocation with consideration of product price. Expert Systems with Applications, 37(6), 4066–4072. https://doi.org/10.1016/j.eswa.2009.11.045es_CO
    dc.relation.referencesOrtigosa, A., Carro, R. M., & Quiroga, J. I. (2014). Predicting user personality by mining social interactions in Facebook. Journal of Computer and System Sciences, 80(1), 57–71. https://doi.org/10.1016/j.jcss.2013.03.008es_CO
    dc.relation.referencesOverview, C. (n.d.). Data mining for business intelligence, 9(Unique 03760).es_CO
    dc.relation.referencesPei, J., Kamber, M., & Jiawei, H. (2012). Data mining : concepts and techniques.es_CO
    dc.relation.referencesPeng, Y., Zhang, Y., Tang, Y., & Li, S. (2011). An incident information management framework based on data integration, data mining, and multi-criteria decision making. Decision Support Systems, 51(2), 316–327. https://doi.org/10.1016/j.dss.2010.11.025es_CO
    dc.relation.referencesPeña, A. (2006). Inteligencia de Negocios: Una Propuesta para su Desarrollo en las organizaciones.es_CO
    dc.relation.referencesPinzon Cadena, L. L. (2011). Aplicando minería de datos al marketing educativo. Notas D Marketing, 1(1), 45–61. Retrieved from http://www.usergioarboleda.edu.co/investigacion marketing/marketing/articulo5MineriaDatos.pdfes_CO
    dc.relation.referencesPOPEANGĂ, J., & LUNGU, I. (2012). Real-Time Business Intelligence for the Utilities Industry. Database Systems Journal, 3(4), 15–24.es_CO
    dc.relation.referencesRajaraman, A., & Ullman, J. D. (2011). Mining of Massive Datasets. Lecture Notes for Stanford CS345A Web Mining (Vol. 67). https://doi.org/10.1017/CBO9781139058452es_CO
    dc.relation.referencesRavisankar, P., Ravi, V., Raghava Rao, G., & Bose, I. (2011). Detection of financial statement fraud and feature selection using data mining techniques. Decision Support Systems, 50(2), 491–500. https://doi.org/10.1016/j.dss.2010.11.006es_CO
    dc.relation.referencesResendiz Trejo, J. (2006). Las maquinas de vectores de soporte para identificación en línea.es_CO
    dc.relation.referencesRíos, S. a., & Videla–Cavieres, I. F. (2014). Generating Groups of Products Using Graph Mining Techniques. Procedia Computer Science, 35, 730–738. https://doi.org/10.1016/j.procs.2014.08.155es_CO
    dc.relation.referencesSahoo, J., Das, A. K., & Goswami, A. (2015). An efficient approach for mining association rules from high utility itemsets. Expert Systems with Applications, 42(13), 5754–5778. https://doi.org/10.1016/j.eswa.2015.02.051es_CO
    dc.relation.referencesShmueli, G., Patel, N., & Bruce, P. (2007). Data mining for business intelligence. Hoboken, NJ, USA. Retrieved from http://www.c-elt.com/Data-Mining-flyer.pdfes_CO
    dc.relation.referencesSu, Q., & Chen, L. (2015). A method for discovering clusters of e-commerce interest patterns using click-stream data. Electronic Commerce Research and Applications, 14(1), 1–13. https://doi.org/10.1016/j.elerap.2014.10.002es_CO
    dc.relation.referencesTang, H., Liao, S. S., & Sun, S. X. (2013). A prediction framework based on contextual data to support Mobile Personalized Marketing. Decision Support Systems, 56(1), 234–246. https://doi.org/10.1016/j.dss.2013.06.004es_CO
    dc.relation.referencesThorleuchter, D., & Van Den Poel, D. (2012). Predicting e-commerce company success by mining the text of its publicly-accessible website. Expert Systems with Applications, 39(17), 13026–13034. https://doi.org/10.1016/j.eswa.2012.05.096es_CO
    dc.relation.referencesTien, J. M. (2014). A global view of big data.es_CO
    dc.relation.referencesVercellis, C. (2009). Business Intelligence: Data Mining and Optimization for Decision Making. Business Intelligence: Data Mining and Optimization for Decision Making. https://doi.org/10.1002/9780470753866es_CO
    dc.relation.referencesWarkentin, M., Sugumaran, V., & Sainsbury, R. (2012). The role of intelligent agents and data mining in electronic partnership management. Expert Systems with Applications, 39(18), 13277–13288. https://doi.org/10.1016/j.eswa.2012.05.074es_CO
    dc.relation.referencesWen, C. H., Liao, S. H., Chang, W. L., & Hsu, P. Y. (2012). Mining shopping behavior in the Taiwan luxury products market. Expert Systems with Applications, 39(12), 11257–11268. https://doi.org/10.1016/j.eswa.2012.03.072es_CO
    dc.relation.referencesWu, R. S., & Chou, P. H. (2011). Customer segmentation of multiple category data in e commerce using a soft-clustering approach. Electronic Commerce Research and Applications, 10(3), 331–341. https://doi.org/10.1016/j.elerap.2010.11.002es_CO
    dc.relation.referencesYan-li, Z., & Jia, Z. (2012). Research on Data Preprocessing In Credit Card Consuming Behavior Mining. Energy Procedia. https://doi.org/10.1016/j.egypro.2012.02.147es_CO
    dc.relation.referencesZanin, M., Papo, D., Sousa, P. A., Menasalvas, E., Nicchi, A., Kubik, E., & Boccaletti, S. (2016). Combining complex networks and data mining: Why and how. Physics Reports, 635, 1–44. https://doi.org/10.1016/j.physrep.2016.04.005es_CO
    dc.relation.referencesZhang, Y., Mukherjee, R., & Soetarman, B. (2013). Concept extraction and e-commerce applications. Electronic Commerce Research and Applications, 12(4), 289–296. https://doi.org/10.1016/j.elerap.2013.03.008es_CO
    dc.relation.referencesZhu, Z. (2013). Discovering the influential users oriented to viral marketing based on online social networks. Physica A: Statistical Mechanics and Its Applications, 392(16), 3459– 3469. https://doi.org/10.1016/j.physa.2013.03.035es_CO
    dc.rights.accessrightshttp://purl.org/coar/access_right/c_abf2es_CO
    dc.type.coarversionhttp://purl.org/coar/resource_type/c_2df8fbb1es_CO
    Aparece en las colecciones: Maestría en Gestión de Proyectos Informáticos

    Ficheros en este ítem:
    Fichero Descripción Tamaño Formato  
    Contreras_2018_TG.pdfContreras_2018_TG.pdf1,41 MBAdobe PDFVisualizar/Abrir


    Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.