Por favor, use este identificador para citar o enlazar este ítem:
http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/4630
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | Contreras Pabon, Duber Mauricio. | - |
dc.date.accessioned | 2022-11-21T20:34:18Z | - |
dc.date.available | 2018-10-30 | - |
dc.date.available | 2022-11-21T20:34:18Z | - |
dc.date.issued | 2019 | - |
dc.identifier.citation | Contreras Pabon, D. M. (2018). Estado del arte de la minería de datos aplicada a la inteligencia de negocios [Trabajo de Grado Maestría, Universidad de Pamplona]. Repositorio Hulago Universidad de Pamplona. http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/4630 | es_CO |
dc.identifier.uri | http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/4630 | - |
dc.description | Este documento presenta una completa revisión bibliográfica sobre trabajos desarrollados, las últimas tendencias, técnicas y aplicaciones de la minería de datos enfocada a la inteligencia de negocios; una revisión teórica que estableció el conocimiento generalmente aceptado, se efectuó exploración de la literatura generada en los últimos 5 años, tanto a nivel nacional como internacional. La revisión fue organizada y analizada desde diferentes puntos de vista, como el tiempo (orden cronológico), las fuentes de datos, selección, exploración y visualización de los datos. Una categorización de los aportes en relación con los modelos predictivos y descriptivos en torno a la minería de datos, categorizando técnicas orientadas a: clasificación, clustering, regresión y reglas de asociación. Fue posible establecer el estado actual del área de estudio y así mismo plantear posibles trabajos futuros, potenciales campos de aplicación, oportunidades de negocio y líneas de profundización e investigación. | es_CO |
dc.description.abstract | This document presents a complete bibliographical review on developed works, the latest trends, techniques and applications of data mining focused on business intelligence; a theoretical review that established the generally accepted knowledge, was carried out exploration of the literature generated in the last 5 years, both nationally and internationally. The review was organized and analyzed from different points of view, such as time (chronological order), data sources, selection, exploration and visualization of the data. A categorization of the contributions in relation to the predictive and descriptive models around data mining, categorizing techniques oriented to: classification, clustering, regression and association rules. It was possible to establish the current status of the study area and also propose possible future work, potential fields of application, business opportunities and lines of research and deepening. | es_CO |
dc.format.extent | 83 | es_CO |
dc.format.mimetype | application/pdf | es_CO |
dc.language.iso | es | es_CO |
dc.publisher | Universidad de Pamplona – Facultad de Ingenierías y Arquitectura. | es_CO |
dc.subject | Minería de datos, | es_CO |
dc.subject | Inteligencia de negocios, | es_CO |
dc.subject | Técnicas de minería de datos, | es_CO |
dc.subject | Herramientas de minería de datos. | es_CO |
dc.title | Estado del arte de la minería de datos aplicada a la inteligencia de negocios. | es_CO |
dc.type | http://purl.org/coar/resource_type/c_bdcc | es_CO |
dc.date.accepted | 2018-07-30 | - |
dc.relation.references | Alsultanny, Y. A. (2013). Labor market forecasting by using data mining. In Procedia Computer Science (Vol. 18, pp. 1700–1709). https://doi.org/10.1016/j.procs.2013.05.338 | es_CO |
dc.relation.references | Aluja, t. (2001). la mine ia de datos, entre la esta istica y la inteligencia artificial, 25(3), 479–498. | es_CO |
dc.relation.references | Amarouche, K., Benbrahim, H., & Kassou, I. (2015). Product Opinion Mining for Competitive Intelligence. Procedia Computer Science, 73(Awict), 358–365. https://doi.org/10.1016/j.procs.2015.12.004 | es_CO |
dc.relation.references | Bahari, T. F., & Elayidom, M. S. (2015). An Efficient CRM-Data Mining Framework for the Prediction of Customer Behaviour. Procedia Computer Science, 46, 725–731. https://doi.org/10.1016/j.procs.2015.02.136 | es_CO |
dc.relation.references | Barrientos, F. S. R. (2013). Aplicación de Minería de Datos para Predecir Fuga de Clientes en la Industria de las Telecomunicaciones. Revista Ingeniería de Sistemas, XXVII, 73–108. | es_CO |
dc.relation.references | Beltrán Martínez, M. B. (2003). Minería de datos, 67. | es_CO |
dc.relation.references | Ben-David, S., & Shalev-Shwartz, S. (2014). Understanding Machine Learning: From Theory to Algorithms. Understanding Machine Learning: From Theory to Algorithms. https://doi.org/10.1017/CBO9781107298019 | es_CO |
dc.relation.references | Bhattacharyya, S., Jha, S., Tharakunnel, K., & Westland, J. C. (2011). Data mining for credit card fraud: A comparative study. Decision Support Systems, 50(3), 602–613. https://doi.org/10.1016/j.dss.2010.08.008 | es_CO |
dc.relation.references | Cano, J. L. (2007). Business Intelligence: Competir Con Información. Banesto, Fundación cultural. Retrieved from http://itemsweb.esade.edu/biblioteca/archivo/Business_Intelligence_competir_con_informa cion.pdf | es_CO |
dc.relation.references | Carmona Suárez, E. J. (2014). Tutorial sobre Máquinas de Vectores Soporte (SVM), 1–25. | es_CO |
dc.relation.references | Chemchem, A., & Drias, H. (2015). From data mining to knowledge mining: Application to intelligent agents. Expert Systems with Applications, 42(3), 1436–1445. https://doi.org/10.1016/j.eswa.2014.08.024 | es_CO |
dc.relation.references | Chen, C. H., Li, A. F., & Lee, Y. C. (2013). A fuzzy coherent rule mining algorithm. Applied Soft Computing Journal, 13(7), 3422–3428. https://doi.org/10.1016/j.asoc.2012.12.031 | es_CO |
dc.relation.references | Chen, F., Wang, Y., Li, M., Wu, H., & Tian, J. (2014). Principal association mining: An efficient classification approach. Knowledge-Based Systems, 67, 16–25. https://doi.org/10.1016/j.knosys.2014.06.013 | es_CO |
dc.relation.references | Chen, L., Qi, L., & Wang, F. (2012). Comparison of feature-level learning methods for mining online consumer reviews. Expert Systems with Applications, 39(10), 9588–9601. https://doi.org/10.1016/j.eswa.2012.02.158 | es_CO |
dc.relation.references | Chen, L., & Wang, F. (2013). Preference-based clustering reviews for augmenting e-commerce recommendation. Knowledge-Based Systems, 50, 44–59. https://doi.org/10.1016/j.knosys.2013.05.006 | es_CO |
dc.relation.references | Chen, Z.-Y., Fan, Z.-P., & Sun, M. (2015). Behavior-aware user response modeling in social media: Learning from diverse heterogeneous data. European Journal of Operational Research, 241(2), 422–434. https://doi.org/10.1016/j.ejor.2014.09.008 | es_CO |
dc.relation.references | Cheng, C. J., Chiu, S. W., Cheng, C. B., & Wu, J. Y. (2012). Customer lifetime value prediction by a Markov chain based data mining model: Application to an auto repair and maintenance company in Taiwan. Scientia Iranica, 19(3), 849–855. https://doi.org/10.1016/j.scient.2011.11.045 | es_CO |
dc.relation.references | Cheung, C. F., & Li, F. L. (2012). A quantitative correlation coefficient mining method for business intelligence in small and medium enterprises of trading business. Expert Systems with Applications, 39(7), 6279–6291. https://doi.org/10.1016/j.eswa.2011.10.021 | es_CO |
dc.relation.references | Corley, C. D., Cook, D. J., Mikler, A. R., & Singh, K. P. (2010). Text and structural data mining of influenza mentions in web and social media. International Journal of Environmental Research and Public Health, 7(2), 596–615. | es_CO |
dc.relation.references | Delgado, M. R., Mata, N. Ú. C., Yepes-Baldó, M., Montesinos, J. V. P., & Olmos, J. G. (2013). Data mining and mall users profile. Universitas Psychologica, 12(1), 195–207. | es_CO |
dc.relation.references | Devi, B. N., Devi, Y. R., Rani, B. P., & Rao, R. R. (2012). Design and implementation of web usage mining intelligent system in the field of e-commerce. Procedia Engineering, 30(2011), 20–27. https://doi.org/10.1016/j.proeng.2012.01.829 | es_CO |
dc.relation.references | Do, N., Bae, S., & Park, C. (2015). Interactive analysis of product development experiments using On-line Analytical Mining. Computers in Industry, 66, 52–62. https://doi.org/10.1016/j.compind.2014.09.003 | es_CO |
dc.relation.references | Eduardo, L., & Vega, G. (2011). Modeling of bidding prices in power markets using clustering and fuzzy association rules, 108–117. | es_CO |
dc.relation.references | Espino Timón, C. (2017). Análisis predictivo: técnicas y modelos utilizados y aplicaciones del mismo - herramientas Open Source que permiten su uso, 65. Retrieved from http://openaccess.uoc.edu/webapps/o2/bitstream/10609/59565/6/caresptimTFG0117memòri a.pdf | es_CO |
dc.relation.references | Galit Shmueli, Peter C. Bruce, Mia L, N. R. P. (2014). Data Mining for Bussines Analytics concepts, techniques, and applications whit JMP PRO. Accv. https://doi.org/10.1007/978-1- 4614-7669-6 | es_CO |
dc.relation.references | Gordillo-Ruiz, J. L., Martínez-Miranda, E., & Stephens, C. R. (2012). Develando estrategias de mercado: minería de datos aplicada al análisis de mercados financieros. Computacion Y Sistemas, 16(2), 221–231. | es_CO |
dc.relation.references | Hand, D., Hand, D., Mannila, H., Mannila, H., Smyth, P., & Smyth, P. (2001). Principles of data mining. Drug safety : an international journal of medical toxicology and drug experience(Vol. 30). https://doi.org/10.2165/00002018-200730070-00010 | es_CO |
dc.relation.references | José Solano Rojas, B. (2010). Tareas de la minería de datos: clasificación CI-2352 Intr. a la minería de datos. | es_CO |
dc.relation.references | Khader, N., Lashier, A., & Yoon, S. W. (2016). Pharmacy robotic dispensing and planogram analysis using association rule mining with prescription data. Expert Systems with Applications, 57, 296–310. https://doi.org/10.1016/j.eswa.2016.02.045 | es_CO |
dc.relation.references | Khalifelu, Z. A., & Gharehchopogh, F. S. (2012). Comparison and evaluation of data mining techniques with algorithmic models in software cost estimation. Procedia Technology, 1, 65–71. https://doi.org/10.1016/j.protcy.2012.02.013 | es_CO |
dc.relation.references | Kim, J., Han, M., Lee, Y., & Park, Y. (2016). Futuristic data-driven scenario building: Incorporating text mining and fuzzy association rule mining into fuzzy cognitive map. Expert Systems with Applications, 57, 311–323. https://doi.org/10.1016/j.eswa.2016.03.043 | es_CO |
dc.relation.references | Kim, K. Y., & Lee, B. G. (2014). Marketing insights for mobile advertising and consumer segmentation in the cloud era: A Q-R hybrid methodology and practices. Technological Forecasting and Social Change, 91, 78–92. https://doi.org/10.1016/j.techfore.2014.01.011 | es_CO |
dc.relation.references | Kopaneli, A. (2014). Finance, Marketing, Management and Strategy Planning. A Qualitative Research Method Analysis of Case Studies in Business Hotels in Patras and in Athens. Procedia Economics and Finance, 9(Ebeec 2013), 472–487. https://doi.org/10.1016/S2212- 5671(14)00049-5 | es_CO |
dc.relation.references | Lee, K. C., Lee, H., Lee, N., & Lim, J. (2013). An agent-based fuzzy cognitive map approach to the strategic marketing planning for industrial firms. Industrial Marketing Management, 42(4), 552–563. https://doi.org/10.1016/j.indmarman.2013.03.007 | es_CO |
dc.relation.references | Leung, C. K., MacKinnon, R. K., & Tanbeer, S. K. (2014). Tightening Upper Bounds to the Expected Support for Uncertain Frequent Pattern Mining. Procedia Computer Science, 35, 328–337. https://doi.org/10.1016/j.procs.2014.08.113 | es_CO |
dc.relation.references | Li, Y. M., Lin, C. H., & Lai, C. Y. (2010). Identifying influential reviewers for word-of-mouth marketing. Electronic Commerce Research and Applications, 9(4), 294–304. https://doi.org/10.1016/j.elerap.2010.02.004 | es_CO |
dc.relation.references | Liao, S. H., & Chou, S. Y. (2013). Data mining investigation of co-movements on the Taiwan and China stock markets for future investment portfolio. Expert Systems with Applications, 40(5), 1542–1554. https://doi.org/10.1016/j.eswa.2012.08.075 | es_CO |
dc.relation.references | Liao, S. H., Chu, P. H., Chen, Y. J., & Chang, C. C. (2012). Mining customer knowledge for exploring online group buying behavior. Expert Systems with Applications, 39(3), 3708– 3716. https://doi.org/10.1016/j.eswa.2011.09.066 | es_CO |
dc.relation.references | Loshin, D. (2013). Business Intelligence: The Savvy Manager’s Guide. Morgan Kauf. https://doi.org/10.1016/B978-0-12-385889-4.00001-6 | es_CO |
dc.relation.references | Luki, J., Radenkovi, M., Despotovi-Zraki, M., Labus, A., & Bogdanovi, Z. (2016). A hybrid approach to building a multi-dimensional business intelligence system for electricity grid operators. Utilities Policy, 41, 95–106. https://doi.org/10.1016/j.jup.2016.06.010 | es_CO |
dc.relation.references | Marín, J. (1982). Los mapas auto-organizados de Kohonen (SOM) Introducción, 1–13. | es_CO |
dc.relation.references | Moro, S., Cortez, P., & Rita, P. (2015). Business intelligence in banking: A literature analysis from 2002 to 2013 using text mining and latent Dirichlet allocation. Expert Systems with Applications, 42(3), 1314–1324. https://doi.org/10.1016/j.eswa.2014.09.024 | es_CO |
dc.relation.references | Nafari, M., & Shahrabi, J. (2010). A temporal data mining approach for shelf-space allocation with consideration of product price. Expert Systems with Applications, 37(6), 4066–4072. https://doi.org/10.1016/j.eswa.2009.11.045 | es_CO |
dc.relation.references | Ortigosa, A., Carro, R. M., & Quiroga, J. I. (2014). Predicting user personality by mining social interactions in Facebook. Journal of Computer and System Sciences, 80(1), 57–71. https://doi.org/10.1016/j.jcss.2013.03.008 | es_CO |
dc.relation.references | Overview, C. (n.d.). Data mining for business intelligence, 9(Unique 03760). | es_CO |
dc.relation.references | Pei, J., Kamber, M., & Jiawei, H. (2012). Data mining : concepts and techniques. | es_CO |
dc.relation.references | Peng, Y., Zhang, Y., Tang, Y., & Li, S. (2011). An incident information management framework based on data integration, data mining, and multi-criteria decision making. Decision Support Systems, 51(2), 316–327. https://doi.org/10.1016/j.dss.2010.11.025 | es_CO |
dc.relation.references | Peña, A. (2006). Inteligencia de Negocios: Una Propuesta para su Desarrollo en las organizaciones. | es_CO |
dc.relation.references | Pinzon Cadena, L. L. (2011). Aplicando minería de datos al marketing educativo. Notas D Marketing, 1(1), 45–61. Retrieved from http://www.usergioarboleda.edu.co/investigacion marketing/marketing/articulo5MineriaDatos.pdf | es_CO |
dc.relation.references | POPEANGĂ, J., & LUNGU, I. (2012). Real-Time Business Intelligence for the Utilities Industry. Database Systems Journal, 3(4), 15–24. | es_CO |
dc.relation.references | Rajaraman, A., & Ullman, J. D. (2011). Mining of Massive Datasets. Lecture Notes for Stanford CS345A Web Mining (Vol. 67). https://doi.org/10.1017/CBO9781139058452 | es_CO |
dc.relation.references | Ravisankar, P., Ravi, V., Raghava Rao, G., & Bose, I. (2011). Detection of financial statement fraud and feature selection using data mining techniques. Decision Support Systems, 50(2), 491–500. https://doi.org/10.1016/j.dss.2010.11.006 | es_CO |
dc.relation.references | Resendiz Trejo, J. (2006). Las maquinas de vectores de soporte para identificación en línea. | es_CO |
dc.relation.references | Ríos, S. a., & Videla–Cavieres, I. F. (2014). Generating Groups of Products Using Graph Mining Techniques. Procedia Computer Science, 35, 730–738. https://doi.org/10.1016/j.procs.2014.08.155 | es_CO |
dc.relation.references | Sahoo, J., Das, A. K., & Goswami, A. (2015). An efficient approach for mining association rules from high utility itemsets. Expert Systems with Applications, 42(13), 5754–5778. https://doi.org/10.1016/j.eswa.2015.02.051 | es_CO |
dc.relation.references | Shmueli, G., Patel, N., & Bruce, P. (2007). Data mining for business intelligence. Hoboken, NJ, USA. Retrieved from http://www.c-elt.com/Data-Mining-flyer.pdf | es_CO |
dc.relation.references | Su, Q., & Chen, L. (2015). A method for discovering clusters of e-commerce interest patterns using click-stream data. Electronic Commerce Research and Applications, 14(1), 1–13. https://doi.org/10.1016/j.elerap.2014.10.002 | es_CO |
dc.relation.references | Tang, H., Liao, S. S., & Sun, S. X. (2013). A prediction framework based on contextual data to support Mobile Personalized Marketing. Decision Support Systems, 56(1), 234–246. https://doi.org/10.1016/j.dss.2013.06.004 | es_CO |
dc.relation.references | Thorleuchter, D., & Van Den Poel, D. (2012). Predicting e-commerce company success by mining the text of its publicly-accessible website. Expert Systems with Applications, 39(17), 13026–13034. https://doi.org/10.1016/j.eswa.2012.05.096 | es_CO |
dc.relation.references | Tien, J. M. (2014). A global view of big data. | es_CO |
dc.relation.references | Vercellis, C. (2009). Business Intelligence: Data Mining and Optimization for Decision Making. Business Intelligence: Data Mining and Optimization for Decision Making. https://doi.org/10.1002/9780470753866 | es_CO |
dc.relation.references | Warkentin, M., Sugumaran, V., & Sainsbury, R. (2012). The role of intelligent agents and data mining in electronic partnership management. Expert Systems with Applications, 39(18), 13277–13288. https://doi.org/10.1016/j.eswa.2012.05.074 | es_CO |
dc.relation.references | Wen, C. H., Liao, S. H., Chang, W. L., & Hsu, P. Y. (2012). Mining shopping behavior in the Taiwan luxury products market. Expert Systems with Applications, 39(12), 11257–11268. https://doi.org/10.1016/j.eswa.2012.03.072 | es_CO |
dc.relation.references | Wu, R. S., & Chou, P. H. (2011). Customer segmentation of multiple category data in e commerce using a soft-clustering approach. Electronic Commerce Research and Applications, 10(3), 331–341. https://doi.org/10.1016/j.elerap.2010.11.002 | es_CO |
dc.relation.references | Yan-li, Z., & Jia, Z. (2012). Research on Data Preprocessing In Credit Card Consuming Behavior Mining. Energy Procedia. https://doi.org/10.1016/j.egypro.2012.02.147 | es_CO |
dc.relation.references | Zanin, M., Papo, D., Sousa, P. A., Menasalvas, E., Nicchi, A., Kubik, E., & Boccaletti, S. (2016). Combining complex networks and data mining: Why and how. Physics Reports, 635, 1–44. https://doi.org/10.1016/j.physrep.2016.04.005 | es_CO |
dc.relation.references | Zhang, Y., Mukherjee, R., & Soetarman, B. (2013). Concept extraction and e-commerce applications. Electronic Commerce Research and Applications, 12(4), 289–296. https://doi.org/10.1016/j.elerap.2013.03.008 | es_CO |
dc.relation.references | Zhu, Z. (2013). Discovering the influential users oriented to viral marketing based on online social networks. Physica A: Statistical Mechanics and Its Applications, 392(16), 3459– 3469. https://doi.org/10.1016/j.physa.2013.03.035 | es_CO |
dc.rights.accessrights | http://purl.org/coar/access_right/c_abf2 | es_CO |
dc.type.coarversion | http://purl.org/coar/resource_type/c_2df8fbb1 | es_CO |
Aparece en las colecciones: | Maestría en Gestión de Proyectos Informáticos |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
Contreras_2018_TG.pdf | Contreras_2018_TG.pdf | 1,41 MB | Adobe PDF | Visualizar/Abrir |
Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.