Por favor, use este identificador para citar o enlazar este ítem:
http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/4571
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | Cacua Rivera, Holger Antonio. | - |
dc.date.accessioned | 2022-11-18T15:27:47Z | - |
dc.date.available | 2018-11-01 | - |
dc.date.available | 2022-11-18T15:27:47Z | - |
dc.date.issued | 2019 | - |
dc.identifier.citation | Cacua Rivera, H. (2018). Fabricación y caracterización mecánica de mezclas heterogéneas poliméricas obtenidas mediante el modelado por deposición fundida (3D) [Trabajo de Grado Maestría, Universidad de Pamplona]. Repositorio Hulago Universidad de Pamplona. http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/4571 | es_CO |
dc.identifier.uri | http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/4571 | - |
dc.description | La tecnología de las impresoras 3D ha irrumpido con fuerza últimamente para la creación de piezas pequeñas y es empleada en diversas áreas de interés. Es por tanto, una herramienta aplicada en la ingeniería biomédica, la educación, la electrónica, ingeniería forense, entre otras. La impresión 3D se caracteriza por ser un proceso que consiste en la fabricación de elementos físicos a partir de un modelo computacional, por lo que se percibe como una forma de convertir una idea en un producto, pero que a su vez requiere el cumplimiento de una serie de parámetros y pasos que determinan su aplicabilidad. Por tanto, la siguiente investigación tiene como propósito la caracterización mecánica de materiales, a partir de mezclas heterogéneas de polímeros, mediante el moldeado por deposición fundida (3D) A través de su implementación, se pueden identificar las ventajas y desventajas, de acuerdo con las propiedades mecánicas obtenidas. Para tal fin, se prepararon probetas mediante la mezcla de materiales poliméricos (rígidos y flexibles). Inicialmente se realizó el diseño de las probetas basados en las normas ASTM utilizando un software CAD, posteriormente este diseño se transforma en un código G a través de un software CAM, y se establecieron los parámetros de fabricación para cada material. Una vez fabricadas las probetas, se ensayaron en condiciones estáticas bajo esfuerzos de tracción y flexión para determinar su comportamiento mecánico. Como resultado de este proceso se obtiene un material formado mediante una mezcla heterogénea de poliméricos, que presenta mayor resistencia que los materiales flexibles tradicionales y mayor deformación que los materiales rígidos tradicionales. La mezcla se logra a través del uso de un extrusor implementado para fundir, considerando la diferencia en temperatura de fusión de los materiales, lo que permite ampliar el campo de aplicación de la tecnología de impresión 3D a sectores no explorados hasta el momento en la Ciencia e Ingeniería de los Materiales. | es_CO |
dc.description.abstract | The technology of the 3D printers has entered strongly in the creation of small pieces and is used in diverse areas of interest lately. It is therefore it is applied a tool in the biomedical engineering, the education, the electronics, forensic engineering, among others. The 3D impression is characterized for being a process wich consists of the manufacture of physical elements from a computational model, what it is perceived as a way of turning an idea into a product, but that in turn needs the fulfillment of a series of parameters and steps that determine its applicability. Therefore, the following mechanics of materials starting from a investigation has as an intention of the characterization of pieces obtained by means from heterogeneous mixtures of polymeric materials , which ask the construction of a 3D printer which allows the combination of thermoplastic materials with different characteristics. Throught its implementation, the advantages and disadvantages according to the . For that purpose it mechanical properties were prepared. For that , a serie of manometers were made by means of mixture of rigid polymers material: and flexible, which are submitted to test of traction and flexion to determine its mechanical properties. This investigation is based on the ASTM D638 procedure for the tests of traction to plastic and the ASTM 790 for the bending tests. At the beginning the design of manometers is done based on the mentioned procedure by using a software CAD, later this design turns in a G code throught a software CAM , to establish the manufacture parameters for every material. Once the manometers were tested in static conditions by flexion and traction efforts to determine the mechanic behavior As a result from this process, a formed piece is obtained by means of a heterogeneous mixture of polymeric, which presents major resistance than the flexible traditional materials and major deformation that the rigid traditional materials, the mixture is obtained from chieves throught the use of an extrusor implemented to fuse, considering the difference in temperature of merger of the materials, which allows to extend the field of application of the technology of 3D impression to sectors not explored up to the moment Science and Engineering of the Materials at the moment. | es_CO |
dc.format.extent | 136 | es_CO |
dc.format.mimetype | application/pdf | es_CO |
dc.language.iso | es | es_CO |
dc.publisher | Universidad de Pamplona – Facultad de Ingenierías y Arquitectura. | es_CO |
dc.subject | Impresión 3D, | es_CO |
dc.subject | Polímeros, | es_CO |
dc.subject | Deposición de material fundido, | es_CO |
dc.subject | Extrusor, | es_CO |
dc.subject | Caracterización mecánica. | es_CO |
dc.title | Fabricación y caracterización mecánica de mezclas heterogéneas poliméricas obtenidas mediante el modelado por deposición fundida (3D). | es_CO |
dc.type | http://purl.org/coar/resource_type/c_bdcc | es_CO |
dc.date.accepted | 2018-08-01 | - |
dc.relation.references | Abbott, A. C., Tandon, G. P., Bradford, R. L., Koerner, H., & Baur, J. W. (2018). Process-structure property effects on ABS bond strength in fused filament fabrication. ELSEVIER, 19, 29–38. 2,1 3,4 4,7 0 1 2 3 4 5 PLA 0 GRADOS PLA 50 GRADOS PLA 50 GRADOS TRANSVERSAL % DEFORMACION 115 https://doi.org/10.1016/j.addma.2017.11.002 | es_CO |
dc.relation.references | Abdullah, A. M., Noraihan, T., Tuan Rahim, A., Mohamad, D., Akil, H. M., & Rajion, Z. A. (2017). Mechanical and physical properties of highly ZrO 2 /β-TCP filled polyamide 12 prepared via fused deposition modelling (FDM) 3D printer for potential craniofacial reconstruction application. Materials Letters, 189, 307–309. https://doi.org/10.1016/j.matlet.2016.11.052 | es_CO |
dc.relation.references | Abilgaziyev, a., Kulzhan, T., Raissov, N., Ali, M. H., Match, W. L. K. O., & Mir-Nasiri, N. (2015). Design and development of multi-nozzle extrusion system for 3D printer. 2015 4th International Conference on Informatics, Electronics and Vision, ICIEV 2015, 3–7. https://doi.org/10.1109/ICIEV.2015.7333982 | es_CO |
dc.relation.references | Acuna, F., Rivas, D., Chancusi, S., & Navarrete, P. (2015). Design and Construction of a 3D Printer Auto Controller Wirelessly Through of Free Software. IEEE Latin America Transactions, 13(6), 1893–1898. https://doi.org/10.1109/TLA.2015.7164214 | es_CO |
dc.relation.references | Alafaghani, A., Qattawi, A., Alrawi, B., & Guzman, A. (2017). Experimental Optimization of Fused Deposition Modelling Processing Parameters: A Design-for-Manufacturing Approach. Procedia Manufacturing, 10, 791–803. https://doi.org/10.1016/j.promfg.2017.07.079 | es_CO |
dc.relation.references | Albarracin, D. H., Arias, E. Y., & Adolfoduran, G. (2017). Development of a methodology for the printing of prostheses using 3D technology Desarrollo de una metodología para la impresión de prótesis mediante tecnología 3D, 81–89. | es_CO |
dc.relation.references | Alberto Lopez Arraiza. (2008). Correlaciones procesado-estructura-porpiedades en sitemas polimericos complejos basados en poliesteres biodegradables. evaluación de su posible uso en aplicaciones ecológicas y biomedicas (tesis de doctorado). Escuela Tecnica Superior de Ingenieria de Bilbao. Retrieved from http://fondosdigitales.us.es/media/thesis/722/S_TD_203.pdf | es_CO |
dc.relation.references | Almudena Lopez De Rego. (2013). Estado del arte_ Impresión 3D y edificación _ CTE Arquitectura. Retrieved from http://www.ctearquitectura.es/soluciones sostenibles/materiales/estado-del-arte-impresion-3d-y-edificacio | es_CO |
dc.relation.references | Ariza, L. M. (2015). fabricación de organos humanos con impresoras 3D. Retrieved from https://www.pressreader.com/spain/muy-interesante/20150520 | es_CO |
dc.relation.references | Bajracharya, R. M., Bajwa, D. S., & Bajwa, S. G. (2017). Mechanical properties of polylactic acid 116 composites reinforced with cotton gin waste and flax fibers. Procedia Engineering, 200, 370– 376. https://doi.org/10.1016/j.proeng.2017.07.052 | es_CO |
dc.relation.references | Ballester, M. (2014). Políticas para el buen manejo de información digital – Pymempresario. Retrieved from https://www.pymempresario.com/2014/10/politicas-para-el-buen-manejo-de informacion-digita | es_CO |
dc.relation.references | Borjas, R., & Flores, W. (2016). Developing a human prosthesis using a 3D printer in Honduras. Proceedings of the 2015 IEEE 35th Central American and Panama Convention, CONCAPAN 2015, (Concapan Xxxv). https://doi.org/10.1109/CONCAPAN.2015.7428465 | es_CO |
dc.relation.references | Croccolo, D., De Agostinis, M., & Olmi, G. (2013). Experimental characterization and analytical modelling of the mechanical behaviour of fused deposition processed parts made of ABS M30. Computational Materials Science, 79, 506–518. https://doi.org/10.1016/j.commatsci.2013.06.041 | es_CO |
dc.relation.references | Dizon, J. R. C., Espera, A. H., Chen, Q., & Advincula, R. C. (2018). Mechanical characterization of 3D-printed polymers. Additive Manufacturing, 20, 44–67. https://doi.org/10.1016/j.addma.2017.12.002 | es_CO |
dc.relation.references | Fernandez-Vicente, M., Calle, W., Ferrandiz, S., & Conejero, A. (2016). Effect of Infill Parameters on Tensile Mechanical Behavior in Desktop 3D Printing. 3D Printing and Additive Manufacturing, 3(3), 183–192. https://doi.org/10.1089/3dp.2015.0036 | es_CO |
dc.relation.references | Frax, J. (2015). Impresiones en alta definición – Cambiemos las varillas por usillos. Retrieved from https://www.frax3d.com/impresion-en-hd | es_CO |
dc.relation.references | Hasiuk, F. J., Harding, C., Renner, A. R., & Winer, E. (2017). TouchTerrain: A simple web-tool for creating 3D-printable topographic models. Computers and Geosciences, 109(April), 25– 31. https://doi.org/10.1016/j.cageo.2017.07.005 | es_CO |
dc.relation.references | Iguas, S. (2018). igus® drylin® - Husillos de rosca trapezoidal - Datos técnicos. Retrieved from https://www.igus.es/wpck/2374/DryLin_Trapezgewindemutter_Technische_Daten | es_CO |
dc.relation.references | Ipohorski Miguel, R. J. A. (1988). Fractografia aplicacion análisis de falla, 180. | es_CO |
dc.relation.references | Lanaro, M., Forrestal, D. P., Scheurer, S., Slinger, D. J., Liao, S., Powell, S. K., & Woodruff, M. A. (2017). 3D printing complex chocolate objects: Platform design, optimization and 117 evaluation. Journal of Food Engineering, 215, 13–22. https://doi.org/10.1016/j.jfoodeng.2017.06.029 | es_CO |
dc.relation.references | Lille, M., Nurmela, A., Nordlund, E., Metsä-Kortelainen, S., & Sozer, N. (2018). Applicability of protein and fiber-rich food materials in extrusion-based 3D printing. Journal of Food Engineering, 220, 20–27. https://doi.org/10.1016/j.jfoodeng.2017.04.034 | es_CO |
dc.relation.references | Mirón, V., Ferrándiz, S., Juárez, D., & Mengual, A. (2017). Manufacturing and characterization of 3D printer filament using tailoring materials. Procedia Manufacturing, 13, 888–894. https://doi.org/10.1016/j.promfg.2017.09.151 | es_CO |
dc.relation.references | Mueller, J., Shea, K., & Daraio, C. (2015). Mechanical properties of parts fabricated with inkjet 3D printing through efficient experimental design. Materials and Design, 86, 902–912. https://doi.org/10.1016/j.matdes.2015.07.129 | es_CO |
dc.relation.references | Pilch, Z., Domin, J., & Szlapa, A. (2016). The impact of vibration of the 3D printer table on the quality of print. 2015 Selected Problems of Electrical Engineering and Electronics, WZEE 2015. https://doi.org/10.1109/WZEE.2015.7394045 | es_CO |
dc.relation.references | Pohl, B. M., Gasca, F., Christ, O., & Hofmann, U. G. (2013). 3D printers may reduce animal numbers to train neuroengineering procedures. International IEEE/EMBS Conference on Neural Engineering, NER, 887–890. https://doi.org/10.1109/NER.2013.6696077 | es_CO |
dc.relation.references | Prsa, J., Sobreviela, J., Irlinger, F., & Lueth, T. C. (2015). Software tool for detection and filling of voids as a part of tool-path strategy development for droplet generating 3D printers. IEEE CITS 2015 - 2015 International Conference on Computer, Information and Telecommunication Systems. https://doi.org/10.1109/CITS.2015.7297725 | es_CO |
dc.relation.references | Reprap. (2016). RepRap_es - RepRap. Retrieved from https://reprap.org/wiki/RepRap/es | es_CO |
dc.relation.references | Ribeiro, J., Freitas, G., & Andrade, M. M. De. (2014). Mechanical Tests in Thermoplastic Elastomers Used in 3D Printers for the Construction of Hand Prosthesis Ensaios Mecânicos Em Elastômeros Termoplásticos Utilizados Em Impressoras 3D Para a Construção De Próteses De Mão. | es_CO |
dc.relation.references | Rodriguez, E., Cortés, E., & Peña, C. (2016). Application of the Qfd Methodology in the Development of. Revista Colombiana de Tecnologías de Avanzada. Retrieved from Results for %22APLICACIÓN DE LA METODOLOGÍA QFD EN EL DESARROLLO DE UNA 118 IMPRESORA 3D APPLICATION OF THE QFD METHODOLOGY IN THE DEVELOPMENT OF A 3D PRINTER%22 in %22All Documents%22 | es_CO |
dc.relation.references | Rogers, L. S., Van Wert, J. C., & Mensinger, A. F. (2017). An implantable two axis micromanipulator made with a 3D printer for recording neural activity in free-swimming fish. Journal of Neuroscience Methods, 288, 29–33. https://doi.org/10.1016/j.jneumeth.2017.06.012 | es_CO |
dc.relation.references | Santiago Blandon, Juan Camilo Amaya, Alvaro Jose Rojas. (2015). Development of a 3D Printer and a Supervision System Towards the Improvement of Physical Properties and Surface Finish of the Printed Parts. | es_CO |
dc.relation.references | Weng, Z., Wang, J., Senthil, T., & Wu, L. (2016). Mechanical and thermal properties of ABS/montmorillonite nanocomposites for fused deposition modeling 3D printing. Materials and Design, 102, 276–283. https://doi.org/10.1016/j.matdes.2016.04.045 | es_CO |
dc.rights.accessrights | http://purl.org/coar/access_right/c_abf2 | es_CO |
dc.type.coarversion | http://purl.org/coar/resource_type/c_2df8fbb1 | es_CO |
Aparece en las colecciones: | Maestría en Ingeniería Industrial |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
Cacua_2018_TG.pdf | Cacua_2018_TG.pdf | 4,87 MB | Adobe PDF | Visualizar/Abrir |
Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.