• Repositorio Institucional Universidad de Pamplona
  • Tesis de maestría y doctorado
  • Facultad de Ingenierías y Arquitectura
  • Maestría en Ingeniería Industrial
  • Please use this identifier to cite or link to this item: http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/4571
    Full metadata record
    DC FieldValueLanguage
    dc.contributor.authorCacua Rivera, Holger Antonio.-
    dc.date.accessioned2022-11-18T15:27:47Z-
    dc.date.available2018-11-01-
    dc.date.available2022-11-18T15:27:47Z-
    dc.date.issued2019-
    dc.identifier.citationCacua Rivera, H. (2018). Fabricación y caracterización mecánica de mezclas heterogéneas poliméricas obtenidas mediante el modelado por deposición fundida (3D) [Trabajo de Grado Maestría, Universidad de Pamplona]. Repositorio Hulago Universidad de Pamplona. http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/4571es_CO
    dc.identifier.urihttp://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/4571-
    dc.descriptionLa tecnología de las impresoras 3D ha irrumpido con fuerza últimamente para la creación de piezas pequeñas y es empleada en diversas áreas de interés. Es por tanto, una herramienta aplicada en la ingeniería biomédica, la educación, la electrónica, ingeniería forense, entre otras. La impresión 3D se caracteriza por ser un proceso que consiste en la fabricación de elementos físicos a partir de un modelo computacional, por lo que se percibe como una forma de convertir una idea en un producto, pero que a su vez requiere el cumplimiento de una serie de parámetros y pasos que determinan su aplicabilidad. Por tanto, la siguiente investigación tiene como propósito la caracterización mecánica de materiales, a partir de mezclas heterogéneas de polímeros, mediante el moldeado por deposición fundida (3D) A través de su implementación, se pueden identificar las ventajas y desventajas, de acuerdo con las propiedades mecánicas obtenidas. Para tal fin, se prepararon probetas mediante la mezcla de materiales poliméricos (rígidos y flexibles). Inicialmente se realizó el diseño de las probetas basados en las normas ASTM utilizando un software CAD, posteriormente este diseño se transforma en un código G a través de un software CAM, y se establecieron los parámetros de fabricación para cada material. Una vez fabricadas las probetas, se ensayaron en condiciones estáticas bajo esfuerzos de tracción y flexión para determinar su comportamiento mecánico. Como resultado de este proceso se obtiene un material formado mediante una mezcla heterogénea de poliméricos, que presenta mayor resistencia que los materiales flexibles tradicionales y mayor deformación que los materiales rígidos tradicionales. La mezcla se logra a través del uso de un extrusor implementado para fundir, considerando la diferencia en temperatura de fusión de los materiales, lo que permite ampliar el campo de aplicación de la tecnología de impresión 3D a sectores no explorados hasta el momento en la Ciencia e Ingeniería de los Materiales.es_CO
    dc.description.abstractThe technology of the 3D printers has entered strongly in the creation of small pieces and is used in diverse areas of interest lately. It is therefore it is applied a tool in the biomedical engineering, the education, the electronics, forensic engineering, among others. The 3D impression is characterized for being a process wich consists of the manufacture of physical elements from a computational model, what it is perceived as a way of turning an idea into a product, but that in turn needs the fulfillment of a series of parameters and steps that determine its applicability. Therefore, the following mechanics of materials starting from a investigation has as an intention of the characterization of pieces obtained by means from heterogeneous mixtures of polymeric materials , which ask the construction of a 3D printer which allows the combination of thermoplastic materials with different characteristics. Throught its implementation, the advantages and disadvantages according to the . For that purpose it mechanical properties were prepared. For that , a serie of manometers were made by means of mixture of rigid polymers material: and flexible, which are submitted to test of traction and flexion to determine its mechanical properties. This investigation is based on the ASTM D638 procedure for the tests of traction to plastic and the ASTM 790 for the bending tests. At the beginning the design of manometers is done based on the mentioned procedure by using a software CAD, later this design turns in a G code throught a software CAM , to establish the manufacture parameters for every material. Once the manometers were tested in static conditions by flexion and traction efforts to determine the mechanic behavior As a result from this process, a formed piece is obtained by means of a heterogeneous mixture of polymeric, which presents major resistance than the flexible traditional materials and major deformation that the rigid traditional materials, the mixture is obtained from chieves throught the use of an extrusor implemented to fuse, considering the difference in temperature of merger of the materials, which allows to extend the field of application of the technology of 3D impression to sectors not explored up to the moment Science and Engineering of the Materials at the moment.es_CO
    dc.format.extent136es_CO
    dc.format.mimetypeapplication/pdfes_CO
    dc.language.isoeses_CO
    dc.publisherUniversidad de Pamplona – Facultad de Ingenierías y Arquitectura.es_CO
    dc.subjectImpresión 3D,es_CO
    dc.subjectPolímeros,es_CO
    dc.subjectDeposición de material fundido,es_CO
    dc.subjectExtrusor,es_CO
    dc.subjectCaracterización mecánica.es_CO
    dc.titleFabricación y caracterización mecánica de mezclas heterogéneas poliméricas obtenidas mediante el modelado por deposición fundida (3D).es_CO
    dc.typehttp://purl.org/coar/resource_type/c_bdcces_CO
    dc.date.accepted2018-08-01-
    dc.relation.referencesAbbott, A. C., Tandon, G. P., Bradford, R. L., Koerner, H., & Baur, J. W. (2018). Process-structure property effects on ABS bond strength in fused filament fabrication. ELSEVIER, 19, 29–38. 2,1 3,4 4,7 0 1 2 3 4 5 PLA 0 GRADOS PLA 50 GRADOS PLA 50 GRADOS TRANSVERSAL % DEFORMACION 115 https://doi.org/10.1016/j.addma.2017.11.002es_CO
    dc.relation.referencesAbdullah, A. M., Noraihan, T., Tuan Rahim, A., Mohamad, D., Akil, H. M., & Rajion, Z. A. (2017). Mechanical and physical properties of highly ZrO 2 /β-TCP filled polyamide 12 prepared via fused deposition modelling (FDM) 3D printer for potential craniofacial reconstruction application. Materials Letters, 189, 307–309. https://doi.org/10.1016/j.matlet.2016.11.052es_CO
    dc.relation.referencesAbilgaziyev, a., Kulzhan, T., Raissov, N., Ali, M. H., Match, W. L. K. O., & Mir-Nasiri, N. (2015). Design and development of multi-nozzle extrusion system for 3D printer. 2015 4th International Conference on Informatics, Electronics and Vision, ICIEV 2015, 3–7. https://doi.org/10.1109/ICIEV.2015.7333982es_CO
    dc.relation.referencesAcuna, F., Rivas, D., Chancusi, S., & Navarrete, P. (2015). Design and Construction of a 3D Printer Auto Controller Wirelessly Through of Free Software. IEEE Latin America Transactions, 13(6), 1893–1898. https://doi.org/10.1109/TLA.2015.7164214es_CO
    dc.relation.referencesAlafaghani, A., Qattawi, A., Alrawi, B., & Guzman, A. (2017). Experimental Optimization of Fused Deposition Modelling Processing Parameters: A Design-for-Manufacturing Approach. Procedia Manufacturing, 10, 791–803. https://doi.org/10.1016/j.promfg.2017.07.079es_CO
    dc.relation.referencesAlbarracin, D. H., Arias, E. Y., & Adolfoduran, G. (2017). Development of a methodology for the printing of prostheses using 3D technology Desarrollo de una metodología para la impresión de prótesis mediante tecnología 3D, 81–89.es_CO
    dc.relation.referencesAlberto Lopez Arraiza. (2008). Correlaciones procesado-estructura-porpiedades en sitemas polimericos complejos basados en poliesteres biodegradables. evaluación de su posible uso en aplicaciones ecológicas y biomedicas (tesis de doctorado). Escuela Tecnica Superior de Ingenieria de Bilbao. Retrieved from http://fondosdigitales.us.es/media/thesis/722/S_TD_203.pdfes_CO
    dc.relation.referencesAlmudena Lopez De Rego. (2013). Estado del arte_ Impresión 3D y edificación _ CTE Arquitectura. Retrieved from http://www.ctearquitectura.es/soluciones sostenibles/materiales/estado-del-arte-impresion-3d-y-edificacioes_CO
    dc.relation.referencesAriza, L. M. (2015). fabricación de organos humanos con impresoras 3D. Retrieved from https://www.pressreader.com/spain/muy-interesante/20150520es_CO
    dc.relation.referencesBajracharya, R. M., Bajwa, D. S., & Bajwa, S. G. (2017). Mechanical properties of polylactic acid 116 composites reinforced with cotton gin waste and flax fibers. Procedia Engineering, 200, 370– 376. https://doi.org/10.1016/j.proeng.2017.07.052es_CO
    dc.relation.referencesBallester, M. (2014). Políticas para el buen manejo de información digital – Pymempresario. Retrieved from https://www.pymempresario.com/2014/10/politicas-para-el-buen-manejo-de informacion-digitaes_CO
    dc.relation.referencesBorjas, R., & Flores, W. (2016). Developing a human prosthesis using a 3D printer in Honduras. Proceedings of the 2015 IEEE 35th Central American and Panama Convention, CONCAPAN 2015, (Concapan Xxxv). https://doi.org/10.1109/CONCAPAN.2015.7428465es_CO
    dc.relation.referencesCroccolo, D., De Agostinis, M., & Olmi, G. (2013). Experimental characterization and analytical modelling of the mechanical behaviour of fused deposition processed parts made of ABS M30. Computational Materials Science, 79, 506–518. https://doi.org/10.1016/j.commatsci.2013.06.041es_CO
    dc.relation.referencesDizon, J. R. C., Espera, A. H., Chen, Q., & Advincula, R. C. (2018). Mechanical characterization of 3D-printed polymers. Additive Manufacturing, 20, 44–67. https://doi.org/10.1016/j.addma.2017.12.002es_CO
    dc.relation.referencesFernandez-Vicente, M., Calle, W., Ferrandiz, S., & Conejero, A. (2016). Effect of Infill Parameters on Tensile Mechanical Behavior in Desktop 3D Printing. 3D Printing and Additive Manufacturing, 3(3), 183–192. https://doi.org/10.1089/3dp.2015.0036es_CO
    dc.relation.referencesFrax, J. (2015). Impresiones en alta definición – Cambiemos las varillas por usillos. Retrieved from https://www.frax3d.com/impresion-en-hdes_CO
    dc.relation.referencesHasiuk, F. J., Harding, C., Renner, A. R., & Winer, E. (2017). TouchTerrain: A simple web-tool for creating 3D-printable topographic models. Computers and Geosciences, 109(April), 25– 31. https://doi.org/10.1016/j.cageo.2017.07.005es_CO
    dc.relation.referencesIguas, S. (2018). igus® drylin® - Husillos de rosca trapezoidal - Datos técnicos. Retrieved from https://www.igus.es/wpck/2374/DryLin_Trapezgewindemutter_Technische_Datenes_CO
    dc.relation.referencesIpohorski Miguel, R. J. A. (1988). Fractografia aplicacion análisis de falla, 180.es_CO
    dc.relation.referencesLanaro, M., Forrestal, D. P., Scheurer, S., Slinger, D. J., Liao, S., Powell, S. K., & Woodruff, M. A. (2017). 3D printing complex chocolate objects: Platform design, optimization and 117 evaluation. Journal of Food Engineering, 215, 13–22. https://doi.org/10.1016/j.jfoodeng.2017.06.029es_CO
    dc.relation.referencesLille, M., Nurmela, A., Nordlund, E., Metsä-Kortelainen, S., & Sozer, N. (2018). Applicability of protein and fiber-rich food materials in extrusion-based 3D printing. Journal of Food Engineering, 220, 20–27. https://doi.org/10.1016/j.jfoodeng.2017.04.034es_CO
    dc.relation.referencesMirón, V., Ferrándiz, S., Juárez, D., & Mengual, A. (2017). Manufacturing and characterization of 3D printer filament using tailoring materials. Procedia Manufacturing, 13, 888–894. https://doi.org/10.1016/j.promfg.2017.09.151es_CO
    dc.relation.referencesMueller, J., Shea, K., & Daraio, C. (2015). Mechanical properties of parts fabricated with inkjet 3D printing through efficient experimental design. Materials and Design, 86, 902–912. https://doi.org/10.1016/j.matdes.2015.07.129es_CO
    dc.relation.referencesPilch, Z., Domin, J., & Szlapa, A. (2016). The impact of vibration of the 3D printer table on the quality of print. 2015 Selected Problems of Electrical Engineering and Electronics, WZEE 2015. https://doi.org/10.1109/WZEE.2015.7394045es_CO
    dc.relation.referencesPohl, B. M., Gasca, F., Christ, O., & Hofmann, U. G. (2013). 3D printers may reduce animal numbers to train neuroengineering procedures. International IEEE/EMBS Conference on Neural Engineering, NER, 887–890. https://doi.org/10.1109/NER.2013.6696077es_CO
    dc.relation.referencesPrsa, J., Sobreviela, J., Irlinger, F., & Lueth, T. C. (2015). Software tool for detection and filling of voids as a part of tool-path strategy development for droplet generating 3D printers. IEEE CITS 2015 - 2015 International Conference on Computer, Information and Telecommunication Systems. https://doi.org/10.1109/CITS.2015.7297725es_CO
    dc.relation.referencesReprap. (2016). RepRap_es - RepRap. Retrieved from https://reprap.org/wiki/RepRap/eses_CO
    dc.relation.referencesRibeiro, J., Freitas, G., & Andrade, M. M. De. (2014). Mechanical Tests in Thermoplastic Elastomers Used in 3D Printers for the Construction of Hand Prosthesis Ensaios Mecânicos Em Elastômeros Termoplásticos Utilizados Em Impressoras 3D Para a Construção De Próteses De Mão.es_CO
    dc.relation.referencesRodriguez, E., Cortés, E., & Peña, C. (2016). Application of the Qfd Methodology in the Development of. Revista Colombiana de Tecnologías de Avanzada. Retrieved from Results for %22APLICACIÓN DE LA METODOLOGÍA QFD EN EL DESARROLLO DE UNA 118 IMPRESORA 3D APPLICATION OF THE QFD METHODOLOGY IN THE DEVELOPMENT OF A 3D PRINTER%22 in %22All Documents%22es_CO
    dc.relation.referencesRogers, L. S., Van Wert, J. C., & Mensinger, A. F. (2017). An implantable two axis micromanipulator made with a 3D printer for recording neural activity in free-swimming fish. Journal of Neuroscience Methods, 288, 29–33. https://doi.org/10.1016/j.jneumeth.2017.06.012es_CO
    dc.relation.referencesSantiago Blandon, Juan Camilo Amaya, Alvaro Jose Rojas. (2015). Development of a 3D Printer and a Supervision System Towards the Improvement of Physical Properties and Surface Finish of the Printed Parts.es_CO
    dc.relation.referencesWeng, Z., Wang, J., Senthil, T., & Wu, L. (2016). Mechanical and thermal properties of ABS/montmorillonite nanocomposites for fused deposition modeling 3D printing. Materials and Design, 102, 276–283. https://doi.org/10.1016/j.matdes.2016.04.045es_CO
    dc.rights.accessrightshttp://purl.org/coar/access_right/c_abf2es_CO
    dc.type.coarversionhttp://purl.org/coar/resource_type/c_2df8fbb1es_CO
    Appears in Collections:Maestría en Ingeniería Industrial

    Files in This Item:
    File Description SizeFormat 
    Cacua_2018_TG.pdfCacua_2018_TG.pdf4,87 MBAdobe PDFView/Open


    Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.