• Repositorio Institucional Universidad de Pamplona
  • Trabajos de pregrado y especialización
  • Facultad de Ingenierías y Arquitectura
  • Ingeniería Mecatrónica
  • Please use this identifier to cite or link to this item: http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/4444
    Full metadata record
    DC FieldValueLanguage
    dc.contributor.authorMoreno Guerra, Rubén Darío.-
    dc.date.accessioned2022-11-15T15:48:30Z-
    dc.date.available2020-09-18-
    dc.date.available2022-11-15T15:48:30Z-
    dc.date.issued2020-
    dc.identifier.citationMoreno Guerra, R. D. (2020). Plataforma robótica móvil con retroalimentación háptica [Trabajo de Grado Pregrado, Universidad de Pamplona]. Repositorio Hulago Universidad de Pamplona. http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/4444es_CO
    dc.identifier.urihttp://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/4444-
    dc.descriptionEste trabajo hace parte de un proyecto macro denominado “teleoperación mediante control compartido humano-robot vía señales hápticas y neuroseñales” el cual se está llevado a cabo en la Universidad de Pamplona por parte de algunos docentes del programa de Ingeniería Mecatrónica. La idea general de este proyecto es recrear un experimento de forma física, el cual se había planteado previamente en una simulación realizada en la plataforma virtual V-REP. La simulación previa consistía en teleoperar un robot Pioneer en un entorno estructurado, utilizando el dispositivo Novint Falcon de 3 grados de libertad, por medio del cual se establecen las asistencias de retroalimentación háptica. Debido a los grandes costos del robot Pioneer, en este proyecto se pretende la construcción de una plataforma robótica de bajo costo, que permita la detección de obstáculos a su alrededor. Esta plataforma será controlada por medio del dispositivo háptico. La plataforma requerirá de un módulo de comunicación para recibir las referencias del teleoperador y a su vez enviar la información de los sensores encargados de detectar los obstáculos al controlador para general la asistencia háptica correspondiente. Adicionalmente, la localización del robot dentro del entorno estructurado, se realizara por medio de un sistema de visión artificiales_CO
    dc.description.abstractEl autor no proporciona la información sobre este ítem.es_CO
    dc.format.extent126es_CO
    dc.format.mimetypeapplication/pdfes_CO
    dc.language.isoeses_CO
    dc.publisherUniversidad de Pamplona- Facultad de Ingenierías y Arquitectura.es_CO
    dc.subjectPlataforma robótica.es_CO
    dc.subjectDispositivo háptico.es_CO
    dc.subjectSensores.es_CO
    dc.subjectEvasión de obstáculos.es_CO
    dc.titlePlataforma robótica móvil con retroalimentación háptica.es_CO
    dc.typehttp://purl.org/coar/resource_type/c_7a1fes_CO
    dc.date.accepted2020-06-18-
    dc.relation.references3WD Triangular 100mm omni wheel mobile robotics car. (2018). Retrieved August 7, 2018, from http://www.microrobo.com/3wd-triangular-100mm-omni-wheel mobile-robotics-car-c003.htmles_CO
    dc.relation.referencesa X-12. (2006). Communication.es_CO
    dc.relation.referencesAckerman, E. (2013). Adept Introduces Lynx Autonomous Mobile Platform - IEEE Spectrum. Retrieved from https://spectrum.ieee.org/automaton/robotics/industrial-robots/adept introduces-lynx-autonomous-mobile-platformes_CO
    dc.relation.referencesAdept. (2011). Pioneer 3-DX. Adept Mobile Robots, 2.es_CO
    dc.relation.referencesAJNA, R., & HERSAN, T. (2019). The Dynamixel AX-12A Servos. Retrieved August 19, 2019, from https://memememememememe.me/post/the dynamixel-ax-12a-servoses_CO
    dc.relation.referencesAndreu, V., Torronteras, A., & Mora, F. (2015). Trabajo final de carrera.es_CO
    dc.relation.referencesArbotiX-M Robocontroller. (2014). Retrieved May 28, 2019, from https://www.trossenrobotics.com/p/arbotix-robot-controller.aspxes_CO
    dc.relation.referencesAX-12A. (2017). Retrieved August 19, 2019, from http://emanual.robotis.com/docs/en/dxl/ax/ax-12a/es_CO
    dc.relation.referencesBogado Torres, J. M. (2007). Control bilateral de Robots. 204.es_CO
    dc.relation.referencesBrooks, D. J., Tsui, K. M., Lunderville, M., & Yanco, H. (2015). Methods for Evaluating and Comparing the Use of Haptic Feedback in Human-Robot Interaction with Ground-Based Mobile Robots. Journal of Human-Robot Interaction, 4(1), 3. https://doi.org/10.5898/JHRI.4.1.Brookses_CO
    dc.relation.referencesCategory:Physical layer protocols - Wikipedia. (2018). Retrieved January 1, 2020, from https://en.wikipedia.org/wiki/Category:Physical_layer_protocolses_CO
    dc.relation.referencesCM-5 - ROBOTIS. (2015). Retrieved December 31, 2019, from http://www.robotis.us/cm-5/es_CO
    dc.relation.referencesCommunication Protocols in Embedded Systems - Types, Advantages & Disadvantages. (2018). Retrieved January 1, 2020, from https://electricalfundablog.com/communication-protocols-embedded-systems/es_CO
    dc.relation.referencesCompuerta lógica de tres estados - Ingeniería Mecafenix. (n.d.). Retrieved January 8, 2020, from https://www.ingmecafenix.com/electronica/compuerta-tres estados/es_CO
    dc.relation.referencesCoppeliaSim. (2017). Child scripts. Retrieved June 11, 2020, from https://www.coppeliarobotics.com/helpFiles/en/childScripts.htmes_CO
    dc.relation.referencesdriving-robotic-dynamixel-servos @ www.arduinotutorialonline.com. (2019). Retrieved from http://www.arduinotutorialonline.com/2018/01/driving-robotic dynamixel-servos.htmles_CO
    dc.relation.referencesDriving Robotis Dynamixel Servos with Arduino - Robosoup. (2016). Retrieved June 3, 2019, from https://www.robosoup.com/2014/03/driving-robotis dynamixel-servos-with-arduino.htmes_CO
    dc.relation.referencesDudek, G., & Jenkin, M. (2016). Robotics Handbook. In Springer Handbook of Robotics. https://doi.org/978-3-319-32552-1es_CO
    dc.relation.referencesDYNAMIXEL Shield | SANDOROBOTICS. (2018). Retrieved December 31, 2019, from https://sandorobotics.com/producto/902-0146-000/es_CO
    dc.relation.referencesElectronic Communication Protocols Basics and Types with Functionality. (2017). Retrieved January 3, 2020, from https://www.elprocus.com/communication protocols/es_CO
    dc.relation.referencesFong, T., & Thorpe, C. (2001). Vehicle teleoperation interfaces. Autonomous Robots, 11(1), 9–18. https://doi.org/10.1023/A:1011295826834es_CO
    dc.relation.referencesGiuliano, G. (2009). Diseño Madera. Retrieved January 14, 2020, from https://es.slideshare.net/cjvial/diseo-maderaes_CO
    dc.relation.referencesGreicius, T. (2015). Mars Science Laboratory - Curiosity. Retrieved from https://www.nasa.gov/mission_pages/msl/index.htmles_CO
    dc.relation.referencesGross, H.-M., Meyer, S., Scheidig, A., Eisenbach, M., Mueller, S., Trinh, T. Q., … Fricke, C. (2017). Mobile robot companion for walking training of stroke patients in clinical post-stroke rehabilitation. 2017 IEEE International Conference on Robotics and Automation (ICRA), 1028–1035. https://doi.org/10.1109/ICRA.2017.7989124es_CO
    dc.relation.referencesGunawan, A. A. S., William, Hartanto, B., Mili, A., Budiharto, W., Salman, A. G., & Chandra, N. (2017). Development of Affordable and Powerful Swarm Mobile Robot Based on Smartphone Android and IOIO board. Procedia Computer Science, 116, 342–350. https://doi.org/10.1016/j.procs.2017.10.057es_CO
    dc.relation.referencesGuo, W., Jiang, S., Zong, C., & Gao, X. (2014). Development of a transformable wheel-track mobile robot and obstacle-crossing mode selection. 2014 IEEE International Conference on Mechatronics and Automation, IEEE ICMA 2014, 1703–1708. https://doi.org/10.1109/ICMA.2014.6885957es_CO
    dc.relation.referencesHandson Technology. (2017). User Manual V1.2: ESP8266 NodeMCU WiFi Devkit. Handson Technology, 1–22. Retrieved from http://www.handsontec.com/pdf_learn/esp8266-V10.pdfes_CO
    dc.relation.referencesHarvest Automation. (2008). Harvest Automation | Mobile Autonomous Robots for Agriculture. Retrieved August 10, 2018, from https://www.public.harvestai.com/es_CO
    dc.relation.referencesI2C | Aprendiendo Arduino. (2019). Retrieved January 7, 2020, from https://aprendiendoarduino.wordpress.com/2017/07/09/i2c/es_CO
    dc.relation.referencesiRobot. (2017). iRobot 510 PackBot Multi-Mission Robot - Army Technology. Retrieved August 10, 2018, from https://www.army technology.com/projects/irobot-510-packbot-multi-mission-robot/es_CO
    dc.relation.referencesIsogawa, Y. (2017). LEGO Mindstorm mecanum wheel vehicles by Yoshihito Isogawa | The Kid Should See This. Retrieved August 13, 2018, from http://thekidshouldseethis.com/post/lego-mindstorm-mecanum-wheel-vehicles by-yoshihito-isogawes_CO
    dc.relation.referencesKaliński, K. J., & Mazur, M. (2016). Optimal control of 2-wheeled mobile robot at energy performance index. Mechanical Systems and Signal Processing, 70– 71, 373–386. https://doi.org/10.1016/j.ymssp.2015.09.047es_CO
    dc.relation.referencesKit Chasis con Motores 2WD miniQ - VISTRONICA SAS. (2018). Retrieved August 7, 2018, from https://www.vistronica.com/robotica/robot/kit-chasis-con motores-2wd-miniq-detaes_CO
    dc.relation.referencesKit Robot MiniQ 2WD v2.0 - VISTRONICA SAS. (2018). Retrieved August 7, 2018, from https://www.vistronica.com/robotica/robot/kit-robot-miniq-2wd-v2-0- detail.htmles_CO
    dc.relation.referencesKlančar, G., Zdešar, A., Blažič, S., & Škrjanc, I. (2017). Wheeled Mobile Robotics.es_CO
    dc.relation.referencesKonduri, S., Cobos Torres, E. O., & Pagilla, P. R. (2014). Effect of wheel slip in the coordination of wheeled mobile robots. In IFAC Proceedings Volumes (IFAC PapersOnline) (Vol. 19). https://doi.org/10.3182/20140824-6-ZA-1003.0271es_CO
    dc.relation.referencesKuchenbecker, K. J., Fiene, J., & Niemeyer, G. (2006). Improving contact realism through event-based haptic feedback. IEEE Transactions on Visualization and Computer Graphics, 12(2), 219–229. https://doi.org/10.1109/TVCG.2006.32es_CO
    dc.relation.referencesKuka Robotics. (2014). Weblet Importer. Retrieved August 7, 2018, from 2014-01- 06 website: https://www.eu-robotics.net/sparc/success-stories/enabling researchers-to-innovate-in-small-scale-for-the-factory-of-the future.html?changelang=2es_CO
    dc.relation.referencesLe, K. D., Nguyen, H. D., Ranmuthugala, D., & Forrest, A. (2016). Artificial potential field for remotely operated vehicle haptic control in dynamic environments. Proceedings of the Institution of Mechanical Engineers. Part I: Journal of Systems and Control Engineering, 230(9), 962–977. https://doi.org/10.1177/0959651816660484es_CO
    dc.relation.referencesLi, H., & Savkin, A. V. (2018). An algorithm for safe navigation of mobile robots by a sensor network in dynamic cluttered industrial environments. Robotics and Computer-Integrated Manufacturing, 54(March 2017), 65–82. https://doi.org/10.1016/j.rcim.2018.05.008es_CO
    dc.relation.referencesLibrerías — documentación de ESP8266 Arduino Core - 2.4.0. (2019). Retrieved January 7, 2020, from https://esp8266-arduino spanish.readthedocs.io/es/latest/libraries.htmles_CO
    dc.relation.referencesLuo, Z., Shang, J., Wei, G., & Ren, L. (2018). A reconfigurable hybrid wheel-track mobile robot based on Watt II six-bar linkage. Mechanism and Machine Theory, 128, 16–32. https://doi.org/10.1016/j.mechmachtheory.2018.04.020es_CO
    dc.relation.referencesMakeBlock Robotics. (n.d.). How to Make an All-direction Vehicle With Mecanum Wheels: 8 Steps (with Pictures). Retrieved August 7, 2018, from 2015-29-09 website: https://www.instructables.com/id/All-direction-Vehicle-with-Mecanum Wheeles_CO
    dc.relation.referencesMalu, S. K., & Majumdar, J. (2014). Kinematics, Localization and Control of Differential Drive Mobile Robot. Global Journal of Researches in Engineering, 14(1), 1–8.es_CO
    dc.relation.referencesMarcano Gamero, C. R. (2008). Interfaces para Aplicaciones de Telerrobóticas y de Teleoperación. 118.es_CO
    dc.relation.referencesMartinez, E., & Calil, C. (2002). RESISTENCIA MECANICA DE LOS TABLEROS DE DENSIDAD MEDIA: PARTE 1: RESISTENCIA A LA TRACCION PARALELA A LA SUPERFICIE. Retrieved January 10, 2020, from https://scielo.conicyt.cl/scielo.php?script=sci_arttext&pid=S0718- 221X2002000200008es_CO
    dc.relation.referencesMecanum Wheel vehicle | 3D CAD Model Library | GrabCAD. (2017). Retrieved July 3, 2019, from https://grabcad.com/library/mecanum-wheel-vehicle-1es_CO
    dc.relation.referencesMedium Density Fiberboard (MDF) :: MakeItFrom.com. (2018). Retrieved January 15, 2020, from https://www.makeitfrom.com/material-properties/Medium Density-Fiberboares_CO
    dc.relation.referencesMicroautomacion. (2018). Automatización Y Control. https://doi.org/10.0.0.0es_CO
    dc.relation.referencesMicroelectronics, S. (2018). VL53L0X World ’ s smallest Time-of-Flight ranging and gesture detection. (April), 40.es_CO
    dc.relation.referencesMORCILLO MARTÍNEZ, L. (2018). Sistema de detección de obstáculos para drones basado en sensor láser. Retrieved from https://riunet.upv.es:443/handle/10251/105633es_CO
    dc.relation.referencesNexus, R. (2016). (4 inch) 100mm Mecanum Wheel Left /Bearing Rollers14094L | NEXUS Robot. Retrieved August 29, 2018, from http://www.nexusrobot.com/product/4-inch-100mm-mecanum-wheel-left bearing-rollers14094l.htmes_CO
    dc.relation.referencesNguyen, B.-H., & Ryu, J.-H. (2010). Design of a master device for the teleoperation of wheeled and tracked vehicles. Control Automation and Systems (ICCAS), 2010 International Conference On, 1643–1648.es_CO
    dc.relation.referencesNicolau, R. (2018). Omnidirectional scanner using a time of flight sensor by. (February)es_CO
    dc.relation.referencesNu, E. (2014). Teleoperación [ de robots ]: técnicas , aplicaciones , entorno sensorial y teleoperación inteligente Teleoperación : técnicas , aplicaciones , entorno sensorial y teleoperación inteligente Emmanuel Nuño Ortega , Luis Basañez Villaluenga IOC-DT-P-2004-05 A. (May).es_CO
    dc.relation.referencesOlimpiu, M., Mândru, D., Ardelean, I., & Ple, A. (2014). Design and Development of an Aut onomous Directional Mobile Rob bot with h Mecanum Wheels. Design and Development of an Aut Onomous Omni-Directional Mobile Ro Bot with Mecanum Wheels, 1–6es_CO
    dc.relation.referencesOllero, A. (2001). Modelos cinematicos de robots. In MARCOMBO (Ed.), Robotica Manipuladores y robots moviles. Barcelona (España).es_CO
    dc.relation.referencesOrtigoza, R. (2007). Robots Móviles: Evolución y Estado del Arte. Polibits.Gelbukh.Com, 12–17. Retrieved from http://polibits.gelbukh.com/2007_35/Robots Moviles_ Evolucion y Estado del Arte.pdfes_CO
    dc.relation.referencesPastor, J. (2019). Windows 10 ya funciona en la Raspberry Pi 3: dos proyectos independientes lo hacen posible. Retrieved September 7, 2019, from https://www.xataka.com/ordenadores/windows-10-funciona-raspberry-pi-3- dos-proyectos-independientes-hacen-posiblees_CO
    dc.relation.referencesQiu, Q., Fan, Z., Meng, Z., Zhang, Q., Cong, Y., Li, B., … Zhao, C. (2018). Extended Ackerman Steering Principle for the coordinated movement control of a four wheel drive agricultural mobile robot. Computers and Electronics in Agriculture, 152(December 2017), 40–50. https://doi.org/10.1016/j.compag.2018.06.036es_CO
    dc.relation.referencesRobot móvil SUMMIT XL HL | Robotnik. (2017). Retrieved August 7, 2018, from https://www.robotnik.es/robots-moviles/summit-xl-hl/es_CO
    dc.relation.referencesRPLIDAR-A1 360°Laser Range Scanner _ Domestic Laser Range Scanner|SLAMTEC. (2018). Retrieved July 11, 2019, from http://www.slamtec.com/en/lidar/a1es_CO
    dc.relation.referencesSavage, J. (2019). Arduino y Biblioteca Dynamixel AX-12A. Retrieved December 31, 2019, from 2019 website: https://savageelectronics.com/blog/arduino biblioteca-dynamixees_CO
    dc.relation.referencesSempere, A. D., Serna-Leon, A., Gil, P., Puente, S., & Torres, F. (2015). Control and guidance of low-cost robots via gesture perception for monitoring activities in the home. Sensors (Switzerland), 15(12), 31268–31292. https://doi.org/10.3390/s151229853es_CO
    dc.relation.referencesShield - Dynamixel AX. (2017). Retrieved December 31, 2019, from http://tdrobotica.co/shield-dynamixel-ax/534.htmles_CO
    dc.relation.referencesSMARS modular robot by tristomietitoredeituit - Thingiverse. (2017). Retrieved August 7, 2018, from https://www.thingiverse.com/thing:2662828es_CO
    dc.relation.referencesSMP Robotics. (2009). Robot Guard | SMP Robotics - Autonomous mobile security systems - S5 Bot. Retrieved August 10, 2018, from https://smprobotics.com/application_autonomus_mobile_robots/robot-guard/es_CO
    dc.relation.referencesSparkfun. (2018). Getting Started with the Raspberry Pi Zero Wireless - learn.sparkfun.com. Retrieved August 29, 2019, from https://learn.sparkfun.com/tutorials/getting-started-with-the-raspberry-pi-zero wireless/alles_CO
    dc.relation.referencesSTMicroelectronics. (2016). UM2039 User Manual World smallest Time-of-Flight ranging and gesture detection sensor Application Programming Interface. (June), 26. Retrieved from www.st.comes_CO
    dc.relation.referencesTarjeta interfaz Dynamixel. (2019). Retrieved December 31, 2019, from https://www.savageelectronics.com/blog/tarjeta-interfaz-dynamixeles_CO
    dc.relation.referencesTranscend Robotics. (2015). GROUND DRONE PROJECT: A VERSATILE MOBILE ROBOTIC PLATFORM by Transcend Robotics — Kickstarter. Retrieved August 10, 2018, from https://www.kickstarter.com/projects/1145776805/ground-drone-project-a versatile-mobile-robotic-pl?ref=categoryes_CO
    dc.relation.referencesTrubin, J. (2013). Telepresence & Teleoperation & Telerobotics: Experiments, Studies and Background Information. Retrieved August 14, 2018, from https://www.juliantrubin.com/encyclopedia/electronics/telepresence.htmles_CO
    dc.relation.referencesWang, T., Wu, Y., Liang, J., Han, C., Chen, J., & Zhao, Q. (2015). Analysis and experimental kinematics of a skid-steering wheeled robot based on a laser scanner sensor. Sensors (Switzerland), 15(5), 9681–9702. https://doi.org/10.3390/s150509681es_CO
    dc.relation.referencesWheels for a course stable selfpropelling vehicle movable in any desired direction on the ground or some other base. (1972). Retrieved from https://patents.google.com/patent/US3876255es_CO
    dc.rights.accessrightshttp://purl.org/coar/access_right/c_abf2es_CO
    dc.type.coarversionhttp://purl.org/coar/resource_type/c_2df8fbb1es_CO
    Appears in Collections:Ingeniería Mecatrónica

    Files in This Item:
    File Description SizeFormat 
    Moreno_2020_TG.pdfMoreno_2020_TG6,31 MBAdobe PDFView/Open


    Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.