• Repositorio Institucional Universidad de Pamplona
  • Trabajos de pregrado y especialización
  • Facultad de Ingenierías y Arquitectura
  • Ingeniería Mecatrónica
  • Por favor, use este identificador para citar o enlazar este ítem: http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/4354
    Registro completo de metadatos
    Campo DC Valor Lengua/Idioma
    dc.contributor.authorValencia Ruiz, Luis Fernando.-
    dc.date.accessioned2022-11-11T17:24:18Z-
    dc.date.available2020-09-16-
    dc.date.available2022-11-11T17:24:18Z-
    dc.date.issued2020-
    dc.identifier.citationValencia Ruiz, L. F. (2020). Control servo visual de un sistema multirobots [Trabajo de Grado Pregrado, Universidad de Pamplona]. Repositorio Hulago Universidad de Pamplona. http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/4354es_CO
    dc.identifier.urihttp://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/4354-
    dc.descriptionEn este trabajo se realizó un control servo visual de un sistema multirobots, en el que se implementó una estrategia de juego para dirigir tres robots diferenciales sobre un ambiente estructurado. Se tomó una plataforma robótica libre de bajo costo a la cual se le realizaron modificaciones, añadiéndole características necesarias que le permitan patear una pelota dentro de una cancha con dimensiones de 120cm x 180cm. Se hace la identificación de cada robot, pelota y área de trabajo por medio del tratamiento digital imágenes, se trabajó este proyecto bajo el sistema servo visual basado en imágenes (IBVS). De las imágenes adquiridas por medio de una cámara, se extraen las características visuales, que identifican a cada objeto dentro del área de trabajo, calculando cada posición y orientación de los robots dentro del sistema y con respecto al objetivo del juego que es la pelota. A la cancha se le realiza una homografía para alinear la imagen entrante. La posición y orientación es enviada a cada robot mediante la implementación de un sistema de comunicación WiFi entre el ordenador y los robots, a través del protocolo HTTP con transporte de datos TCP/IP. Estas señales de control son analizadas internamente por cada robot ejecutando un movimiento relacionado a la señal de control entrante.es_CO
    dc.description.abstractIn this work was carried out with a visual servo control of a multi-robot system, in which a game strategy was implemented to direct three differential robots over a structured environment. A free and low-cost robotic platform was used, and some modifications were made to it, adding necessary features that allow it to kick a ball into a court with dimensions of 120cm x 180cm. The identification of each robot, ball and work area was by means of digital image processing, this project was worked under the visual servo system, based on images (IBVS). The images were acquired by means of a camera, from which the visual characteristics were extracted, that identify each object within the work area, calculating each position and orientation of the robots within the system and with respect to the objective of the game which is the ball. A homography was performed on the court in order to align the incoming image. The position and orientation are sent to each robot through the implementation of a WiFi communication system between the computer and the robots, through the HTTP protocol with TCP / IP data transport. These control signals are analyzed internally by each robot executing a movement related to the incoming control signal.es_CO
    dc.format.extent94es_CO
    dc.format.mimetypeapplication/pdfes_CO
    dc.language.isoeses_CO
    dc.publisherUniversidad de Pamplona- Facultad de Ingenierías y Arquitectura.es_CO
    dc.subjectControl servo visual.es_CO
    dc.subjectRobot diferencial.es_CO
    dc.subjectVisión artificial.es_CO
    dc.subjectTransformación de homografía.es_CO
    dc.titleControl servo visual de un sistema multirobots.es_CO
    dc.typehttp://purl.org/coar/resource_type/c_7a1fes_CO
    dc.date.accepted2020-06-16-
    dc.relation.referencesM. Allen, E. Westcoat, y L. Mears, “Optimal path planning for image based visual servoing”, Procedia Manuf., vol. 39, núm. 2019, pp. 325–333, 2019, doi: 10.1016/j.promfg.2020.01.364.es_CO
    dc.relation.referencesM. Laranjeira, C. Dune, y V. Hugel, “Catenary-based visual servoing for tether shape control between underwater vehicles”, Ocean Eng., vol. 200, núm. January, p. 107018, 2020, doi: 10.1016/j.oceaneng.2020.107018.es_CO
    dc.relation.referencesD. I. Kosmopoulos, “Robust Jacobian matrix estimation for image-based visual servoing”, Robot. Comput. Integr. Manuf., vol. 27, núm. 1, pp. 82–87, 2011, doi: 10.1016/j.rcim.2010.06.013.es_CO
    dc.relation.referencesA. H. Abdul Hafez, P. Mithun, V. V. Anurag, S. V. Shah, y K. M. Krishna, “Reactionless visual servoing of a multi-arm space robot combined with other manipulation tasks”, Rob. Auton. Syst., vol. 91, pp. 1–10, 2017, doi: 10.1016/j.robot.2016.12.010es_CO
    dc.relation.referencesA. Taherian, A. H. Mazinan, y M. Aliyari-Shoorehdeli, “Image-based visual servoing improvement through utilization of adaptive control gain and pseudo-inverse of the weighted mean of thees_CO
    dc.relation.referencesX. Song y F. Miaomiao, “CLFs-based optimization control for a class of constrained visual servoing systems”, ISA Trans., vol. 67, pp. 507–514, 2017, doi: 10.1016/j.isatra.2016.11.018.es_CO
    dc.relation.referencesC. Je y H. M. Park, “Homographic p-norms: Metrics of homographic image transformation”, Signal Process. Image Commun., vol. 39, pp. 185–201, 2015, doi: 10.1016/j.image.2015.08.009.es_CO
    dc.relation.referencesA. Amirkhani, M. Shirzadeh, M. H. Shojaeefard, y A. Abraham, “Controlling wheeled mobile robot considering the effects of uncertainty with neuro-fuzzy cognitive map”, ISA Trans., núm. xxxx, 2020, doi: 10.1016/j.isatra.2019.12.011.es_CO
    dc.relation.referencesP. Sudhakara, V. Ganapathy, B. Priyadharshini, y K. Sundaran, “Obstacle Avoidance and Navigation Planning of a Wheeled Mobile Robot using Amended Artificial Potential Field Method”, Procedia Comput. Sci., vol. 133, pp. 998–1004, 2018, doi: 10.1016/j.procs.2018.07.076.es_CO
    dc.relation.referencesM. Velasco-Villa, E. Aranda-Bricaire, H. Rodríguez-Cortés, y J. González-Sierra, “Trajectory tracking for awheeled mobile robot using a vision based positioning system and an attitude observer”, Eur. J. Control, vol. 18, núm. 4, pp. 348–355, 2012, doi: 10.3166/EJC.18.348-355es_CO
    dc.relation.referencesM. Haddad, T. Chettibi, S. Hanchi, y H. E. Lehtihet, “A random-profile approach for trajectory planning of wheeled mobile robots”, Eur. J. Mech. A/Solids, vol. 26, núm. 3, pp. 519–540, 2007, doi: 10.1016/j.euromechsol.2006.10.001.es_CO
    dc.relation.referencesZ. F. Li, J. T. Li, X. F. Li, Y. J. Yang, J. Xiao, y B. W. Xu, “Intelligent Tracking Obstacle Avoidance Wheel Robot Based on Arduino”, Procedia Comput. Sci., vol. 166, pp. 274–278, 2020, doi: 10.1016/j.procs.2020.02.100.es_CO
    dc.relation.referencesJ. G. Guarnizo y M. Mellado, “Arquitectura Basada en Roles Aplicada en Equipos de Fútbol de Robots con Control Centralizado”, RIAI - Rev. Iberoam. Autom. e Inform. Ind., vol. 13, núm. 3, pp. 370–380, 2016, doi: 10.1016/j.riai.2016.05.005.es_CO
    dc.relation.referencesH. Shi, Z. Lin, S. Zhang, X. Li, y K. S. Hwang, “An adaptive decision-making method with fuzzy Bayesian reinforcement learning for robot soccer”, Inf. Sci. (Ny)., vol. 436–437, pp. 268–281, 2018, doi: 10.1016/j.ins.2018.01.032.es_CO
    dc.relation.referencesV. Svatoň, J. Martinovič, K. Slaninová, y T. Bureš, “Improving strategy in robot soccer game by sequence extraction”, Procedia Comput. Sci., vol. 35, núm. C, pp. 1445–1454, 2014, doi: 10.1016/j.procs.2014.08.204.es_CO
    dc.relation.referencesK. G. Jolly, K. P. Ravindran, R. Vijayakumar, y R. Sreerama Kumar, “Intelligent decision making in multi-agent robot soccer system through compounded artificial neural networks”, Rob. Auton. Syst., vol. 55, núm. 7, pp. 589–596, 2007, doi: 10.1016/j.robot.2006.12.011es_CO
    dc.relation.referencesE. R. M. Aleluya, A. D. Zamayla, y S. L. M. Tamula, “Decision-making system of soccer-playing robots using finite state machine based on skill hierarchy and path planning through Bezier polynomials”, Procedia Comput. Sci., vol. 135, pp. 230–237, 2018, doi: 10.1016/j.procs.2018.08.170.es_CO
    dc.relation.referencesG. Yang, “Research of strategy for RoboCup soccer robots competition”, Procedia Eng., vol. 15, pp. 79 649–654, 2011, doi: 10.1016/j.proeng.2011.08.121.es_CO
    dc.relation.referencesC. Hua, Y. Wang, y X. Guan, “Visual tracking control for an uncalibrated robot system with unknown camera parameters”, Robot. Comput. Integr. Manuf., vol. 30, núm. 1, pp. 19–24, 2014, doi: 10.1016/j.rcim.2013.06.002.es_CO
    dc.relation.referencesZ. Ma y J. Su, “Robust uncalibrated visual servoing control based on disturbance observer”, ISA Trans., vol. 59, pp. 193–204, 2015, doi: 10.1016/j.isatra.2015.07.003.es_CO
    dc.relation.referencesK. Ahlin, B. Joffe, A. P. Hu, G. McMurray, y N. Sadegh, “Autonomous Leaf Picking Using Deep Learning and Visual-Servoing”, IFAC-PapersOnLine, vol. 49, núm. 16, pp. 177–183, 2016, doi: 10.1016/j.ifacol.2016.10.033.es_CO
    dc.relation.referencesP. Muñoz-Benavent, L. Gracia, J. E. Solanes, A. Esparza, y J. Tornero, “Robust fulfillment of constraints in robot visual servoing”, Control Eng. Pract., vol. 71, núm. November 2017, pp. 79–95, 2018, doi: 10.1016/j.conengprac.2017.10.017es_CO
    dc.relation.referencesG. Allibert, M. D. Hua, S. Krupínski, y T. Hamel, “Pipeline following by visual servoing for Autonomous Underwater Vehicles”, Control Eng. Pract., vol. 82, núm. October 2018, pp. 151–160, 2019, doi: 10.1016/j.conengprac.2018.10.004.es_CO
    dc.relation.referencesY. Zhang, C. Hua, Y. Li, y X. Guan, “Adaptive neural networks-based visual servoing control for manipulator with visibility constraint and dead-zone input”, Neurocomputing, vol. 332, pp. 44–55, 2019, doi: 10.1016/j.neucom.2018.11.058.es_CO
    dc.rights.accessrightshttp://purl.org/coar/access_right/c_abf2es_CO
    dc.type.coarversionhttp://purl.org/coar/resource_type/c_2df8fbb1es_CO
    Aparece en las colecciones: Ingeniería Mecatrónica

    Ficheros en este ítem:
    Fichero Descripción Tamaño Formato  
    Valencia_2020_TG.pdfValencia_2020_TG3,19 MBAdobe PDFVisualizar/Abrir


    Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.