Por favor, use este identificador para citar o enlazar este ítem:
http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/4354
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | Valencia Ruiz, Luis Fernando. | - |
dc.date.accessioned | 2022-11-11T17:24:18Z | - |
dc.date.available | 2020-09-16 | - |
dc.date.available | 2022-11-11T17:24:18Z | - |
dc.date.issued | 2020 | - |
dc.identifier.citation | Valencia Ruiz, L. F. (2020). Control servo visual de un sistema multirobots [Trabajo de Grado Pregrado, Universidad de Pamplona]. Repositorio Hulago Universidad de Pamplona. http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/4354 | es_CO |
dc.identifier.uri | http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/4354 | - |
dc.description | En este trabajo se realizó un control servo visual de un sistema multirobots, en el que se implementó una estrategia de juego para dirigir tres robots diferenciales sobre un ambiente estructurado. Se tomó una plataforma robótica libre de bajo costo a la cual se le realizaron modificaciones, añadiéndole características necesarias que le permitan patear una pelota dentro de una cancha con dimensiones de 120cm x 180cm. Se hace la identificación de cada robot, pelota y área de trabajo por medio del tratamiento digital imágenes, se trabajó este proyecto bajo el sistema servo visual basado en imágenes (IBVS). De las imágenes adquiridas por medio de una cámara, se extraen las características visuales, que identifican a cada objeto dentro del área de trabajo, calculando cada posición y orientación de los robots dentro del sistema y con respecto al objetivo del juego que es la pelota. A la cancha se le realiza una homografía para alinear la imagen entrante. La posición y orientación es enviada a cada robot mediante la implementación de un sistema de comunicación WiFi entre el ordenador y los robots, a través del protocolo HTTP con transporte de datos TCP/IP. Estas señales de control son analizadas internamente por cada robot ejecutando un movimiento relacionado a la señal de control entrante. | es_CO |
dc.description.abstract | In this work was carried out with a visual servo control of a multi-robot system, in which a game strategy was implemented to direct three differential robots over a structured environment. A free and low-cost robotic platform was used, and some modifications were made to it, adding necessary features that allow it to kick a ball into a court with dimensions of 120cm x 180cm. The identification of each robot, ball and work area was by means of digital image processing, this project was worked under the visual servo system, based on images (IBVS). The images were acquired by means of a camera, from which the visual characteristics were extracted, that identify each object within the work area, calculating each position and orientation of the robots within the system and with respect to the objective of the game which is the ball. A homography was performed on the court in order to align the incoming image. The position and orientation are sent to each robot through the implementation of a WiFi communication system between the computer and the robots, through the HTTP protocol with TCP / IP data transport. These control signals are analyzed internally by each robot executing a movement related to the incoming control signal. | es_CO |
dc.format.extent | 94 | es_CO |
dc.format.mimetype | application/pdf | es_CO |
dc.language.iso | es | es_CO |
dc.publisher | Universidad de Pamplona- Facultad de Ingenierías y Arquitectura. | es_CO |
dc.subject | Control servo visual. | es_CO |
dc.subject | Robot diferencial. | es_CO |
dc.subject | Visión artificial. | es_CO |
dc.subject | Transformación de homografía. | es_CO |
dc.title | Control servo visual de un sistema multirobots. | es_CO |
dc.type | http://purl.org/coar/resource_type/c_7a1f | es_CO |
dc.date.accepted | 2020-06-16 | - |
dc.relation.references | M. Allen, E. Westcoat, y L. Mears, “Optimal path planning for image based visual servoing”, Procedia Manuf., vol. 39, núm. 2019, pp. 325–333, 2019, doi: 10.1016/j.promfg.2020.01.364. | es_CO |
dc.relation.references | M. Laranjeira, C. Dune, y V. Hugel, “Catenary-based visual servoing for tether shape control between underwater vehicles”, Ocean Eng., vol. 200, núm. January, p. 107018, 2020, doi: 10.1016/j.oceaneng.2020.107018. | es_CO |
dc.relation.references | D. I. Kosmopoulos, “Robust Jacobian matrix estimation for image-based visual servoing”, Robot. Comput. Integr. Manuf., vol. 27, núm. 1, pp. 82–87, 2011, doi: 10.1016/j.rcim.2010.06.013. | es_CO |
dc.relation.references | A. H. Abdul Hafez, P. Mithun, V. V. Anurag, S. V. Shah, y K. M. Krishna, “Reactionless visual servoing of a multi-arm space robot combined with other manipulation tasks”, Rob. Auton. Syst., vol. 91, pp. 1–10, 2017, doi: 10.1016/j.robot.2016.12.010 | es_CO |
dc.relation.references | A. Taherian, A. H. Mazinan, y M. Aliyari-Shoorehdeli, “Image-based visual servoing improvement through utilization of adaptive control gain and pseudo-inverse of the weighted mean of the | es_CO |
dc.relation.references | X. Song y F. Miaomiao, “CLFs-based optimization control for a class of constrained visual servoing systems”, ISA Trans., vol. 67, pp. 507–514, 2017, doi: 10.1016/j.isatra.2016.11.018. | es_CO |
dc.relation.references | C. Je y H. M. Park, “Homographic p-norms: Metrics of homographic image transformation”, Signal Process. Image Commun., vol. 39, pp. 185–201, 2015, doi: 10.1016/j.image.2015.08.009. | es_CO |
dc.relation.references | A. Amirkhani, M. Shirzadeh, M. H. Shojaeefard, y A. Abraham, “Controlling wheeled mobile robot considering the effects of uncertainty with neuro-fuzzy cognitive map”, ISA Trans., núm. xxxx, 2020, doi: 10.1016/j.isatra.2019.12.011. | es_CO |
dc.relation.references | P. Sudhakara, V. Ganapathy, B. Priyadharshini, y K. Sundaran, “Obstacle Avoidance and Navigation Planning of a Wheeled Mobile Robot using Amended Artificial Potential Field Method”, Procedia Comput. Sci., vol. 133, pp. 998–1004, 2018, doi: 10.1016/j.procs.2018.07.076. | es_CO |
dc.relation.references | M. Velasco-Villa, E. Aranda-Bricaire, H. Rodríguez-Cortés, y J. González-Sierra, “Trajectory tracking for awheeled mobile robot using a vision based positioning system and an attitude observer”, Eur. J. Control, vol. 18, núm. 4, pp. 348–355, 2012, doi: 10.3166/EJC.18.348-355 | es_CO |
dc.relation.references | M. Haddad, T. Chettibi, S. Hanchi, y H. E. Lehtihet, “A random-profile approach for trajectory planning of wheeled mobile robots”, Eur. J. Mech. A/Solids, vol. 26, núm. 3, pp. 519–540, 2007, doi: 10.1016/j.euromechsol.2006.10.001. | es_CO |
dc.relation.references | Z. F. Li, J. T. Li, X. F. Li, Y. J. Yang, J. Xiao, y B. W. Xu, “Intelligent Tracking Obstacle Avoidance Wheel Robot Based on Arduino”, Procedia Comput. Sci., vol. 166, pp. 274–278, 2020, doi: 10.1016/j.procs.2020.02.100. | es_CO |
dc.relation.references | J. G. Guarnizo y M. Mellado, “Arquitectura Basada en Roles Aplicada en Equipos de Fútbol de Robots con Control Centralizado”, RIAI - Rev. Iberoam. Autom. e Inform. Ind., vol. 13, núm. 3, pp. 370–380, 2016, doi: 10.1016/j.riai.2016.05.005. | es_CO |
dc.relation.references | H. Shi, Z. Lin, S. Zhang, X. Li, y K. S. Hwang, “An adaptive decision-making method with fuzzy Bayesian reinforcement learning for robot soccer”, Inf. Sci. (Ny)., vol. 436–437, pp. 268–281, 2018, doi: 10.1016/j.ins.2018.01.032. | es_CO |
dc.relation.references | V. Svatoň, J. Martinovič, K. Slaninová, y T. Bureš, “Improving strategy in robot soccer game by sequence extraction”, Procedia Comput. Sci., vol. 35, núm. C, pp. 1445–1454, 2014, doi: 10.1016/j.procs.2014.08.204. | es_CO |
dc.relation.references | K. G. Jolly, K. P. Ravindran, R. Vijayakumar, y R. Sreerama Kumar, “Intelligent decision making in multi-agent robot soccer system through compounded artificial neural networks”, Rob. Auton. Syst., vol. 55, núm. 7, pp. 589–596, 2007, doi: 10.1016/j.robot.2006.12.011 | es_CO |
dc.relation.references | E. R. M. Aleluya, A. D. Zamayla, y S. L. M. Tamula, “Decision-making system of soccer-playing robots using finite state machine based on skill hierarchy and path planning through Bezier polynomials”, Procedia Comput. Sci., vol. 135, pp. 230–237, 2018, doi: 10.1016/j.procs.2018.08.170. | es_CO |
dc.relation.references | G. Yang, “Research of strategy for RoboCup soccer robots competition”, Procedia Eng., vol. 15, pp. 79 649–654, 2011, doi: 10.1016/j.proeng.2011.08.121. | es_CO |
dc.relation.references | C. Hua, Y. Wang, y X. Guan, “Visual tracking control for an uncalibrated robot system with unknown camera parameters”, Robot. Comput. Integr. Manuf., vol. 30, núm. 1, pp. 19–24, 2014, doi: 10.1016/j.rcim.2013.06.002. | es_CO |
dc.relation.references | Z. Ma y J. Su, “Robust uncalibrated visual servoing control based on disturbance observer”, ISA Trans., vol. 59, pp. 193–204, 2015, doi: 10.1016/j.isatra.2015.07.003. | es_CO |
dc.relation.references | K. Ahlin, B. Joffe, A. P. Hu, G. McMurray, y N. Sadegh, “Autonomous Leaf Picking Using Deep Learning and Visual-Servoing”, IFAC-PapersOnLine, vol. 49, núm. 16, pp. 177–183, 2016, doi: 10.1016/j.ifacol.2016.10.033. | es_CO |
dc.relation.references | P. Muñoz-Benavent, L. Gracia, J. E. Solanes, A. Esparza, y J. Tornero, “Robust fulfillment of constraints in robot visual servoing”, Control Eng. Pract., vol. 71, núm. November 2017, pp. 79–95, 2018, doi: 10.1016/j.conengprac.2017.10.017 | es_CO |
dc.relation.references | G. Allibert, M. D. Hua, S. Krupínski, y T. Hamel, “Pipeline following by visual servoing for Autonomous Underwater Vehicles”, Control Eng. Pract., vol. 82, núm. October 2018, pp. 151–160, 2019, doi: 10.1016/j.conengprac.2018.10.004. | es_CO |
dc.relation.references | Y. Zhang, C. Hua, Y. Li, y X. Guan, “Adaptive neural networks-based visual servoing control for manipulator with visibility constraint and dead-zone input”, Neurocomputing, vol. 332, pp. 44–55, 2019, doi: 10.1016/j.neucom.2018.11.058. | es_CO |
dc.rights.accessrights | http://purl.org/coar/access_right/c_abf2 | es_CO |
dc.type.coarversion | http://purl.org/coar/resource_type/c_2df8fbb1 | es_CO |
Aparece en las colecciones: | Ingeniería Mecatrónica |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
Valencia_2020_TG.pdf | Valencia_2020_TG | 3,19 MB | Adobe PDF | Visualizar/Abrir |
Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.