• Repositorio Institucional Universidad de Pamplona
  • Trabajos de pregrado y especialización
  • Facultad de Ingenierías y Arquitectura
  • Ingeniería Mecánica
  • Por favor, use este identificador para citar o enlazar este ítem: http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/4024
    Registro completo de metadatos
    Campo DC Valor Lengua/Idioma
    dc.contributor.authorMogollón Mogollón, Duvan Arley.-
    dc.date.accessioned2022-10-31T17:11:40Z-
    dc.date.available2020-03-19-
    dc.date.available2022-10-31T17:11:40Z-
    dc.date.issued2020-
    dc.identifier.citationMogollón Mogollón, D. A. (2019). Mejora del rendimiento del álabe de un aerogenerador de baja potencia y velocidad mediante dispositivos de control de capa límite [Trabajo de Grado Pregrado, Universidad de Pamplona]. Repositorio Hulago Universidad de Pamplona. http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/4024es_CO
    dc.identifier.urihttp://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/4024-
    dc.descriptionEste trabajo trata sobre el diseño y optimización del álabe de un aerogenerador de tres álabes de eje horizontal para baja velocidad y baja potencia. El diseño del álabe inicia con la selección de los perfiles aerodinámicos con mejor desempeño aerodinámico en el rango de números de Reynolds 9X104 mediante la utilización del software XFOIL Y XFLR5. El mejor desempeño aerodinámico lo determina la máxima relación entre sustentación y arrastre, la cual definirá el ángulo de ataque del viento sobre el álabe. Posteriormente, se determinan las características geométricas del álabe (cuerda y ángulo de giro) con una posterior optimización de los factores de inducción axial y de rotación. Una vez se defina la geometría del álabe se realiza el diseño CAD del álabe y del generador con el fin de evaluar su rendimiento a través del software Fluent de ANSYS. La optimización del álabe se realiza mediante la utilización de dispositivos de control de capa límite y teniendo como parámetro de optimización el coeficiente de potencia . Los resultados nos demuestran que el mejor dispositivo es la configuración contra-rotación triangular el cual da una mejora del 5% en el coeficiente de potencia.es_CO
    dc.description.abstractThis work is about the design and optimization of the blade of a three-blade horizontal axis wind turbine for low speed and low power. The design of the blade begins with the selection of aerodynamic profiles with better aerodynamic performance in the Reynolds 9X104 number range through the use of XFOIL and XFLR5 software. The best aerodynamic performance is determined by the maximum relationship between lift and drag, which will define the angle of attack of the wind on the blade. Subsequently, the geometric characteristics of the blade (rope and angle of rotation) are determined with a subsequent optimization of the axial induction and rotation factors. Once the blade geometry is defined, the CAD design of the blade and the generator is performed in order to evaluate its performance through ANSYS Fluent software. The optimization of the blade is carried out through the use of limit layer control devices and having the power coefficient as an optimization parameter. The results show us that the best device is the triangular counter-rotation configuration which gives a 5% improvement in the power coefficient.es_CO
    dc.format.extent80es_CO
    dc.format.mimetypeapplication/pdfes_CO
    dc.language.isoeses_CO
    dc.publisherUniversidad de Pamplona- Facultad de Ingenierías y Arquitectura.es_CO
    dc.subjectOptimización.es_CO
    dc.subjectCapa limite.es_CO
    dc.subjectAerogenerador.es_CO
    dc.subjectVótices.es_CO
    dc.subjectEficiencia.es_CO
    dc.titleMejora del rendimiento del álabe de un aerogenerador de baja potencia y velocidad mediante dispositivos de control de capa límite.es_CO
    dc.typehttp://purl.org/coar/resource_type/c_7a1fes_CO
    dc.date.accepted2019-12-19-
    dc.relation.references2019 ANSYS, Inc. “CFD Simulation | Fluids Simulation | ANSYS CFD.” https://www.ansys.com/products/fluids (October 27, 2019).es_CO
    dc.relation.referencesAbdelwaly, Mona, Hesham El-Batsh, and Magdy Bassily Hanna. 2019. “Numerical Study for the Flow Field and Power Augmentation in a Horizontal Axis Wind Turbine.” Sustainable Energy Technologies and Assessments 31: 245–53.es_CO
    dc.relation.referencesAramendia, Iñigo et al. 2017. “Flow Control Devices for Wind Turbines.” In , 629–55. http://link.springer.com/10.1007/978-3-319-49875-1_21 (May 21, 2019).es_CO
    dc.relation.referencesAtlassian Confluence 5.10.8. “Hoja de Turbina Eólica FSI (Parte 1) - Malla - SimCafe - Tablero de Instrumentos.” https://confluence.cornell.edu/display/SIMULATION/Wind+Turbine+Blade+FSI+%28Part+1%29 +-+Mesh (October 31, 2019).es_CO
    dc.relation.referencesBastianon, Ricardo a. 2008. “Cálculo Y Diseño Para Turbinas Eólicas.” : 48. http://ricardo.bastianon.googlepages.com.es_CO
    dc.relation.referencesBouhelal, Abdelhamid, Arezki Smaili, Ouahiba Guerri, and Christian Masson. 2018. “Comparison of BEM and Full Navier-Stokes CFD Methods for Prediction of Aerodynamics Performance of HAWT Rotors.” Proceedings of 2017 International Renewable and Sustainable Energy Conference, IRSEC 2017 (December 2018): 1–6.es_CO
    dc.relation.referencesBrussels, GWE Council - Global Wind Energy Council:, undefined Belgium, and undefined 2012. “Global Wind Report: Annual Market Update 2011.”es_CO
    dc.relation.referencesBUN-CA. 2002. Manuales Sobre Energía Renovable, Eólica.es_CO
    dc.relation.referencesCarlos Rodriguez vidal. 2015. Diseño Mecánico Con Solidworks 2015. https://books.google.es/books?id=_o2fDwAAQBAJ&printsec=frontcover&hl=es&source=gbs_ge_ summary_r&cad=0#v=onepage&q&f=false (October 27, 2019).es_CO
    dc.relation.referencesÇengel, Yunus A., and John M Cimbala. 2017. Fluid Mechanics A Fundamental Approach.es_CO
    dc.relation.referencesChow, Raymond, and C. P. Van Dam. 2006. “Unsteady Computational Investigations of Deploying Load Control Microtabs.” Collection of Technical Papers - 44th AIAA Aerospace Sciences Meeting 17(5): 12776–90.es_CO
    dc.relation.referencesChow, Raymond, and C. van Dam. 2011. “Inboard Stall and Separation Mitigation Techniques on Wind Turbine Rotors.” (January): 1–11.es_CO
    dc.relation.referencesvan Dam, C. 2000. “Active Load and Lift Enhancement Using MEM Traslational Tabs.” AIAA Journal.es_CO
    dc.relation.referencesDésiré Le Gouriérès. 1982. Wind Power Plants: Theory and Design. https://books.google.es/books?id=z0qkAgAAQBAJ&printsec=frontcover&hl=es&source=gbs_ge_ summary_r&cad=0#v=onepage&q&f=false (October 28, 2019).es_CO
    dc.relation.referencesEmrah Kulunk. 2008. “AERODYNAMICS OF WIND TURBINES Hearth Scan.” London Sterling.es_CO
    dc.relation.referencesGao, Linyue, Hui Zhang, Yongqian Liu, and Shuang Han. 2015. “Effects of Vortex Generators on a Blunt 69 Trailing-Edge Airfoil for Wind Turbines.” Renewable Energy 76: 303–11. https://www.sciencedirect.com/science/article/pii/S0960148114007587 (June 12, 2019).es_CO
    dc.relation.referencesGutierrez-Amo, Ruben, Unai Fernandez-Gamiz, Iñigo Errasti, and Ekaitz Zulueta. 2018. “Computational Modelling of Three Different Sub-Boundary Layer Vortex Generators on a Flat Plate.” Energies 11(11): 3107. http://www.mdpi.com/1996-1073/11/11/3107 (May 21, 2019).es_CO
    dc.relation.referencesHe, Jiao et al. 2019. “Multi-Body Dynamics Modeling and TMD Optimization Based on the Improved AFSA for Floating Wind Turbines.” Renewable Energy: 305–21.es_CO
    dc.relation.referencesHills, Richard Leslie. 1996. Power from Wind : A History of Windmill Technology. Cambridge University Press.es_CO
    dc.relation.referencesHowe, M. S. 1991. “Noise Produced by a Sawtooth Trailing Edge.” Journal of the Acoustical Society of America 90(1): 482–87.es_CO
    dc.relation.referencesHwangbo, Hoon et al. 2017. “Quantifying the Effect of Vortex Generator Installation on Wind Power Production: An Academia-Industry Case Study.” Renewable Energy 113: 1589–97. https://linkinghub.elsevier.com/retrieve/pii/S0960148117306213 (May 24, 2019).es_CO
    dc.relation.referencesJ. F. Manwell and J. G. 2009. Wind Energy Explained. http://www.ghbook.ir/index.php?name=فرهنگ و های رسانه نوین&option=com_dbook&task=readonline&book_id=13650&page=73&chkhashk=ED9C9491B4 &Itemid=218&lang=fa&tmpl=component.es_CO
    dc.relation.referencesJ. Xamán. 2015. Dinámica De Fluidos Computacional Para Ingenieros - J. Xamán - Google Libros. https://books.google.es/books?id=dwIDDAAAQBAJ&printsec=frontcover&hl=es&source=gbs_ge _summary_r&cad=0#v=onepage&q&f=false (November 7, 2019).es_CO
    dc.relation.referencesJuan, and Tizón Pulido. Seminario de Simulación Numérica En Sistemas de Propulsión . http://webserver.dmt.upm.es/zope/DMT/Members/jmtizon/libre-eleccion-1 (December 3, 2019).es_CO
    dc.relation.referencesKhaled, Mohamed, Mostafa M. Ibrahim, Hesham E. Abdel Hamed, and Ahmed F. AbdelGwad. 2019. “Investigation of a Small Horizontal–Axis Wind Turbine Performance with and without Winglet.” Energy 187: 115921.es_CO
    dc.relation.referencesLee, Hak Min, and Oh Joon Kwon. 2019. “Performance Improvement of Horizontal Axis Wind Turbines by Aerodynamic Shape Optimization Including Aeroealstic Deformation.” Renewable Energy.es_CO
    dc.relation.referencesLin, John C. 2002a. “Control de La Separación de La Capa Límite.” 38: 389–420.es_CO
    dc.relation.references2002b. “Review of Research on Low-Profile Vortex Generators to Control Boundary-Layer Separation.” Progress in Aerospace Sciences 38(4–5): 389–420. https://linkinghub.elsevier.com/retrieve/pii/S0376042102000106 (December 3, 2019).es_CO
    dc.relation.referencesMarten, D, and G Pechlivanoglou. 2010. “Integration of a WT Blade Design Tool in XFOIL/XFLR5.” In Proceedings of the DEWEK, , 1–4es_CO
    dc.relation.referencesMarten, D, and J Wendler. 2013. “QBLADE: An Open Source Tool for Design and Simulation of Horizontal and Vertical Axis Wind Turbines.” International Journal of Emerging Technology and Advanced Engineering 3(3): 264–69. http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:QBLADE+:+AN+OPEN+SOUR 70 CE+TOOL+FOR+DESIGN+AND+SIMULATION+OF+HORIZONTAL+AND+VERTICAL+AX IS+WIND+TURBINES#0.es_CO
    dc.relation.referencesMartínez-Filgueira, P. et al. 2017. “Parametric Study of Low-Profile Vortex Generators.” International Journal of Hydrogen Energy 42(28): 17700–712.es_CO
    dc.relation.referencesMiley, S.J. 1982. A CATALOG OF LOW REYNOLDS NUMBER AIRFOIL DATA FOR WIND TURBINE APPLICATIONS.es_CO
    dc.relation.referencesMises, Richard Von. 1997. MIT Department of Aeronautics and Astronautics Theory of Flight. http://web.mit.edu/16.00/www/aec/flight.html (October 23, 2019).es_CO
    dc.relation.referencesMolina, Kevin et al. 2018. “Modelado de La Interacción Fluido Estructura ( FSI ) Para El Diseño de Una Turbina Eólica HAWT To Cite This Version : HAL Id : Hal-01804294 Una Turbina Eólica HAWT Modeling of the Fluid Structure Interaction ( FSI ) for the Design of a HAWT Wind Turbine.”es_CO
    dc.relation.referencesMoreno, ramon piedrafita. Ingenieria-de-La-Automatizacion-Industrial-2-Ed.es_CO
    dc.relation.referencesMoriarty, P J. 2005. “AeroDyn Theory Manual.” (January)es_CO
    dc.relation.referencesNREL. “S833 Airfoil Shape.” https://wind.nrel.gov/airfoils/Shapes/S833_Shape.html (October 31, 2019).es_CO
    dc.relation.referencesOerlemans, Stefan, Murray Fisher, Thierry Maeder, and Klaus Kögler. 2009. “Reduction of Wind Turbine Noise Using Optimized Airfoils and Trailing-Eratdge Serions.” AIAA Journal 47(6): 1470–81.es_CO
    dc.relation.referencesPonta, Fernando L., Alejandro D. Otero, Lucas I. Lago, and Anurag Rajan. 2016. “Effects of Rotor Deformation in Wind-Turbine Performance: The Dynamic Rotor Deformation Blade Element Momentum Model (DRD-BEM).” Renewable Energy 92: 157–70.es_CO
    dc.relation.referencesRahimi, H. et al. 2018. “Evaluation of Different Methods for Determining the Angle of Attack on Wind Turbine Blades with CFD Results under Axial Inflow Conditions.” Renewable Energy 125: 866–76.es_CO
    dc.relation.referencesSaleem Zohaib, B.Sc. 2019. “Investigation of Passive Root Flaps on HAWT.”es_CO
    dc.relation.referencesSanz Hernán, Silvia. 2018. “Validación de Un Modelo de Turbulencia Simplificado Para La Caracterización Térmica de Edificios.” : 47–48.es_CO
    dc.relation.referencesSchubel, Peter J, and Richard J Crossley. 2012. “Wind Turbine Blade Design.” : 3425–49.es_CO
    dc.relation.referencesSingh, Ronit K., and M. Rafiuddin Ahmed. 2013. “Blade Design and Performance Testing of a Small Wind Turbine Rotor for Low Wind Speed Applications.” Renewable Energy 50: 812–19.es_CO
    dc.relation.referencesSuresh, A., and S. Rajakumar. 2019. “Design of Small Horizontal Axis Wind Turbine for Low Wind Speed Rural Applications.” Materials Today: Proceedings.es_CO
    dc.relation.referencesTroldborg, Niels, Niels N. Sørensen, Frederik Zahle, and Pierre-Elouan Réthoré. 2015. “Simulation of a MW Rotor Equipped with Vortex Generators Using CFD and an Actuator Shape Model.”es_CO
    dc.relation.referencesTroldborg, Niels, Frederik Zahle, and Niels N. Sørensen. 2016. “Simulations of Wind Turbine Rotor with Vortex Generators.” Journal of Physics: Conference Series 753(2).es_CO
    dc.relation.referencesUsha Rao, K., and V. V.N. Kishore. 2009. “Wind Power Technology Diffusion Analysis in Selected States of India.” Renewable Energy 34(4): 983–88.es_CO
    dc.relation.referencesWilson, Robert E. 1976. AERODYNAMIC PERFORMANCE OF WIND TURBINESes_CO
    dc.relation.referencesWiser, R, and M Bolinger. 2010. 2010 WIND TECHNOLOGIES MARKET REPORT. http://www.osti.gov/bridge (October 22, 2019).es_CO
    dc.relation.referencesWood, Richard M. 2002. “A Discussion of Aerodynamic Control Effectors (ACEs) for Unmanned Air Vehicles (UAVs).” 1st UAV Conference (May): 1–27.es_CO
    dc.relation.referencesWoodcroft, Bennett. 1851. Library of Congress, Washington, D.C. 20540 USA The Pneumatics of Hero of Alexandria, from the Original Greek.es_CO
    dc.relation.referencesWright, Andrew K., and D. H. Wood. 2004. “The Starting and Low Wind Speed Behaviour of a Small Horizontal Axis Wind Turbine.” Journal of Wind Engineering and Industrial Aerodynamics 92(14– 15): 1265–79.es_CO
    dc.relation.references“XFLR5.” http://www.xflr5.tech/xflr5.htm (October 27, 2019).es_CO
    dc.relation.referencesXue, Sidney et al. 2010. “Advanced Aerodynamic Modeling of Vortex Generators for Wind Turbine Applications.” European Wind Energy Conference and Exhibition 2010, EWEC 2010 5(January 2010): 3721–31.es_CO
    dc.relation.referencesZeng, Jun-Feng et al. 2019. “Phase Modulation of Acoustic Vortex Beam with Metasurfaces.” Physics Letters A 1: 1–5. https://linkinghub.elsevier.com/retrieve/pii/S0375960119304529.es_CO
    dc.rights.accessrightshttp://purl.org/coar/access_right/c_abf2es_CO
    dc.type.coarversionhttp://purl.org/coar/resource_type/c_2df8fbb1es_CO
    Aparece en las colecciones: Ingeniería Mecánica

    Ficheros en este ítem:
    Fichero Descripción Tamaño Formato  
    Mogollón_2019_TG.pdfMogollón_2019_TG4,57 MBAdobe PDFVisualizar/Abrir


    Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.