Por favor, use este identificador para citar o enlazar este ítem:
http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/4024
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | Mogollón Mogollón, Duvan Arley. | - |
dc.date.accessioned | 2022-10-31T17:11:40Z | - |
dc.date.available | 2020-03-19 | - |
dc.date.available | 2022-10-31T17:11:40Z | - |
dc.date.issued | 2020 | - |
dc.identifier.citation | Mogollón Mogollón, D. A. (2019). Mejora del rendimiento del álabe de un aerogenerador de baja potencia y velocidad mediante dispositivos de control de capa límite [Trabajo de Grado Pregrado, Universidad de Pamplona]. Repositorio Hulago Universidad de Pamplona. http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/4024 | es_CO |
dc.identifier.uri | http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/4024 | - |
dc.description | Este trabajo trata sobre el diseño y optimización del álabe de un aerogenerador de tres álabes de eje horizontal para baja velocidad y baja potencia. El diseño del álabe inicia con la selección de los perfiles aerodinámicos con mejor desempeño aerodinámico en el rango de números de Reynolds 9X104 mediante la utilización del software XFOIL Y XFLR5. El mejor desempeño aerodinámico lo determina la máxima relación entre sustentación y arrastre, la cual definirá el ángulo de ataque del viento sobre el álabe. Posteriormente, se determinan las características geométricas del álabe (cuerda y ángulo de giro) con una posterior optimización de los factores de inducción axial y de rotación. Una vez se defina la geometría del álabe se realiza el diseño CAD del álabe y del generador con el fin de evaluar su rendimiento a través del software Fluent de ANSYS. La optimización del álabe se realiza mediante la utilización de dispositivos de control de capa límite y teniendo como parámetro de optimización el coeficiente de potencia . Los resultados nos demuestran que el mejor dispositivo es la configuración contra-rotación triangular el cual da una mejora del 5% en el coeficiente de potencia. | es_CO |
dc.description.abstract | This work is about the design and optimization of the blade of a three-blade horizontal axis wind turbine for low speed and low power. The design of the blade begins with the selection of aerodynamic profiles with better aerodynamic performance in the Reynolds 9X104 number range through the use of XFOIL and XFLR5 software. The best aerodynamic performance is determined by the maximum relationship between lift and drag, which will define the angle of attack of the wind on the blade. Subsequently, the geometric characteristics of the blade (rope and angle of rotation) are determined with a subsequent optimization of the axial induction and rotation factors. Once the blade geometry is defined, the CAD design of the blade and the generator is performed in order to evaluate its performance through ANSYS Fluent software. The optimization of the blade is carried out through the use of limit layer control devices and having the power coefficient as an optimization parameter. The results show us that the best device is the triangular counter-rotation configuration which gives a 5% improvement in the power coefficient. | es_CO |
dc.format.extent | 80 | es_CO |
dc.format.mimetype | application/pdf | es_CO |
dc.language.iso | es | es_CO |
dc.publisher | Universidad de Pamplona- Facultad de Ingenierías y Arquitectura. | es_CO |
dc.subject | Optimización. | es_CO |
dc.subject | Capa limite. | es_CO |
dc.subject | Aerogenerador. | es_CO |
dc.subject | Vótices. | es_CO |
dc.subject | Eficiencia. | es_CO |
dc.title | Mejora del rendimiento del álabe de un aerogenerador de baja potencia y velocidad mediante dispositivos de control de capa límite. | es_CO |
dc.type | http://purl.org/coar/resource_type/c_7a1f | es_CO |
dc.date.accepted | 2019-12-19 | - |
dc.relation.references | 2019 ANSYS, Inc. “CFD Simulation | Fluids Simulation | ANSYS CFD.” https://www.ansys.com/products/fluids (October 27, 2019). | es_CO |
dc.relation.references | Abdelwaly, Mona, Hesham El-Batsh, and Magdy Bassily Hanna. 2019. “Numerical Study for the Flow Field and Power Augmentation in a Horizontal Axis Wind Turbine.” Sustainable Energy Technologies and Assessments 31: 245–53. | es_CO |
dc.relation.references | Aramendia, Iñigo et al. 2017. “Flow Control Devices for Wind Turbines.” In , 629–55. http://link.springer.com/10.1007/978-3-319-49875-1_21 (May 21, 2019). | es_CO |
dc.relation.references | Atlassian Confluence 5.10.8. “Hoja de Turbina Eólica FSI (Parte 1) - Malla - SimCafe - Tablero de Instrumentos.” https://confluence.cornell.edu/display/SIMULATION/Wind+Turbine+Blade+FSI+%28Part+1%29 +-+Mesh (October 31, 2019). | es_CO |
dc.relation.references | Bastianon, Ricardo a. 2008. “Cálculo Y Diseño Para Turbinas Eólicas.” : 48. http://ricardo.bastianon.googlepages.com. | es_CO |
dc.relation.references | Bouhelal, Abdelhamid, Arezki Smaili, Ouahiba Guerri, and Christian Masson. 2018. “Comparison of BEM and Full Navier-Stokes CFD Methods for Prediction of Aerodynamics Performance of HAWT Rotors.” Proceedings of 2017 International Renewable and Sustainable Energy Conference, IRSEC 2017 (December 2018): 1–6. | es_CO |
dc.relation.references | Brussels, GWE Council - Global Wind Energy Council:, undefined Belgium, and undefined 2012. “Global Wind Report: Annual Market Update 2011.” | es_CO |
dc.relation.references | BUN-CA. 2002. Manuales Sobre Energía Renovable, Eólica. | es_CO |
dc.relation.references | Carlos Rodriguez vidal. 2015. Diseño Mecánico Con Solidworks 2015. https://books.google.es/books?id=_o2fDwAAQBAJ&printsec=frontcover&hl=es&source=gbs_ge_ summary_r&cad=0#v=onepage&q&f=false (October 27, 2019). | es_CO |
dc.relation.references | Çengel, Yunus A., and John M Cimbala. 2017. Fluid Mechanics A Fundamental Approach. | es_CO |
dc.relation.references | Chow, Raymond, and C. P. Van Dam. 2006. “Unsteady Computational Investigations of Deploying Load Control Microtabs.” Collection of Technical Papers - 44th AIAA Aerospace Sciences Meeting 17(5): 12776–90. | es_CO |
dc.relation.references | Chow, Raymond, and C. van Dam. 2011. “Inboard Stall and Separation Mitigation Techniques on Wind Turbine Rotors.” (January): 1–11. | es_CO |
dc.relation.references | van Dam, C. 2000. “Active Load and Lift Enhancement Using MEM Traslational Tabs.” AIAA Journal. | es_CO |
dc.relation.references | Désiré Le Gouriérès. 1982. Wind Power Plants: Theory and Design. https://books.google.es/books?id=z0qkAgAAQBAJ&printsec=frontcover&hl=es&source=gbs_ge_ summary_r&cad=0#v=onepage&q&f=false (October 28, 2019). | es_CO |
dc.relation.references | Emrah Kulunk. 2008. “AERODYNAMICS OF WIND TURBINES Hearth Scan.” London Sterling. | es_CO |
dc.relation.references | Gao, Linyue, Hui Zhang, Yongqian Liu, and Shuang Han. 2015. “Effects of Vortex Generators on a Blunt 69 Trailing-Edge Airfoil for Wind Turbines.” Renewable Energy 76: 303–11. https://www.sciencedirect.com/science/article/pii/S0960148114007587 (June 12, 2019). | es_CO |
dc.relation.references | Gutierrez-Amo, Ruben, Unai Fernandez-Gamiz, Iñigo Errasti, and Ekaitz Zulueta. 2018. “Computational Modelling of Three Different Sub-Boundary Layer Vortex Generators on a Flat Plate.” Energies 11(11): 3107. http://www.mdpi.com/1996-1073/11/11/3107 (May 21, 2019). | es_CO |
dc.relation.references | He, Jiao et al. 2019. “Multi-Body Dynamics Modeling and TMD Optimization Based on the Improved AFSA for Floating Wind Turbines.” Renewable Energy: 305–21. | es_CO |
dc.relation.references | Hills, Richard Leslie. 1996. Power from Wind : A History of Windmill Technology. Cambridge University Press. | es_CO |
dc.relation.references | Howe, M. S. 1991. “Noise Produced by a Sawtooth Trailing Edge.” Journal of the Acoustical Society of America 90(1): 482–87. | es_CO |
dc.relation.references | Hwangbo, Hoon et al. 2017. “Quantifying the Effect of Vortex Generator Installation on Wind Power Production: An Academia-Industry Case Study.” Renewable Energy 113: 1589–97. https://linkinghub.elsevier.com/retrieve/pii/S0960148117306213 (May 24, 2019). | es_CO |
dc.relation.references | J. F. Manwell and J. G. 2009. Wind Energy Explained. http://www.ghbook.ir/index.php?name=فرهنگ و های رسانه نوین&option=com_dbook&task=readonline&book_id=13650&page=73&chkhashk=ED9C9491B4 &Itemid=218&lang=fa&tmpl=component. | es_CO |
dc.relation.references | J. Xamán. 2015. Dinámica De Fluidos Computacional Para Ingenieros - J. Xamán - Google Libros. https://books.google.es/books?id=dwIDDAAAQBAJ&printsec=frontcover&hl=es&source=gbs_ge _summary_r&cad=0#v=onepage&q&f=false (November 7, 2019). | es_CO |
dc.relation.references | Juan, and Tizón Pulido. Seminario de Simulación Numérica En Sistemas de Propulsión . http://webserver.dmt.upm.es/zope/DMT/Members/jmtizon/libre-eleccion-1 (December 3, 2019). | es_CO |
dc.relation.references | Khaled, Mohamed, Mostafa M. Ibrahim, Hesham E. Abdel Hamed, and Ahmed F. AbdelGwad. 2019. “Investigation of a Small Horizontal–Axis Wind Turbine Performance with and without Winglet.” Energy 187: 115921. | es_CO |
dc.relation.references | Lee, Hak Min, and Oh Joon Kwon. 2019. “Performance Improvement of Horizontal Axis Wind Turbines by Aerodynamic Shape Optimization Including Aeroealstic Deformation.” Renewable Energy. | es_CO |
dc.relation.references | Lin, John C. 2002a. “Control de La Separación de La Capa Límite.” 38: 389–420. | es_CO |
dc.relation.references | 2002b. “Review of Research on Low-Profile Vortex Generators to Control Boundary-Layer Separation.” Progress in Aerospace Sciences 38(4–5): 389–420. https://linkinghub.elsevier.com/retrieve/pii/S0376042102000106 (December 3, 2019). | es_CO |
dc.relation.references | Marten, D, and G Pechlivanoglou. 2010. “Integration of a WT Blade Design Tool in XFOIL/XFLR5.” In Proceedings of the DEWEK, , 1–4 | es_CO |
dc.relation.references | Marten, D, and J Wendler. 2013. “QBLADE: An Open Source Tool for Design and Simulation of Horizontal and Vertical Axis Wind Turbines.” International Journal of Emerging Technology and Advanced Engineering 3(3): 264–69. http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:QBLADE+:+AN+OPEN+SOUR 70 CE+TOOL+FOR+DESIGN+AND+SIMULATION+OF+HORIZONTAL+AND+VERTICAL+AX IS+WIND+TURBINES#0. | es_CO |
dc.relation.references | Martínez-Filgueira, P. et al. 2017. “Parametric Study of Low-Profile Vortex Generators.” International Journal of Hydrogen Energy 42(28): 17700–712. | es_CO |
dc.relation.references | Miley, S.J. 1982. A CATALOG OF LOW REYNOLDS NUMBER AIRFOIL DATA FOR WIND TURBINE APPLICATIONS. | es_CO |
dc.relation.references | Mises, Richard Von. 1997. MIT Department of Aeronautics and Astronautics Theory of Flight. http://web.mit.edu/16.00/www/aec/flight.html (October 23, 2019). | es_CO |
dc.relation.references | Molina, Kevin et al. 2018. “Modelado de La Interacción Fluido Estructura ( FSI ) Para El Diseño de Una Turbina Eólica HAWT To Cite This Version : HAL Id : Hal-01804294 Una Turbina Eólica HAWT Modeling of the Fluid Structure Interaction ( FSI ) for the Design of a HAWT Wind Turbine.” | es_CO |
dc.relation.references | Moreno, ramon piedrafita. Ingenieria-de-La-Automatizacion-Industrial-2-Ed. | es_CO |
dc.relation.references | Moriarty, P J. 2005. “AeroDyn Theory Manual.” (January) | es_CO |
dc.relation.references | NREL. “S833 Airfoil Shape.” https://wind.nrel.gov/airfoils/Shapes/S833_Shape.html (October 31, 2019). | es_CO |
dc.relation.references | Oerlemans, Stefan, Murray Fisher, Thierry Maeder, and Klaus Kögler. 2009. “Reduction of Wind Turbine Noise Using Optimized Airfoils and Trailing-Eratdge Serions.” AIAA Journal 47(6): 1470–81. | es_CO |
dc.relation.references | Ponta, Fernando L., Alejandro D. Otero, Lucas I. Lago, and Anurag Rajan. 2016. “Effects of Rotor Deformation in Wind-Turbine Performance: The Dynamic Rotor Deformation Blade Element Momentum Model (DRD-BEM).” Renewable Energy 92: 157–70. | es_CO |
dc.relation.references | Rahimi, H. et al. 2018. “Evaluation of Different Methods for Determining the Angle of Attack on Wind Turbine Blades with CFD Results under Axial Inflow Conditions.” Renewable Energy 125: 866–76. | es_CO |
dc.relation.references | Saleem Zohaib, B.Sc. 2019. “Investigation of Passive Root Flaps on HAWT.” | es_CO |
dc.relation.references | Sanz Hernán, Silvia. 2018. “Validación de Un Modelo de Turbulencia Simplificado Para La Caracterización Térmica de Edificios.” : 47–48. | es_CO |
dc.relation.references | Schubel, Peter J, and Richard J Crossley. 2012. “Wind Turbine Blade Design.” : 3425–49. | es_CO |
dc.relation.references | Singh, Ronit K., and M. Rafiuddin Ahmed. 2013. “Blade Design and Performance Testing of a Small Wind Turbine Rotor for Low Wind Speed Applications.” Renewable Energy 50: 812–19. | es_CO |
dc.relation.references | Suresh, A., and S. Rajakumar. 2019. “Design of Small Horizontal Axis Wind Turbine for Low Wind Speed Rural Applications.” Materials Today: Proceedings. | es_CO |
dc.relation.references | Troldborg, Niels, Niels N. Sørensen, Frederik Zahle, and Pierre-Elouan Réthoré. 2015. “Simulation of a MW Rotor Equipped with Vortex Generators Using CFD and an Actuator Shape Model.” | es_CO |
dc.relation.references | Troldborg, Niels, Frederik Zahle, and Niels N. Sørensen. 2016. “Simulations of Wind Turbine Rotor with Vortex Generators.” Journal of Physics: Conference Series 753(2). | es_CO |
dc.relation.references | Usha Rao, K., and V. V.N. Kishore. 2009. “Wind Power Technology Diffusion Analysis in Selected States of India.” Renewable Energy 34(4): 983–88. | es_CO |
dc.relation.references | Wilson, Robert E. 1976. AERODYNAMIC PERFORMANCE OF WIND TURBINES | es_CO |
dc.relation.references | Wiser, R, and M Bolinger. 2010. 2010 WIND TECHNOLOGIES MARKET REPORT. http://www.osti.gov/bridge (October 22, 2019). | es_CO |
dc.relation.references | Wood, Richard M. 2002. “A Discussion of Aerodynamic Control Effectors (ACEs) for Unmanned Air Vehicles (UAVs).” 1st UAV Conference (May): 1–27. | es_CO |
dc.relation.references | Woodcroft, Bennett. 1851. Library of Congress, Washington, D.C. 20540 USA The Pneumatics of Hero of Alexandria, from the Original Greek. | es_CO |
dc.relation.references | Wright, Andrew K., and D. H. Wood. 2004. “The Starting and Low Wind Speed Behaviour of a Small Horizontal Axis Wind Turbine.” Journal of Wind Engineering and Industrial Aerodynamics 92(14– 15): 1265–79. | es_CO |
dc.relation.references | “XFLR5.” http://www.xflr5.tech/xflr5.htm (October 27, 2019). | es_CO |
dc.relation.references | Xue, Sidney et al. 2010. “Advanced Aerodynamic Modeling of Vortex Generators for Wind Turbine Applications.” European Wind Energy Conference and Exhibition 2010, EWEC 2010 5(January 2010): 3721–31. | es_CO |
dc.relation.references | Zeng, Jun-Feng et al. 2019. “Phase Modulation of Acoustic Vortex Beam with Metasurfaces.” Physics Letters A 1: 1–5. https://linkinghub.elsevier.com/retrieve/pii/S0375960119304529. | es_CO |
dc.rights.accessrights | http://purl.org/coar/access_right/c_abf2 | es_CO |
dc.type.coarversion | http://purl.org/coar/resource_type/c_2df8fbb1 | es_CO |
Aparece en las colecciones: | Ingeniería Mecánica |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
Mogollón_2019_TG.pdf | Mogollón_2019_TG | 4,57 MB | Adobe PDF | Visualizar/Abrir |
Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.