Por favor, use este identificador para citar o enlazar este ítem:
http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/3474
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | Vargas Granados, Andres Leonardo. | - |
dc.date.accessioned | 2022-10-04T13:28:52Z | - |
dc.date.available | 2021-10-14 | - |
dc.date.available | 2022-10-04T13:28:52Z | - |
dc.date.issued | 2022 | - |
dc.identifier.citation | Vargas Granados, A. L. (2021). Asistencia háptica para el guiado de un robot cuyo algoritmo de control es generado a partir de la información obtenida de una interfaz cerebro computador [Trabajo de Grado Maestría, Universidad de Pamplona]. Repositorio Hulago Universidad de Pamplona. http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/3474 | es_CO |
dc.identifier.uri | http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/3474 | - |
dc.description | Hoy día, la teleoperación en la robótica cobra cada vez más importancia, esto, debido a la nece sidad del ser humano en interactuar físicamente con objetos y entornos remotos, es allí donde se presenta la base de muchas investigaciones para la mejora en este campo. Por tal motivo se llevó acabo una investigación enfocada al área de la interacción humano - robot, con la cual se pretendía dar solución a la disminución de la precisión de ejecución de procedimientos, debido a comporta mientos adquiridos por el humano cuando se llevan a cabo tareas que requieren interacción con un robot, para desarrollar actividades asignadas que en la mayoría de los casos son repetitivas. Debido a que en la actualidad uno de los retos en esta área es incorporar interfaces multimodales (utilización de los diferentes sentidos), este proyecto de investigación se enfocó en una inclusión y combinación de señales háptica y neuroseñales, con el fin de contar con la información necesaria para establecer algoritmos adaptativos al comportamiento (intención) del humano. Con el propósito de caracterizar experimentalmente la interacción humano - robot, se desarrolló un algoritmo de control que se adapte al comportamiento de un operario que busca llevar a cabo una asistencia háptica, para efectuar un control de un robot a distancia, de modo que el algoritmo incorpore información previamente adquirida de una interfaz cerebro computador (BCI), para así lograr establecer la acción de control y/o corrección más acertada para la asistencia háptica y así mejorar la realización de la tarea de acuerdo al comportamiento del operario. Por último se logró realizar un controlador apropiado, el cual le permitió al usuario teleoperar el robot móvil con asistencia háptica y manteniendo un nivel bajo en las diferentes emociones. Este proyecto se llevará a cabo en las instalaciones del campus universitario de la Universidad de Pamplona, en Pamplona - Norte de Santander, donde también se desarrollo en conjunto con un proyecto de investigación. | es_CO |
dc.description.abstract | Nowadays, teleoperation in robotics is becoming more and more important, this, due to the need of the human being to physically interact with objects and remote environments, is where the basis of many research for improvement in this field is presented. For this reason, an investigation focused on the area of human interaction - robot was carried out, with which it was intended to provide a solution to the decrease in the precision of the execution of procedures, due to human acquired behaviors when performing tasks that require interaction with a robot, to develop assig ned activities that in most cases are repetitive. Because currently one of the challenges in this area is to incorporate multimodal interfaces (use of the different senses), this research project focused on an inclusion and combination of haptic signals and neurosignals, in order to have the information needed to establish adaptive algorithms for human behaviour (intention). In order to experimentally characterize human interaction - robot, a control algorithm was deve loped that adapts to the behavior of an operator seeking to perform haptic assistance, to perform a remote robot control, so that the algorithm incorporates previously acquired information from a brain computer interface (BCI), in order to establish the most appropriate control and/or correc tion action for haptic assistance and thus improve the performance of the task according to the operator’s behaviour. Finally an appropriate controller was achieved, which allowed the user to remotely operate the mobile robot with haptic assistance and keeping a low level on different emotions. This project will be carried out in the facilities of the university campus of the University of Pam plona, in Pamplona - Norte de Santander, where it is also developed in conjunction with a research project. | es_CO |
dc.format.extent | 78 | es_CO |
dc.format.mimetype | application/pdf | es_CO |
dc.language.iso | es | es_CO |
dc.publisher | Universidad de Pamplona – Facultad de Ingenierías y Arquitectura. | es_CO |
dc.subject | Control adaptativo, | es_CO |
dc.subject | Control compartido, | es_CO |
dc.subject | Robot móvil, | es_CO |
dc.subject | Háptica, | es_CO |
dc.subject | Señales EEG, | es_CO |
dc.subject | Interfaz cerebro computador (BCI). | es_CO |
dc.title | Asistencia háptica para el guiado de un robot cuyo algoritmo de control es generado a partir de la información obtenida de una interfaz cerebro computador. | es_CO |
dc.type | http://purl.org/coar/resource_type/c_bdcc | es_CO |
dc.date.accepted | 2021-07-14 | - |
dc.relation.references | [1] Human haptic perception: Basics and applications, 2008. | es_CO |
dc.relation.references | [2] Paulo Alves, Hugo Costelha, and Carlos Neves. Localization and navigation of a mobile robot in an office-like environment. In 2013 13th International Conference on Autonomous Robot Systems, pages 1–6. IEEE, 2013. | es_CO |
dc.relation.references | [3] Seyed Farokh Atashzar, Mahya Shahbazi, and Rajni V. Patel. Haptics-enabled interactive neu rorehabilitation mechatronics: Classification, functionality, challenges and ongoing research. 57:1–19, 2019. | es_CO |
dc.relation.references | [4] R. Bousseta, I. El Ouakouak, M. Gharbi, and F. Regragui. Eeg based brain computer interface for controlling a robot arm movement through thought. 39:129–135, 2018. | es_CO |
dc.relation.references | [5] Frederick P Brooks Jr, Ming Ouh-Young, James J Batter, and P Jerome Kilpatrick. Project gropehaptic displays for scientific visualization. ACM SIGGraph computer graphics, 24(4):177– 185, 1990. | es_CO |
dc.relation.references | [6] X. Q. Chen, Y. Q. Chen, and J. G. Chase. Mobiles robots - past present and future. | es_CO |
dc.relation.references | [7] Vivian Chu, Ian McMahon, Lorenzo Riano, Craig G. McDonald, Qin He, Jorge Martinez Perez-Tejada, Michael Arrigo, Trevor Darrell, and Katherine J. Kuchenbecker. Corrigendum to “robotic learning of haptic adjectives through physical interaction” [robot. auton. syst. 63 (p3) (2015) 279–292]. 83:349, 2016. | es_CO |
dc.relation.references | [8] Edison Orlando Cobos Torres. Traction Modeling and Control of a Differential Drive Mobile Robot to Avoid Wheel Slip. PhD thesis, Oklahoma State University, 2013. | es_CO |
dc.relation.references | [9] Luz Cueva, César Peña Cortés, Marisol Delgado, Surgei Villamizar, and Aldo Pardo. Regis tro de neuroseñales con una interfaz cerebro-computador para estimar el nivel estrés en un estudiante durante una clase. INGE CUC, 13:95–101, 07 2017. | es_CO |
dc.relation.references | [10] Leonimer Flávio de Melo, João Mauricio Rosário, and Almiro Franco da Silveira Junior. Mobile robot indoor autonomous navigation with position estimation using rf signal triangulation. 04:20–35, 2013. | es_CO |
dc.relation.references | [11] Florin Dragomir, Eugenia Mincă, Otilia Elena Dragomir, and Adrian Filipescu. Modelling and control of mechatronics lines served by complex autonomous systems. Sensors, 19(15):3266, 2019. | es_CO |
dc.relation.references | [12] EMOTIV. Emotiv insight. https://www.emotiv.com/insight/. | es_CO |
dc.relation.references | [13] J. M. García, A. Valero, and A. Bohórquez. Efecto de la suspensión en la estabilidad al vuelco y direccionamiento de robots moviéndose sobre discontinuidades de terreno. 17:201. | es_CO |
dc.relation.references | [14] Ramón González, Francisco Rodríguez, and José Luis Guzmán. Robots móviles con orugas historia, modelado, localización y control. 12:3–12, 2015. | es_CO |
dc.relation.references | [15] Alison Gopnik and Andrew Meltzoff. The development of categorization in the second year and its relation to other cognitive and linguistic developments. 58:1523, 1987. | es_CO |
dc.relation.references | [16] Hiroo Iwata, Hiroaki Yano, Fumitaka Nakaizumi, and Ryo Kawamura. Project feelex, 2001. | es_CO |
dc.relation.references | [17] Adrienne Kline and Jaydip Desai. Simulink based robotic hand control using emotiv eeg headset, 2014. | es_CO |
dc.relation.references | [18] D. Kuhner, L. D. J. Fiederer, J. Aldinger, F. Burget, M. Völker, R. T. Schirrmeister, C. Do, J. Boedecker, B. Nebel, T. Ball, and W. Burgard. A service assistant combining autono mous robotics, flexible goal formulation, and deep-learning-based brain–computer interfacing. 116:98–113, 2019. | es_CO |
dc.relation.references | [19] Benjamin Kuipers, Edward A. Feigenbaum, Peter E. Hart, and Nils J. Nilsson. Shakey: From conception to history. 38:88–103. | es_CO |
dc.relation.references | [20] Chun-Ling Lin, Fu-Zen Shaw, Kuu-Young Young, Chin-Teng Lin, and Tzyy-Ping Jung. Eeg correlates of haptic feedback in a visuomotor tracking task. 60:2258–2273, 2012. | es_CO |
dc.relation.references | [21] Guanyang LIU, Xuda GENG, Lingzhi LIU, and Yan WANG. Haptic based teleoperation with master-slave motion mapping and haptic rendering for space exploration. 32:723–736, 2019. | es_CO |
dc.relation.references | [22] Mufti Mahmud, David Hawellek, and Aleksander Valjamae. A brain-machine interface based on eeg: Extracted alpha waves applied to mobile robot, 2009. | es_CO |
dc.relation.references | [23] D. J. McFarland and J. R. Wolpaw. Eeg-based brain–computer interfaces. 4:194–200, 2017. | es_CO |
dc.relation.references | [24] Hirokazu Miura, Junki Kimura, Noriyuki Matsuda, Masato Soga, and Hirokazu Taki. Clas sification of haptic tasks based on electroencephalogram frequency analysis. 35:1270–1277, 2014. | es_CO |
dc.relation.references | [25] Shady Mohamed, Sherif Haggag, Saeid Nahavandi, and Omar Haggag. Towards automated quality assessment measure for eeg signals. 237:281–290, 2017. | es_CO |
dc.relation.references | [26] F. Mondada, E. Franzi, A. Guilgnard, and J. Nicoud. Khepera: The optimal tool for develop ment in mobile robotics. | es_CO |
dc.relation.references | [27] Raúl Arrabales Moreno, Agapito Ledezma Espino, and Araceli Sanchis de Miguel. A cognitive approach to multimodal attention. 3:53–63. | es_CO |
dc.relation.references | [28] Hermann Munk. Über die Functionen der Grosshirnrinde: gesammelte Mittheilungen mit Anmerkungen. Hirschwald, 1890. | es_CO |
dc.relation.references | [29] Polibits Instituto Politeécnico Nacional. Robots moéviles: Evolucioén y estado del arte. https://www.redalyc.org/pdf/4026/402640448003.pdf. | es_CO |
dc.relation.references | [30] Bahareh Nakisa, Mohammad Naim Rastgoo, Dian Tjondronegoro, and Vinod Chandran. Evo lutionary computation algorithms for feature selection of eeg-based emotion recognition using mobile sensors. 93:143–155, 2018.. | es_CO |
dc.relation.references | [31] National Museum of American History. "tortoise"mobile robot. https://americanhistory. si.edu/collections/search/object/nmah_879329. | es_CO |
dc.relation.references | [32] Cristobal Parra, Sergio Cebollada, Luis Paya, Mathew Holloway, and Oscar Reinoso. A novel method to estimate the position of a mobile robot in underfloor environments using rgb-d point clouds. 8:9084–9101, 2020. | es_CO |
dc.relation.references | [33] Nicholas JM Patrick. Design, construction, and testing of a fingertip tactile display for interac tion with virtual and remote environments. PhD thesis, Massachusetts Institute of Technology, 1990. | es_CO |
dc.relation.references | [34] Xavier Perrin, Ricardo Chavarriaga, Francis Colas, Roland Siegwart, and José del R. Millán. Brain-coupled interaction for semi-autonomous navigation of an assistive robot. 58:1246–1255, 2010. | es_CO |
dc.relation.references | [35] César Peña, Andres Vargas, and Javier Corredor. Haptic assistance evaluation for the tele operation of a mobile robot by means of stress analysis. International Journal of Advanced Science and Technology, 29(04):11254–11264, Dec. 2020. | es_CO |
dc.relation.references | [36] Pinterest. Robot shakey. https://co.pinterest.com/pin/748582769282411440/. | es_CO |
dc.relation.references | [37] Maria Luisa Pinto Salamanca. Análisis e implementación de una interfaz háptica en entornos virtuales/analysis and implementation of a haptic interface in virtual environments. Depar tamento de Ingeniería Eléctrica y Electrónica, 2009 | es_CO |
dc.relation.references | [38] Maria Luisa Pinto Salamanca. Análisis e implementación de una interfaz háptica en entornos virtuales/analysis and implementation of a haptic interface in virtual environments. Depar tamento de Ingeniería Eléctrica y Electrónica, 2009. | es_CO |
dc.relation.references | [39] HF Ramirez, O Garcia-Bedoya, and O Aviles. Vali: Desarrollo y evolución de un robot para neutralizar explosivos. 2019. | es_CO |
dc.relation.references | [40] Laura R. Ray, Devin C. Brande, and James H. Lever. Estimation of net traction for differential steered wheeled robots. 46:75–87, 2009. | es_CO |
dc.relation.references | [41] C Robotics. Coppeliarobotics. com. Coppelia Robotics,[En línea]. Available: http://www. coppeliarobotics. com/.[Último acceso: 26 mayo 2018]. | es_CO |
dc.relation.references | [42] Generation Robots. Pioneer p3-dx mobile robot. https://www.generationrobots.com/en/ 402395-robot-mobile-pioneer-3-dx.html. | es_CO |
dc.relation.references | [43] RobotWatch. Robot terrestre ofro. https://yorobot.wordpress.com/2007/06/13/ ofro-un-robot-guardian/. | es_CO |
dc.relation.references | [44] U. Sanchez-Fraire, V. Parra-Vega, D. Martinez-Peon, G. Sepúlveda-Cervantes, A. Sanchez Orta, and A. J. Muñoz-Vázquez. On the brain computer robot interface (bcri) to control robots. 48:154–159, 2015. | es_CO |
dc.relation.references | [45] Giordano B. S. Seco, Günther J. L. Gerhardt, Alex A. Biazotti, André L. Molan, Suzana V. Schönwald, and José L. Rybarczyk-Filho. Eeg alpha rhythm detection on a portable device. 52:97–102, 2019. | es_CO |
dc.relation.references | [46] Inc. Novint Technologies. Novint technologies developer’s program. http://home.novint. com/pdf/2007-03-04GDCDeveloperPresentation.pdf, 2007. | es_CO |
dc.relation.references | [47] Inc. Novint Technologies. Falcon overview. http://home.novint.com/novint/novint.php, 2008. | es_CO |
dc.relation.references | [48] Andres Ubeda, Jose M. Azorin, Nicolas Garcia, Jose M. Sabater, and Carlos Perez. Brain machine interface based on eeg mapping to control an assistive robotic arm, | es_CO |
dc.relation.references | [49] Benjamin Vercellone, John Shelestak, Yaser Dhaher, and Robert Clements. Haptic interfaces for individuals with visual impairments. G| A| M| E Games as Art, Media, Entertainment, 1(7), 2018. | es_CO |
dc.relation.references | [50] Wikipedia. Khepera mobile robot. https://en.wikipedia.org/wiki/Khepera_mobile_ robot. | es_CO |
dc.relation.references | [51] Hong Wu, Shuang Liang, Wenlong Hang, Xiaolu Liu, Qiong Wang, Kup-Sze Choi, and Jing Qin. Evaluation of motor training performance in 3d virtual environment via combining brain-computer interface and haptic feedback. 107:256–261, 2017. | es_CO |
dc.relation.references | [52] Pingjun Xia. Haptics for product design and manufacturing simulation. IEEE transactions on haptics, 9(3):358–375, 2016. | es_CO |
dc.relation.references | [53] Laurence R Young, Charles M Oman, Daniel Merfeld, Douglas Watt, S Roy, C DeLuca, D Balkwill, J Christie, N Groleau, DK Jackson, et al. Spatial orientation and posture during and following weightlessness: human experiments on spacelab life sciences 1. J Vestib Res, 3(3):231–239, 1993. | es_CO |
dc.rights.accessrights | http://purl.org/coar/access_right/c_abf2 | es_CO |
dc.type.coarversion | http://purl.org/coar/resource_type/c_2df8fbb1 | es_CO |
Aparece en las colecciones: | Maestría en Controles Industriales |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
Vargas_2021_TG.pdf | Vargas_2021_TG.pdf | 9,1 MB | Adobe PDF | Visualizar/Abrir |
Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.