• Repositorio Institucional Universidad de Pamplona
  • Tesis de maestría y doctorado
  • Facultad de Ingenierías y Arquitectura
  • Maestría en Controles Industriales
  • Por favor, use este identificador para citar o enlazar este ítem: http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/3474
    Registro completo de metadatos
    Campo DC Valor Lengua/Idioma
    dc.contributor.authorVargas Granados, Andres Leonardo.-
    dc.date.accessioned2022-10-04T13:28:52Z-
    dc.date.available2021-10-14-
    dc.date.available2022-10-04T13:28:52Z-
    dc.date.issued2022-
    dc.identifier.citationVargas Granados, A. L. (2021). Asistencia háptica para el guiado de un robot cuyo algoritmo de control es generado a partir de la información obtenida de una interfaz cerebro computador [Trabajo de Grado Maestría, Universidad de Pamplona]. Repositorio Hulago Universidad de Pamplona. http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/3474es_CO
    dc.identifier.urihttp://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/3474-
    dc.descriptionHoy día, la teleoperación en la robótica cobra cada vez más importancia, esto, debido a la nece sidad del ser humano en interactuar físicamente con objetos y entornos remotos, es allí donde se presenta la base de muchas investigaciones para la mejora en este campo. Por tal motivo se llevó acabo una investigación enfocada al área de la interacción humano - robot, con la cual se pretendía dar solución a la disminución de la precisión de ejecución de procedimientos, debido a comporta mientos adquiridos por el humano cuando se llevan a cabo tareas que requieren interacción con un robot, para desarrollar actividades asignadas que en la mayoría de los casos son repetitivas. Debido a que en la actualidad uno de los retos en esta área es incorporar interfaces multimodales (utilización de los diferentes sentidos), este proyecto de investigación se enfocó en una inclusión y combinación de señales háptica y neuroseñales, con el fin de contar con la información necesaria para establecer algoritmos adaptativos al comportamiento (intención) del humano. Con el propósito de caracterizar experimentalmente la interacción humano - robot, se desarrolló un algoritmo de control que se adapte al comportamiento de un operario que busca llevar a cabo una asistencia háptica, para efectuar un control de un robot a distancia, de modo que el algoritmo incorpore información previamente adquirida de una interfaz cerebro computador (BCI), para así lograr establecer la acción de control y/o corrección más acertada para la asistencia háptica y así mejorar la realización de la tarea de acuerdo al comportamiento del operario. Por último se logró realizar un controlador apropiado, el cual le permitió al usuario teleoperar el robot móvil con asistencia háptica y manteniendo un nivel bajo en las diferentes emociones. Este proyecto se llevará a cabo en las instalaciones del campus universitario de la Universidad de Pamplona, en Pamplona - Norte de Santander, donde también se desarrollo en conjunto con un proyecto de investigación.es_CO
    dc.description.abstractNowadays, teleoperation in robotics is becoming more and more important, this, due to the need of the human being to physically interact with objects and remote environments, is where the basis of many research for improvement in this field is presented. For this reason, an investigation focused on the area of human interaction - robot was carried out, with which it was intended to provide a solution to the decrease in the precision of the execution of procedures, due to human acquired behaviors when performing tasks that require interaction with a robot, to develop assig ned activities that in most cases are repetitive. Because currently one of the challenges in this area is to incorporate multimodal interfaces (use of the different senses), this research project focused on an inclusion and combination of haptic signals and neurosignals, in order to have the information needed to establish adaptive algorithms for human behaviour (intention). In order to experimentally characterize human interaction - robot, a control algorithm was deve loped that adapts to the behavior of an operator seeking to perform haptic assistance, to perform a remote robot control, so that the algorithm incorporates previously acquired information from a brain computer interface (BCI), in order to establish the most appropriate control and/or correc tion action for haptic assistance and thus improve the performance of the task according to the operator’s behaviour. Finally an appropriate controller was achieved, which allowed the user to remotely operate the mobile robot with haptic assistance and keeping a low level on different emotions. This project will be carried out in the facilities of the university campus of the University of Pam plona, in Pamplona - Norte de Santander, where it is also developed in conjunction with a research project.es_CO
    dc.format.extent78es_CO
    dc.format.mimetypeapplication/pdfes_CO
    dc.language.isoeses_CO
    dc.publisherUniversidad de Pamplona – Facultad de Ingenierías y Arquitectura.es_CO
    dc.subjectControl adaptativo,es_CO
    dc.subjectControl compartido,es_CO
    dc.subjectRobot móvil,es_CO
    dc.subjectHáptica,es_CO
    dc.subjectSeñales EEG,es_CO
    dc.subjectInterfaz cerebro computador (BCI).es_CO
    dc.titleAsistencia háptica para el guiado de un robot cuyo algoritmo de control es generado a partir de la información obtenida de una interfaz cerebro computador.es_CO
    dc.typehttp://purl.org/coar/resource_type/c_bdcces_CO
    dc.date.accepted2021-07-14-
    dc.relation.references[1] Human haptic perception: Basics and applications, 2008.es_CO
    dc.relation.references[2] Paulo Alves, Hugo Costelha, and Carlos Neves. Localization and navigation of a mobile robot in an office-like environment. In 2013 13th International Conference on Autonomous Robot Systems, pages 1–6. IEEE, 2013.es_CO
    dc.relation.references[3] Seyed Farokh Atashzar, Mahya Shahbazi, and Rajni V. Patel. Haptics-enabled interactive neu rorehabilitation mechatronics: Classification, functionality, challenges and ongoing research. 57:1–19, 2019.es_CO
    dc.relation.references[4] R. Bousseta, I. El Ouakouak, M. Gharbi, and F. Regragui. Eeg based brain computer interface for controlling a robot arm movement through thought. 39:129–135, 2018.es_CO
    dc.relation.references[5] Frederick P Brooks Jr, Ming Ouh-Young, James J Batter, and P Jerome Kilpatrick. Project gropehaptic displays for scientific visualization. ACM SIGGraph computer graphics, 24(4):177– 185, 1990.es_CO
    dc.relation.references[6] X. Q. Chen, Y. Q. Chen, and J. G. Chase. Mobiles robots - past present and future.es_CO
    dc.relation.references[7] Vivian Chu, Ian McMahon, Lorenzo Riano, Craig G. McDonald, Qin He, Jorge Martinez Perez-Tejada, Michael Arrigo, Trevor Darrell, and Katherine J. Kuchenbecker. Corrigendum to “robotic learning of haptic adjectives through physical interaction” [robot. auton. syst. 63 (p3) (2015) 279–292]. 83:349, 2016.es_CO
    dc.relation.references[8] Edison Orlando Cobos Torres. Traction Modeling and Control of a Differential Drive Mobile Robot to Avoid Wheel Slip. PhD thesis, Oklahoma State University, 2013.es_CO
    dc.relation.references[9] Luz Cueva, César Peña Cortés, Marisol Delgado, Surgei Villamizar, and Aldo Pardo. Regis tro de neuroseñales con una interfaz cerebro-computador para estimar el nivel estrés en un estudiante durante una clase. INGE CUC, 13:95–101, 07 2017.es_CO
    dc.relation.references[10] Leonimer Flávio de Melo, João Mauricio Rosário, and Almiro Franco da Silveira Junior. Mobile robot indoor autonomous navigation with position estimation using rf signal triangulation. 04:20–35, 2013.es_CO
    dc.relation.references[11] Florin Dragomir, Eugenia Mincă, Otilia Elena Dragomir, and Adrian Filipescu. Modelling and control of mechatronics lines served by complex autonomous systems. Sensors, 19(15):3266, 2019.es_CO
    dc.relation.references[12] EMOTIV. Emotiv insight. https://www.emotiv.com/insight/.es_CO
    dc.relation.references[13] J. M. García, A. Valero, and A. Bohórquez. Efecto de la suspensión en la estabilidad al vuelco y direccionamiento de robots moviéndose sobre discontinuidades de terreno. 17:201.es_CO
    dc.relation.references[14] Ramón González, Francisco Rodríguez, and José Luis Guzmán. Robots móviles con orugas historia, modelado, localización y control. 12:3–12, 2015.es_CO
    dc.relation.references[15] Alison Gopnik and Andrew Meltzoff. The development of categorization in the second year and its relation to other cognitive and linguistic developments. 58:1523, 1987.es_CO
    dc.relation.references[16] Hiroo Iwata, Hiroaki Yano, Fumitaka Nakaizumi, and Ryo Kawamura. Project feelex, 2001.es_CO
    dc.relation.references[17] Adrienne Kline and Jaydip Desai. Simulink based robotic hand control using emotiv eeg headset, 2014.es_CO
    dc.relation.references[18] D. Kuhner, L. D. J. Fiederer, J. Aldinger, F. Burget, M. Völker, R. T. Schirrmeister, C. Do, J. Boedecker, B. Nebel, T. Ball, and W. Burgard. A service assistant combining autono mous robotics, flexible goal formulation, and deep-learning-based brain–computer interfacing. 116:98–113, 2019.es_CO
    dc.relation.references[19] Benjamin Kuipers, Edward A. Feigenbaum, Peter E. Hart, and Nils J. Nilsson. Shakey: From conception to history. 38:88–103.es_CO
    dc.relation.references[20] Chun-Ling Lin, Fu-Zen Shaw, Kuu-Young Young, Chin-Teng Lin, and Tzyy-Ping Jung. Eeg correlates of haptic feedback in a visuomotor tracking task. 60:2258–2273, 2012.es_CO
    dc.relation.references[21] Guanyang LIU, Xuda GENG, Lingzhi LIU, and Yan WANG. Haptic based teleoperation with master-slave motion mapping and haptic rendering for space exploration. 32:723–736, 2019.es_CO
    dc.relation.references[22] Mufti Mahmud, David Hawellek, and Aleksander Valjamae. A brain-machine interface based on eeg: Extracted alpha waves applied to mobile robot, 2009.es_CO
    dc.relation.references[23] D. J. McFarland and J. R. Wolpaw. Eeg-based brain–computer interfaces. 4:194–200, 2017.es_CO
    dc.relation.references[24] Hirokazu Miura, Junki Kimura, Noriyuki Matsuda, Masato Soga, and Hirokazu Taki. Clas sification of haptic tasks based on electroencephalogram frequency analysis. 35:1270–1277, 2014.es_CO
    dc.relation.references[25] Shady Mohamed, Sherif Haggag, Saeid Nahavandi, and Omar Haggag. Towards automated quality assessment measure for eeg signals. 237:281–290, 2017.es_CO
    dc.relation.references[26] F. Mondada, E. Franzi, A. Guilgnard, and J. Nicoud. Khepera: The optimal tool for develop ment in mobile robotics.es_CO
    dc.relation.references[27] Raúl Arrabales Moreno, Agapito Ledezma Espino, and Araceli Sanchis de Miguel. A cognitive approach to multimodal attention. 3:53–63.es_CO
    dc.relation.references[28] Hermann Munk. Über die Functionen der Grosshirnrinde: gesammelte Mittheilungen mit Anmerkungen. Hirschwald, 1890.es_CO
    dc.relation.references[29] Polibits Instituto Politeécnico Nacional. Robots moéviles: Evolucioén y estado del arte. https://www.redalyc.org/pdf/4026/402640448003.pdf.es_CO
    dc.relation.references[30] Bahareh Nakisa, Mohammad Naim Rastgoo, Dian Tjondronegoro, and Vinod Chandran. Evo lutionary computation algorithms for feature selection of eeg-based emotion recognition using mobile sensors. 93:143–155, 2018..es_CO
    dc.relation.references[31] National Museum of American History. "tortoise"mobile robot. https://americanhistory. si.edu/collections/search/object/nmah_879329.es_CO
    dc.relation.references[32] Cristobal Parra, Sergio Cebollada, Luis Paya, Mathew Holloway, and Oscar Reinoso. A novel method to estimate the position of a mobile robot in underfloor environments using rgb-d point clouds. 8:9084–9101, 2020.es_CO
    dc.relation.references[33] Nicholas JM Patrick. Design, construction, and testing of a fingertip tactile display for interac tion with virtual and remote environments. PhD thesis, Massachusetts Institute of Technology, 1990.es_CO
    dc.relation.references[34] Xavier Perrin, Ricardo Chavarriaga, Francis Colas, Roland Siegwart, and José del R. Millán. Brain-coupled interaction for semi-autonomous navigation of an assistive robot. 58:1246–1255, 2010.es_CO
    dc.relation.references[35] César Peña, Andres Vargas, and Javier Corredor. Haptic assistance evaluation for the tele operation of a mobile robot by means of stress analysis. International Journal of Advanced Science and Technology, 29(04):11254–11264, Dec. 2020.es_CO
    dc.relation.references[36] Pinterest. Robot shakey. https://co.pinterest.com/pin/748582769282411440/.es_CO
    dc.relation.references[37] Maria Luisa Pinto Salamanca. Análisis e implementación de una interfaz háptica en entornos virtuales/analysis and implementation of a haptic interface in virtual environments. Depar tamento de Ingeniería Eléctrica y Electrónica, 2009es_CO
    dc.relation.references[38] Maria Luisa Pinto Salamanca. Análisis e implementación de una interfaz háptica en entornos virtuales/analysis and implementation of a haptic interface in virtual environments. Depar tamento de Ingeniería Eléctrica y Electrónica, 2009.es_CO
    dc.relation.references[39] HF Ramirez, O Garcia-Bedoya, and O Aviles. Vali: Desarrollo y evolución de un robot para neutralizar explosivos. 2019.es_CO
    dc.relation.references[40] Laura R. Ray, Devin C. Brande, and James H. Lever. Estimation of net traction for differential steered wheeled robots. 46:75–87, 2009.es_CO
    dc.relation.references[41] C Robotics. Coppeliarobotics. com. Coppelia Robotics,[En línea]. Available: http://www. coppeliarobotics. com/.[Último acceso: 26 mayo 2018].es_CO
    dc.relation.references[42] Generation Robots. Pioneer p3-dx mobile robot. https://www.generationrobots.com/en/ 402395-robot-mobile-pioneer-3-dx.html.es_CO
    dc.relation.references[43] RobotWatch. Robot terrestre ofro. https://yorobot.wordpress.com/2007/06/13/ ofro-un-robot-guardian/.es_CO
    dc.relation.references[44] U. Sanchez-Fraire, V. Parra-Vega, D. Martinez-Peon, G. Sepúlveda-Cervantes, A. Sanchez Orta, and A. J. Muñoz-Vázquez. On the brain computer robot interface (bcri) to control robots. 48:154–159, 2015.es_CO
    dc.relation.references[45] Giordano B. S. Seco, Günther J. L. Gerhardt, Alex A. Biazotti, André L. Molan, Suzana V. Schönwald, and José L. Rybarczyk-Filho. Eeg alpha rhythm detection on a portable device. 52:97–102, 2019.es_CO
    dc.relation.references[46] Inc. Novint Technologies. Novint technologies developer’s program. http://home.novint. com/pdf/2007-03-04GDCDeveloperPresentation.pdf, 2007.es_CO
    dc.relation.references[47] Inc. Novint Technologies. Falcon overview. http://home.novint.com/novint/novint.php, 2008.es_CO
    dc.relation.references[48] Andres Ubeda, Jose M. Azorin, Nicolas Garcia, Jose M. Sabater, and Carlos Perez. Brain machine interface based on eeg mapping to control an assistive robotic arm,es_CO
    dc.relation.references[49] Benjamin Vercellone, John Shelestak, Yaser Dhaher, and Robert Clements. Haptic interfaces for individuals with visual impairments. G| A| M| E Games as Art, Media, Entertainment, 1(7), 2018.es_CO
    dc.relation.references[50] Wikipedia. Khepera mobile robot. https://en.wikipedia.org/wiki/Khepera_mobile_ robot.es_CO
    dc.relation.references[51] Hong Wu, Shuang Liang, Wenlong Hang, Xiaolu Liu, Qiong Wang, Kup-Sze Choi, and Jing Qin. Evaluation of motor training performance in 3d virtual environment via combining brain-computer interface and haptic feedback. 107:256–261, 2017.es_CO
    dc.relation.references[52] Pingjun Xia. Haptics for product design and manufacturing simulation. IEEE transactions on haptics, 9(3):358–375, 2016.es_CO
    dc.relation.references[53] Laurence R Young, Charles M Oman, Daniel Merfeld, Douglas Watt, S Roy, C DeLuca, D Balkwill, J Christie, N Groleau, DK Jackson, et al. Spatial orientation and posture during and following weightlessness: human experiments on spacelab life sciences 1. J Vestib Res, 3(3):231–239, 1993.es_CO
    dc.rights.accessrightshttp://purl.org/coar/access_right/c_abf2es_CO
    dc.type.coarversionhttp://purl.org/coar/resource_type/c_2df8fbb1es_CO
    Aparece en las colecciones: Maestría en Controles Industriales

    Ficheros en este ítem:
    Fichero Descripción Tamaño Formato  
    Vargas_2021_TG.pdfVargas_2021_TG.pdf9,1 MBAdobe PDFVisualizar/Abrir


    Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.