• Repositorio Institucional Universidad de Pamplona
  • Tesis de maestría y doctorado
  • Facultad de Ingenierías y Arquitectura
  • Maestría en Controles Industriales
  • Por favor, use este identificador para citar o enlazar este ítem: http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/3355
    Registro completo de metadatos
    Campo DC Valor Lengua/Idioma
    dc.contributor.authorRivera Guerrero, Manuel Andres.-
    dc.date.accessioned2022-10-03T15:48:22Z-
    dc.date.available2020-03-02-
    dc.date.available2022-10-03T15:48:22Z-
    dc.date.issued2020-
    dc.identifier.citationRivera Guerrero, M. A. (2019). Cuantificación de pesticida organofosforado en el duraznero con la implementación de un análisis multisensorial [Trabajo de Grado Maestría, Universidad de Pamplona]. Repositorio Hulago Universidad de Pamplona. http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/3355es_CO
    dc.identifier.urihttp://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/3355-
    dc.descriptionEl autor no proporciona la información sobre este ítem.es_CO
    dc.description.abstractEl autor no proporciona la información sobre este ítem.es_CO
    dc.format.extent66es_CO
    dc.format.mimetypeapplication/pdfes_CO
    dc.language.isoeses_CO
    dc.publisherUniversidad de Pamplona – Facultad de Ingenierías y Arquitectura.es_CO
    dc.subjectEl autor no proporciona la información sobre este ítem.es_CO
    dc.titleCuantificación de pesticida organofosforado en el duraznero con la implementación de un análisis multisensorial.es_CO
    dc.typehttp://purl.org/coar/resource_type/c_bdcces_CO
    dc.date.accepted2019-12-02-
    dc.relation.referencesAlister, C., Araya, M., Becerra, K., Volosky, C., Saavedra, J., & Kogan, M. (2018). Industrial prune processing and its effect on pesticide residue concentrations. Food Chemistry, 268, 264–270. https://doi.org/https://doi.org/10.1016/j.foodchem.2018.06.090es_CO
    dc.relation.referencesBenedetti, S., Buratti, S., Spinardi, A., Mannino, S., & Mignani, I. (2008). Electronic nose as a non-destructive tool to characterise peach cultivars and to monitor their ripening stage during shelf-life. Postharvest Biology and Technology, 47(2), 181–188. https://doi.org/https://doi.org/10.1016/j.postharvbio.2007.06.012es_CO
    dc.relation.referencesBerg, H., & Tam, N. T. (2018). Decreased use of pesticides for increased yields of rice and fish-options for sustainable food production in the Mekong Delta. Science of The Total Environment, 619–620, 319–327. https://doi.org/https://doi.org/10.1016/j.scitotenv.2017.11.062es_CO
    dc.relation.referencesBoeker, P. (2014). On „Electronic Nose‟ methodology. Sensors and Actuators B: Chemical, 204, 2–17. https://doi.org/https://doi.org/10.1016/j.snb.2014.07.087es_CO
    dc.relation.referencesBona, E., Março, P. H., & Valderrama, P. (2018). Chapter 4 - Chemometrics Applied to Food Control. In A. M. Holban & A. M. B. T.-F. C. and B. Grumezescu (Eds.), Handbook of Food Bioengineering (pp. 105–133). https://doi.org/https://doi.org/10.1016/B978-0-12-811445-2.00004-0es_CO
    dc.relation.referencesCarazo-Rojas, E., Pérez-Rojas, G., Pérez-Villanueva, M., Chinchilla-Soto, C., Chin Pampillo, J. S., Aguilar-Mora, P., … Vryzas, Z. (2018). Pesticide monitoring and ecotoxicological risk assessment in surface water bodies and sediments of a tropical agro-ecosystem. Environmental Pollution, 241, 800–809. https://doi.org/https://doi.org/10.1016/j.envpol.2018.06.020es_CO
    dc.relation.referencesChawla, P., Kaushik, R., Shiva Swaraj, V. J., & Kumar, N. (2018). Organophosphorus pesticides residues in food and their colorimetric detection. Environmental Nanotechnology, Monitoring & Management. https://doi.org/https://doi.org/10.1016/j.enmm.2018.07.013es_CO
    dc.relation.referencesCutillas, V., Galera, M. M., Rajski, Ł., & Fernández-Alba, A. R. (2018). Evaluation of supercritical fluid chromatography coupled to tandem mass spectrometry for pesticide residues in food. Journal of Chromatography A, 1545, 67–74. https://doi.org/https://doi.org/10.1016/j.chroma.2018.02.048es_CO
    dc.relation.referencesda Costa Morais, E. H., Collins, C. H., & Jardim, I. C. S. F. (2018). Pesticide determination in sweet peppers using QuEChERS and LC–MS/MS. Food Chemistry, 249, 77–83. https://doi.org/https://doi.org/10.1016/j.foodchem.2017.12.092es_CO
    dc.relation.referencesDenghel, H., & Göen, T. (2018). Simultaneous assessment of phenolic metabolites in human urine for a specific biomonitoring of exposure to organophosphate and carbamate pesticides. Toxicology Letters. https://doi.org/https://doi.org/10.1016/j.toxlet.2018.07.048es_CO
    dc.relation.referencesDurán-Acevedo, C., Gualdron-Guerrero, O., & Hernández-Ordoñez, M. (2014). Nariz electrónica para determinar el índice de madurez del tomate de árbol (Cyphomandra Betacea Sendt). Ingeniería, Investigación y Tecnología, 15(3), 351–362. https://doi.org/https://doi.org/10.1016/S1405-7743(14)70346-4es_CO
    dc.relation.referencesGeorgiadis, N., Tsarouhas, K., Tsitsimpikou, C., Vardavas, A., Rezaee, R., Germanakis, I., … Kouretas, D. (2018). Pesticides and cardiotoxicity. Where do we stand? Toxicology and Applied Pharmacology, 353, 1–14. https://doi.org/https://doi.org/10.1016/j.taap.2018.06.004es_CO
    dc.relation.referencesGhasemi-Varnamkhasti, M., Apetrei, C., Lozano, J., & Anyogu, A. (2018). Potential use of electronic noses, electronic tongues and biosensors as multisensor systems for spoilage examination in foods. Trends in Food Science & Technology, 80, 71–92. https://doi.org/https://doi.org/10.1016/j.tifs.2018.07.018es_CO
    dc.relation.referencesGuida, Y. de S., Meire, R. O., Torres, J. P. M., & Malm, O. (2018). Air contamination by legacy and current-use pesticides in Brazilian mountains: An overview of national regulations by monitoring pollutant presence in pristine areas. Environmental Pollution, 242, 19–30. https://doi.org/https://doi.org/10.1016/j.envpol.2018.06.061es_CO
    dc.relation.referencesKhoshroo, A., Emrouznejad, A., Ghaffarizadeh, A., Kasraei, M., & Omid, M. (2018). Sensitivity analysis of energy inputs in crop production using artificial neural networks. Journal of Cleaner Production, 197, 992–998. https://doi.org/10.1016/J.JCLEPRO.2018.05.249es_CO
    dc.relation.referencesLihuan, S., Liu, W., Xiaohong, Z., Guohua, H., & Zhidong, Z. (2017). Fabrication of electronic nose system and exploration on its applications in mango fruit (M. indica cv. Datainong) quality rapid determination. Journal of Food Measurement and Characterization, 11(4), 1969–1977. https://doi.org/10.1007/s11694-017-9579-1es_CO
    dc.relation.referencesLiu, Q., Zhao, N., Zhou, D., Sun, Y., Sun, K., Pan, L., & Tu, K. (2018). Discrimination and growth tracking of fungi contamination in peaches using electronic nose. Food Chemistry, 262, 226–234. https://doi.org/https://doi.org/10.1016/j.foodchem.2018.04.100es_CO
    dc.relation.referencesLoutfi, A., Coradeschi, S., Mani, D. G. K., Shankar, P., & Rayappan, J. B. B. (2015). Electronic noses for food quality: A review. Journal of Food Engineering, 144, 103– 111. https://doi.org/10.1016/j.jfoodeng.2014.07.019es_CO
    dc.relation.referencesLozano, J. (2006). New technology in sensing odors: From human to artificial noses. In Floriculture, Ornamental and Plant Biotechnology: Advances and Topical Issues.es_CO
    dc.relation.referencesMac Loughlin, T. M., Peluso, M. L., Etchegoyen, M. A., Alonso, L. L., de Castro, M. C., Percudani, M. C., & Marino, D. J. G. (2018). Pesticide residues in fruits and vegetables of the argentine domestic market: Occurrence and quality. Food Control, 93, 129– 138. https://doi.org/https://doi.org/10.1016/j.foodcont.2018.05.041es_CO
    dc.relation.referencesMinas, I. S., Tanou, G., & Molassiotis, A. (2018). Environmental and orchard bases of peach fruit quality. Scientia Horticulturae, 235, 307–322. https://doi.org/https://doi.org/10.1016/j.scienta.2018.01.028es_CO
    dc.relation.referencesMiranda, D, Fischer, G, & Carranza, C. (2013). Los frutales caducifolios en Colombia: Situación actual, caracterización de sistemas de producción y plan de desarrollo (Primera ed). Bogotá, Colombia: Sociedad Colombiana de Ciencias Hortícolas.es_CO
    dc.relation.referencesMuñoz-Quezada, M. T., Lucero, B., Iglesias, V., Muñoz, M. P., Achú, E., Cornejo, C., … Brito, A. M. (2016). Plaguicidas organofosforados y efecto neuropsicológico y motor en la Región del Maule, Chile. Gaceta Sanitaria, 30(3), 227–231. https://doi.org/https://doi.org/10.1016/j.gaceta.2016.01.006es_CO
    dc.relation.referencesOrtiz, J., & Gualdron, O. (2016). Organochlorine screening using food in fresh an electronic nose. https://doi.org/10.1109/ET.2016.7753503es_CO
    dc.relation.referencesOrtiz, J., Gualdron, O., & Duran, C. (2015). Detection of pesticide in the vesca fregaría 62 through an electronic nose. https://doi.org/10.1109/Chilecon.2015.7404643es_CO
    dc.relation.referencesOrtiz, J., Gualdron, O., & Duran, C. (2016). Detection of pesticide in fruits using an electronic nose. Australian Journal of Basic and Applied Sciences, 10, 107–113.es_CO
    dc.relation.referencesPano-Farias, N. S., Ceballos-Magaña, S. G., Muñiz-Valencia, R., Jurado, J. M., Alcázar, Á., & Aguayo-Villarreal, I. A. (2017). Direct immersion single drop micro-extraction method for multi-class pesticides analysis in mango using GC–MS. Food Chemistry, 237, 30–38. https://doi.org/https://doi.org/10.1016/j.foodchem.2017.05.030es_CO
    dc.relation.referencesPinzón, E. H., Cruz Morillo, A., & Fischer, G. (2014). ASPECTOS FISIOLÓGICOS DEL DURAZNERO (Prunus persica [L.] BATSCH) EN EL TRÓPICO ALTO.: UNA REVISIÓN . Revista U.D.C.A Actualidad & Divulgación Científica , Vol. 17, pp. 401– 411. scieloco .es_CO
    dc.relation.referencesPłotka, J., Tobiszewski, M., Sulej, A. M., Kupska, M., Górecki, T., & Namieśnik, J. (2013). Green chromatography. Journal of Chromatography A, 1307, 1–20. https://doi.org/https://doi.org/10.1016/j.chroma.2013.07.099es_CO
    dc.relation.referencesQiu, S., & Wang, J. (2017). The prediction of food additives in the fruit juice based on electronic nose with chemometrics. Food Chemistry, 230, 208–214. https://doi.org/https://doi.org/10.1016/j.foodchem.2017.03.011es_CO
    dc.relation.referencesQiu, S., Wang, J., & Gao, L. (2015). Qualification and quantisation of processed strawberry juice based on electronic nose and tongue. LWT - Food Science and Technology, 60(1), 115–123. https://doi.org/https://doi.org/10.1016/j.lwt.2014.08.041es_CO
    dc.relation.referencesReis, M. R. dos, Fernandes, F. L., Lopes, E. A., Gorri, J. E. R., & Alves, F. M. (2015). Chapter 26 - Pesticide Residues in Coffee Agroecosystems (V. R. B. T.-C. in H. and D. P. Preedy, Ed.). https://doi.org/https://doi.org/10.1016/B978-0-12-409517-5.00026- 7es_CO
    dc.relation.referencesSalama, A., & Saatchi, R. (2019). Probabilistic classification of quality of service in wireless computer networks. ICT Express, 5(3), 155–162. https://doi.org/10.1016/J.ICTE.2018.09.001es_CO
    dc.relation.referencesSanaeifar, A., ZakiDizaji, H., Jafari, A., & Guardia, M. de la. (2017). Early detection of contamination and defect in foodstuffs by electronic nose: A review. TrAC Trends in Analytical Chemistry, 97, 257–271. 63 https://doi.org/https://doi.org/10.1016/j.trac.2017.09.014es_CO
    dc.relation.referencesSkoog, D., Holler, F., & Nieman, T. (2001). Principios de análisis instrumental (5 ed).es_CO
    dc.relation.referencesWu, C.-C. (2017). Multiresidue method for the determination of pesticides in Oolong tea using QuEChERS by gas chromatography-triple quadrupole tandem mass spectrometry. Food Chemistry, 229, 580–587. https://doi.org/https://doi.org/10.1016/j.foodchem.2017.02.081es_CO
    dc.relation.referencesXu, K., Wang, J., Wei, Z., Deng, F., Wang, Y., & Cheng, S. (2017). An optimization of the MOS electronic nose sensor array for the detection of Chinese pecan quality. Journal of Food Engineering, 203, 25–31. https://doi.org/https://doi.org/10.1016/j.jfoodeng.2017.01.023es_CO
    dc.relation.referencesXu, M., Wang, J., & Zhu, L. (2019). The qualitative and quantitative assessment of tea quality based on E-nose, E-tongue and E-eye combined with chemometrics. Food Chemistry, 289, 482–489. https://doi.org/https://doi.org/10.1016/j.foodchem.2019.03.080es_CO
    dc.relation.referencesZhang, H., Wang, J., Ye, S., & Chang, M. (2012). Application of Electronic Nose and Statistical Analysis to Predict Quality Indices of Peach. In Food and Bioprocess Technology (Vol. 5). https://doi.org/10.1007/s11947-009-0295-7es_CO
    dc.relation.referencesZhang, L., Li, H., & Kong, X.-G. (2019). Evolving feedforward artificial neural networks using a two-stage approach. Neurocomputing, 360, 25–36. https://doi.org/10.1016/J.NEUCOM.2019.03.097es_CO
    dc.rights.accessrightshttp://purl.org/coar/access_right/c_abf2es_CO
    dc.type.coarversionhttp://purl.org/coar/resource_type/c_2df8fbb1es_CO
    Aparece en las colecciones: Maestría en Controles Industriales

    Ficheros en este ítem:
    Fichero Descripción Tamaño Formato  
    Rivera_2019_TG.pdfRivera_2019_TG.pdf970,62 kBAdobe PDFVisualizar/Abrir


    Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.