• Repositorio Institucional Universidad de Pamplona
  • Tesis de maestría y doctorado
  • Facultad de Ingenierías y Arquitectura
  • Maestría en Controles Industriales
  • Por favor, use este identificador para citar o enlazar este ítem: http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/3348
    Registro completo de metadatos
    Campo DC Valor Lengua/Idioma
    dc.contributor.authorGamboa Araque, Libardo.-
    dc.date.accessioned2022-10-03T15:28:42Z-
    dc.date.available2020-05-07-
    dc.date.available2022-10-03T15:28:42Z-
    dc.date.issued2020-
    dc.identifier.citationGamboa Araque, L. (2020). Implementación del control directo del par con inversor multinivel para un motor de inducción [Trabajo de Grado Maestría, Universidad de Pamplona]. Repositorio Hulago Universidad de Pamplona. http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/3348es_CO
    dc.identifier.urihttp://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/3348-
    dc.descriptionEn este trabajo se implementará un controlador directo del par para un motor de inducción jaula de ardilla, de bajo costo la programación se realizara sobre un DSPic el inversor utilizado será de tres niveles y se sustituirá el selector de niveles por una red neuronal, Lo que busca este proyecto es mejorar el control directo del par (DTC) clásico en cuanto al reducir la distorsión armónica con la que es alimentado el motor, debido a que esta técnica avanzada de control de motores presenta el mejor comportamiento dinámico pero su desventaja radica en que el torque presenta un gran rizado y con ello el voltaje de alimentación del motor presenta una gran distorsión armónica, al tener el inversor más de dos niveles se tienen mayor número de vectores por lo que la complejidad de buscar cual debe ser el vector de voltaje optimo aumenta, con la red neuronal se busca identificar de manera óptima cual debe ser el vector de voltaje que producirá menor distorsión armónica.es_CO
    dc.description.abstractIn this work, a direct torque controller for a squirrel-cage induction motor will be implemented, low-cost programming will be carried out on a DSPic, the inverter used will be three levels and the level selector will be replaced by a neural network. seeks this project is to improve the direct control of the torque (DTC) classic in terms of reducing the harmonic distortion with which the engine is powered, because this advanced technique of motor control has the best dynamic behavior but its disadvantage lies in that the torque presents a large ripple and with it the voltage of the motor supply presents a great harmonic distortion, to have the inverter more than two levels have a greater number of vectors so the complexity of looking what should be the optimal voltage vector increases, with the neural network seeks to identify optimally what should be the voltage vector that will produce less harmonic distortion.es_CO
    dc.format.extent146es_CO
    dc.format.mimetypeapplication/pdfes_CO
    dc.language.isoeses_CO
    dc.publisherUniversidad de Pamplona – Facultad de Ingenierías y Arquitectura.es_CO
    dc.subjectEl autor no proporciona la información sobre este ítem.es_CO
    dc.titleImplementación del control directo del par con inversor multinivel para un motor de inducción.es_CO
    dc.typehttp://purl.org/coar/resource_type/c_bdcces_CO
    dc.date.accepted2020-02-07-
    dc.relation.references[1] B. K. Bose, “Power Electronics and Motor Drives Recent Progress and Perspective,” IEEE Trans. Ind. Electron., vol. 56, no. 2, pp. 581–588, 2009.es_CO
    dc.relation.references[2] R.-J. Wai and K.-M. Lin, “Robust decoupled control of direct field-oriented induction motor drive,” IEEE Trans. Ind. Electron., vol. 52, no. 3, pp. 837–854, 2005.es_CO
    dc.relation.references[3] M. Hajian, G. R. Arab Markadeh, J. Soltani, and S. Hoseinnia, “Energy optimized sliding-mode control of sensorless induction motor drives,” Energy Convers. Manag., vol. 50, no. 9, pp. 2296–2306, 2009.es_CO
    dc.relation.references[4] C. M. F. S. Reza, M. D. Islam, and S. Mekhilef, “A review of reliable and energy efficient direct torque controlled induction motor drives,” Renew. Sustain. Energy Rev., vol. 37, no. 0, pp. 919–932, 2014.es_CO
    dc.relation.references[5] F. Zidani, M.-S. Nait-Said, R. Abdessemed, and A. Benoudjit, “Induction machine performances in scalar and field oriented control,” in POWERCON ’98. 1998 International Conference on Power System Technology. Proceedings (Cat. No.98EX151), 1998, vol. 1, pp. 595–599 vol.1.es_CO
    dc.relation.references[6] F. Blaschke, “The principle of field orientation as applied to the new TRANSVECTOR closed loop control system for rotating field machines.,” Siemens Rev, 1972.es_CO
    dc.relation.references[7] I. Takahashi and T. Noguchi, “A New Quick-Response and High-Efficiency Control Strategy of an Induction Motor,” Ind. Appl. IEEE Trans., vol. IA-22, no. 5, pp. 820– 827, Sep. 1986.es_CO
    dc.relation.references[8] U. Baader, M. Depenbrock, and G. Gierse, “Direct self control (DSC) of inverter-fed induction machine: a basis for speed control without speed measurement,” Ind. Appl. IEEE Trans., vol. 28, no. 3, pp. 581–588, May 1992.es_CO
    dc.relation.references[9] B. El Badsi, B. Bouzidi, and A. Masmoudi, “DTC Scheme for a Four-Switch Inverter Fed Induction Motor Emulating the Six-Switch Inverter Operation,” IEEE Trans. Power Electron., vol. 28, no. 7, pp. 3528–3538, 2013.es_CO
    dc.relation.references[10] J. F. Mora, Máquinas eléctricas, 5th ed. Mc Graw Hill, 2003.es_CO
    dc.relation.references[11] L. D. Pabon Fernandez, Control de velocidad del motor de inducción mediante convertidor de potencia multinivel con optimización de armónicos. Tesis de maestria, 2016.es_CO
    dc.relation.references[12] C. A. Martins and A. S. Carvalho, “Technological trends in induction motor electrical drives,” in 2001 IEEE Porto Power Tech Proceedings (Cat. No.01EX502), 2001, vol. 2, 129 p. 7 pp. vol.2.es_CO
    dc.relation.references[13] M. S. FREDY HERNÁN and G. L. JHON JAIRO, “Scalar Control in Monophasic Induction Motors,” con-CienCias, pp. 30–37, 2006.es_CO
    dc.relation.references[14] R. Morales-Caporal, R. Ordoñez-Flores, E. Huerta, J. Hernandez, and O. sandre hernandez, Simulación del control por campo orientado y del control directo del par de un servomotor síncrono de imanes permanentes con control inteligente de velocidad. 2011.es_CO
    dc.relation.references[15] C. M. F. S. Reza and S. Mekhilef, “Online stator resistance estimation using artificial neural network for direct torque controlled induction motor drive,” in 2013 IEEE 8th Conference on Industrial Electronics and Applications (ICIEA), 2013, pp. 1486–1491.es_CO
    dc.relation.references[16] K.-B. Lee, S.-H. Huh, J.-Y. Yoo, and F. Blaabjerg, “Performance improvement of DTC for induction motor-fed by three-level inverter with an uncertainty observer using RBFN,” IEEE Trans. Energy Convers., vol. 20, no. 2, pp. 276–283, 2005.es_CO
    dc.relation.references[17] C. Patel, R. P. P., A. Dey, R. Ramchand, K. Gopakumar, and M. P. Kazmierkowski, “Fast Direct Torque Control of an Open-End Induction Motor Drive Using 12-Sided Polygonal Voltage Space Vectors,” IEEE Trans. Power Electron., vol. 27, no. 1, pp. 400–410, 2012.es_CO
    dc.relation.references[18] T. G. Habetler, F. Profumo, M. Pastorelli, and L. M. Tolbert, “Direct torque control of induction machines using space vector modulation,” Ind. Appl. IEEE Trans., vol. 28, no. 5, pp. 1045–1053, Sep. 1992.es_CO
    dc.relation.references[19] K.-B. Lee and F. Blaabjerg, “Sensorless DTC-SVM for Induction Motor Driven by a Matrix Converter Using a Parameter Estimation Strategy,” Ind. Electron. IEEE Trans., vol. 55, no. 2, pp. 512–521, Feb. 2008.es_CO
    dc.relation.references[20] D. Casadei, G. Serra, A. Tani, L. Zarri, and F. Profumo, “Performance analysis of a speed-sensorless induction motor drive based on a constant-switching-frequency DTC scheme,” IEEE Trans. Ind. Appl., vol. 39, no. 2, pp. 476–484, 2003.es_CO
    dc.relation.references[21] M. Fu and L. Xu, “A novel sensorless control technique for permanent magnet synchronous motor (PMSM) using digital signal processor (DSP),” in Proceedings of the IEEE 1997 National Aerospace and Electronics Conference. NAECON 1997, 1997, vol. 1, pp. 403–408 vol.1.es_CO
    dc.relation.references[22] Y. Kumsuwan, S. Premrudeepreechacharn, and H. A. Toliyat, “Modified direct torque control method for induction motor drives based on amplitude and angle control of stator flux,” Electr. Power Syst. Res., vol. 78, no. 10, pp. 1712–1718, 2008.es_CO
    dc.relation.references[23] G. Narayanan, D. Zhao, H. K. Krishnamurthy, R. Ayyanar, and V. T. Ranganathan, “Space Vector Based Hybrid PWM Techniques for Reduced Current Ripple,” IEEE Trans. Ind. Electron., vol. 55, no. 4, pp. 1614–1627, 2008.es_CO
    dc.relation.references[24] U. Senthil and B. G. Fernandes, “Hybrid space vector pulse width modulation based direct torque controlled induction motor drive,” in Power Electronics Specialist Conference, 2003. PESC ’03. 2003 IEEE 34th Annual, 2003, vol. 3, pp. 1112–1117 vol.3.es_CO
    dc.relation.references[25] D. Casadei, G. Serra, and A. Tani, “Implementation of a direct control algorithm for induction motors based on discrete space vector modulation,” Power Electron. IEEE 130 Trans., vol. 15, no. 4, pp. 769–777, Jul. 2000.es_CO
    dc.relation.references[26] O. Ojo, “The generalized discontinuous PWM scheme for three-phase voltage source inverters,” IEEE Trans. Ind. Electron., vol. 51, no. 6, pp. 1280–1289, 2004.es_CO
    dc.relation.references[27] A. M. Hava, R. J. Kerkman, and T. A. Lipo, “A high-performance generalized discontinuous PWM algorithm,” IEEE Trans. Ind. Appl., vol. 34, no. 5, pp. 1059– 1071, 1998.es_CO
    dc.relation.references[28] T. B. Reddy, J. Amarnath, D. SubbaRayudu, and M. Haseeb Khan, “Generalized Discontinuous PWM Based Direct Torque Controlled Induction Motor Drive with a Sliding Mode Speed Controller,” in Power Electronics, Drives and Energy Systems, 2006. PEDES ’06. International Conference on, 2006, pp. 1–6.es_CO
    dc.relation.references[29] S.-K. Lin and C.-H. Fang, “Sliding-mode direct torque control of an induction motor,” in Industrial Electronics Society, 2001. IECON ’01. The 27th Annual Conference of the IEEE, 2001, vol. 3, pp. 2171–2177 vol.3.es_CO
    dc.relation.references[30] A. A. Naassani, E. Monmasson, and J.-P. Louis, “Synthesis of direct torque and rotor flux control algorithms by means of sliding-mode theory,” Ind. Electron. IEEE Trans., vol. 52, no. 3, pp. 785–799, 2005.es_CO
    dc.relation.references[31] S. A. Mir, M. E. Elbuluk, and D. S. Zinger, “Fuzzy implementation of direct self control of induction machines,” Ind. Appl. IEEE Trans., vol. 30, no. 3, pp. 729–735, May 1994.es_CO
    dc.relation.references[32] M. N. Uddin and M. Hafeez, “FLC-Based DTC Scheme to Improve the Dynamic Performance of an IM Drive,” Ind. Appl. IEEE Trans., vol. 48, no. 2, pp. 823–831, 2012.es_CO
    dc.relation.references[33] M. Hafeez, M. N. Uddin, and R. S. Rebeiro, “FLC based hysteresis band adaptation to optimize torque and stator flux ripples of a DTC based IM drive,” in 2010 IEEE Electrical Power & Energy Conference, 2010, pp. 1–5.es_CO
    dc.relation.references[34] K. N. Sujatha and K. Vaisakh, “Self-tuning Fuzzy PI scheme for DTC Induction Motor drive,” in Power and Energy Society General Meeting, 2010 IEEE, 2010, pp. 1–6.es_CO
    dc.relation.references[35] S. M. Jadhav and V. S. Patil, “Review of significant researches on multimedia information retrieval,” in 2012 International Conference on Communication, Information & Computing Technology (ICCICT), 2012, pp. 1–6.es_CO
    dc.relation.references[36] Y. Sayouti, A. Abbou, M. Akherraz, and H. Mahmoudi, “Sensor less low speed control with ANN MRAS for direct torque controlled induction motor drive,” in 2011 International Conference on Power Engineering, Energy and Electrical Drives, 2011, pp. 1–5.es_CO
    dc.relation.references[37] L. M. Grzesiak and B. Ufnalski, “DTC drive with ANN-based stator flux estimator,” in Power Electronics and Applications, 2005 European Conference on, 2005, p. 10 pp.- P.10.es_CO
    dc.relation.references[38] B. Karanayil, M. F. Rahman, and C. Grantham, “Online Stator and Rotor Resistance Estimation Scheme Using Artificial Neural Networks for Vector Controlled Speed Sensorless Induction Motor Drive,” IEEE Trans. Ind. Electron., vol. 54, no. 1, pp. 167– 176, 2007.es_CO
    dc.relation.references[39] X. Qu, B. Song, and H. Li, “DTC with adaptive stator flux observer and stator 131 resistance estimator for induction motors,” in 2010 8th World Congress on Intelligent Control and Automation, 2010, pp. 2460–2463.es_CO
    dc.relation.references[40] P. Z. Grabowski, M. P. Kazmierkowski, B. K. Bose, and F. Blaabjerg, “A simple direct torque neuro-fuzzy control of PWM-inverter-fed induction motor drive,” IEEE Trans. Ind. Electron., vol. 47, no. 4, pp. 863–870, 2000.es_CO
    dc.relation.references[41] V. Faraji and D. A. Khaburi, “A new approach to DTC-ISVM for induction motor drive system fed by indirect matrix converter,” in 2011 2nd Power Electronics, Drive Systems and Technologies Conference, 2011, pp. 367–372.es_CO
    dc.relation.references[42] D. Sun, X. Liu, L. Shang, and Y. B. Ivonne, “Four-switch three-phase inverter fed DTC system considering DC-link voltage imbalance,” in 2008 International Conference on Electrical Machines and Systems, 2008, pp. 1068–1072.es_CO
    dc.relation.references[43] M. Elgueta and J. Dixon, Aplicación de un inversor multinivel como variador de frecuencia de un motor de inducción trifásico, Tesis de m. Pontificia Universidad Catolica De Chile, 2005.es_CO
    dc.relation.references[44] E. Bárcenas Bárcenas, R. Echavarría Solís, and S. Ramírez guerrero, Análisis y desarrollo de un inversor, Tesis para. Centro nacional de investigación y desarrollo tecnológico CENIT, 2002.es_CO
    dc.relation.references[45] A. Nordvall, Multilevel Inverter Topology Survey, Thesis for. CHALMERS UNIVERSITY OF TECHNOLOGY, 2011.es_CO
    dc.relation.references[46] N. Mittal, B. Singh, S. P. Singh, R. Dixit, and D. Kumar, “Multilevel inverters: A literature survey on topologies and control strategies,” in 2012 2nd International Conference on Power, Control and Embedded Systems, 2012, pp. 1–11.es_CO
    dc.relation.references[47] A. Nabae, I. Takahashi, and H. Akagi, “A New Neutral-Point-Clamped PWM Inverter,” IEEE Trans. Ind. Appl., vol. IA-17, no. 5, pp. 518–523, 1981.es_CO
    dc.relation.references[48] A. Breton, Diseño y construcción de un inversor trifásico multinivel de cuatro etapas para compensación armónica y de reactivos, Memoria pa. Pontificia Universidad Catolica De Chile Escuela De Ingenieria.es_CO
    dc.relation.references[49] S. Khomfoi and M. T. Leon, “Multilevel Power Converters,” in Power electronic Handbook, 2009.es_CO
    dc.relation.references[50] J. G. Proakis, D. G. Manolakis, and V. K. Ingle, “Digital signal processing,” 2007.es_CO
    dc.rights.accessrightshttp://purl.org/coar/access_right/c_abf2es_CO
    dc.type.coarversionhttp://purl.org/coar/resource_type/c_2df8fbb1es_CO
    Aparece en las colecciones: Maestría en Controles Industriales

    Ficheros en este ítem:
    Fichero Descripción Tamaño Formato  
    Gamboa_2020_TG.pdfGamboa_2020_TG.pdf5,7 MBAdobe PDFVisualizar/Abrir


    Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.