Por favor, use este identificador para citar o enlazar este ítem:
http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/3348
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | Gamboa Araque, Libardo. | - |
dc.date.accessioned | 2022-10-03T15:28:42Z | - |
dc.date.available | 2020-05-07 | - |
dc.date.available | 2022-10-03T15:28:42Z | - |
dc.date.issued | 2020 | - |
dc.identifier.citation | Gamboa Araque, L. (2020). Implementación del control directo del par con inversor multinivel para un motor de inducción [Trabajo de Grado Maestría, Universidad de Pamplona]. Repositorio Hulago Universidad de Pamplona. http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/3348 | es_CO |
dc.identifier.uri | http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/3348 | - |
dc.description | En este trabajo se implementará un controlador directo del par para un motor de inducción jaula de ardilla, de bajo costo la programación se realizara sobre un DSPic el inversor utilizado será de tres niveles y se sustituirá el selector de niveles por una red neuronal, Lo que busca este proyecto es mejorar el control directo del par (DTC) clásico en cuanto al reducir la distorsión armónica con la que es alimentado el motor, debido a que esta técnica avanzada de control de motores presenta el mejor comportamiento dinámico pero su desventaja radica en que el torque presenta un gran rizado y con ello el voltaje de alimentación del motor presenta una gran distorsión armónica, al tener el inversor más de dos niveles se tienen mayor número de vectores por lo que la complejidad de buscar cual debe ser el vector de voltaje optimo aumenta, con la red neuronal se busca identificar de manera óptima cual debe ser el vector de voltaje que producirá menor distorsión armónica. | es_CO |
dc.description.abstract | In this work, a direct torque controller for a squirrel-cage induction motor will be implemented, low-cost programming will be carried out on a DSPic, the inverter used will be three levels and the level selector will be replaced by a neural network. seeks this project is to improve the direct control of the torque (DTC) classic in terms of reducing the harmonic distortion with which the engine is powered, because this advanced technique of motor control has the best dynamic behavior but its disadvantage lies in that the torque presents a large ripple and with it the voltage of the motor supply presents a great harmonic distortion, to have the inverter more than two levels have a greater number of vectors so the complexity of looking what should be the optimal voltage vector increases, with the neural network seeks to identify optimally what should be the voltage vector that will produce less harmonic distortion. | es_CO |
dc.format.extent | 146 | es_CO |
dc.format.mimetype | application/pdf | es_CO |
dc.language.iso | es | es_CO |
dc.publisher | Universidad de Pamplona – Facultad de Ingenierías y Arquitectura. | es_CO |
dc.subject | El autor no proporciona la información sobre este ítem. | es_CO |
dc.title | Implementación del control directo del par con inversor multinivel para un motor de inducción. | es_CO |
dc.type | http://purl.org/coar/resource_type/c_bdcc | es_CO |
dc.date.accepted | 2020-02-07 | - |
dc.relation.references | [1] B. K. Bose, “Power Electronics and Motor Drives Recent Progress and Perspective,” IEEE Trans. Ind. Electron., vol. 56, no. 2, pp. 581–588, 2009. | es_CO |
dc.relation.references | [2] R.-J. Wai and K.-M. Lin, “Robust decoupled control of direct field-oriented induction motor drive,” IEEE Trans. Ind. Electron., vol. 52, no. 3, pp. 837–854, 2005. | es_CO |
dc.relation.references | [3] M. Hajian, G. R. Arab Markadeh, J. Soltani, and S. Hoseinnia, “Energy optimized sliding-mode control of sensorless induction motor drives,” Energy Convers. Manag., vol. 50, no. 9, pp. 2296–2306, 2009. | es_CO |
dc.relation.references | [4] C. M. F. S. Reza, M. D. Islam, and S. Mekhilef, “A review of reliable and energy efficient direct torque controlled induction motor drives,” Renew. Sustain. Energy Rev., vol. 37, no. 0, pp. 919–932, 2014. | es_CO |
dc.relation.references | [5] F. Zidani, M.-S. Nait-Said, R. Abdessemed, and A. Benoudjit, “Induction machine performances in scalar and field oriented control,” in POWERCON ’98. 1998 International Conference on Power System Technology. Proceedings (Cat. No.98EX151), 1998, vol. 1, pp. 595–599 vol.1. | es_CO |
dc.relation.references | [6] F. Blaschke, “The principle of field orientation as applied to the new TRANSVECTOR closed loop control system for rotating field machines.,” Siemens Rev, 1972. | es_CO |
dc.relation.references | [7] I. Takahashi and T. Noguchi, “A New Quick-Response and High-Efficiency Control Strategy of an Induction Motor,” Ind. Appl. IEEE Trans., vol. IA-22, no. 5, pp. 820– 827, Sep. 1986. | es_CO |
dc.relation.references | [8] U. Baader, M. Depenbrock, and G. Gierse, “Direct self control (DSC) of inverter-fed induction machine: a basis for speed control without speed measurement,” Ind. Appl. IEEE Trans., vol. 28, no. 3, pp. 581–588, May 1992. | es_CO |
dc.relation.references | [9] B. El Badsi, B. Bouzidi, and A. Masmoudi, “DTC Scheme for a Four-Switch Inverter Fed Induction Motor Emulating the Six-Switch Inverter Operation,” IEEE Trans. Power Electron., vol. 28, no. 7, pp. 3528–3538, 2013. | es_CO |
dc.relation.references | [10] J. F. Mora, Máquinas eléctricas, 5th ed. Mc Graw Hill, 2003. | es_CO |
dc.relation.references | [11] L. D. Pabon Fernandez, Control de velocidad del motor de inducción mediante convertidor de potencia multinivel con optimización de armónicos. Tesis de maestria, 2016. | es_CO |
dc.relation.references | [12] C. A. Martins and A. S. Carvalho, “Technological trends in induction motor electrical drives,” in 2001 IEEE Porto Power Tech Proceedings (Cat. No.01EX502), 2001, vol. 2, 129 p. 7 pp. vol.2. | es_CO |
dc.relation.references | [13] M. S. FREDY HERNÁN and G. L. JHON JAIRO, “Scalar Control in Monophasic Induction Motors,” con-CienCias, pp. 30–37, 2006. | es_CO |
dc.relation.references | [14] R. Morales-Caporal, R. Ordoñez-Flores, E. Huerta, J. Hernandez, and O. sandre hernandez, Simulación del control por campo orientado y del control directo del par de un servomotor síncrono de imanes permanentes con control inteligente de velocidad. 2011. | es_CO |
dc.relation.references | [15] C. M. F. S. Reza and S. Mekhilef, “Online stator resistance estimation using artificial neural network for direct torque controlled induction motor drive,” in 2013 IEEE 8th Conference on Industrial Electronics and Applications (ICIEA), 2013, pp. 1486–1491. | es_CO |
dc.relation.references | [16] K.-B. Lee, S.-H. Huh, J.-Y. Yoo, and F. Blaabjerg, “Performance improvement of DTC for induction motor-fed by three-level inverter with an uncertainty observer using RBFN,” IEEE Trans. Energy Convers., vol. 20, no. 2, pp. 276–283, 2005. | es_CO |
dc.relation.references | [17] C. Patel, R. P. P., A. Dey, R. Ramchand, K. Gopakumar, and M. P. Kazmierkowski, “Fast Direct Torque Control of an Open-End Induction Motor Drive Using 12-Sided Polygonal Voltage Space Vectors,” IEEE Trans. Power Electron., vol. 27, no. 1, pp. 400–410, 2012. | es_CO |
dc.relation.references | [18] T. G. Habetler, F. Profumo, M. Pastorelli, and L. M. Tolbert, “Direct torque control of induction machines using space vector modulation,” Ind. Appl. IEEE Trans., vol. 28, no. 5, pp. 1045–1053, Sep. 1992. | es_CO |
dc.relation.references | [19] K.-B. Lee and F. Blaabjerg, “Sensorless DTC-SVM for Induction Motor Driven by a Matrix Converter Using a Parameter Estimation Strategy,” Ind. Electron. IEEE Trans., vol. 55, no. 2, pp. 512–521, Feb. 2008. | es_CO |
dc.relation.references | [20] D. Casadei, G. Serra, A. Tani, L. Zarri, and F. Profumo, “Performance analysis of a speed-sensorless induction motor drive based on a constant-switching-frequency DTC scheme,” IEEE Trans. Ind. Appl., vol. 39, no. 2, pp. 476–484, 2003. | es_CO |
dc.relation.references | [21] M. Fu and L. Xu, “A novel sensorless control technique for permanent magnet synchronous motor (PMSM) using digital signal processor (DSP),” in Proceedings of the IEEE 1997 National Aerospace and Electronics Conference. NAECON 1997, 1997, vol. 1, pp. 403–408 vol.1. | es_CO |
dc.relation.references | [22] Y. Kumsuwan, S. Premrudeepreechacharn, and H. A. Toliyat, “Modified direct torque control method for induction motor drives based on amplitude and angle control of stator flux,” Electr. Power Syst. Res., vol. 78, no. 10, pp. 1712–1718, 2008. | es_CO |
dc.relation.references | [23] G. Narayanan, D. Zhao, H. K. Krishnamurthy, R. Ayyanar, and V. T. Ranganathan, “Space Vector Based Hybrid PWM Techniques for Reduced Current Ripple,” IEEE Trans. Ind. Electron., vol. 55, no. 4, pp. 1614–1627, 2008. | es_CO |
dc.relation.references | [24] U. Senthil and B. G. Fernandes, “Hybrid space vector pulse width modulation based direct torque controlled induction motor drive,” in Power Electronics Specialist Conference, 2003. PESC ’03. 2003 IEEE 34th Annual, 2003, vol. 3, pp. 1112–1117 vol.3. | es_CO |
dc.relation.references | [25] D. Casadei, G. Serra, and A. Tani, “Implementation of a direct control algorithm for induction motors based on discrete space vector modulation,” Power Electron. IEEE 130 Trans., vol. 15, no. 4, pp. 769–777, Jul. 2000. | es_CO |
dc.relation.references | [26] O. Ojo, “The generalized discontinuous PWM scheme for three-phase voltage source inverters,” IEEE Trans. Ind. Electron., vol. 51, no. 6, pp. 1280–1289, 2004. | es_CO |
dc.relation.references | [27] A. M. Hava, R. J. Kerkman, and T. A. Lipo, “A high-performance generalized discontinuous PWM algorithm,” IEEE Trans. Ind. Appl., vol. 34, no. 5, pp. 1059– 1071, 1998. | es_CO |
dc.relation.references | [28] T. B. Reddy, J. Amarnath, D. SubbaRayudu, and M. Haseeb Khan, “Generalized Discontinuous PWM Based Direct Torque Controlled Induction Motor Drive with a Sliding Mode Speed Controller,” in Power Electronics, Drives and Energy Systems, 2006. PEDES ’06. International Conference on, 2006, pp. 1–6. | es_CO |
dc.relation.references | [29] S.-K. Lin and C.-H. Fang, “Sliding-mode direct torque control of an induction motor,” in Industrial Electronics Society, 2001. IECON ’01. The 27th Annual Conference of the IEEE, 2001, vol. 3, pp. 2171–2177 vol.3. | es_CO |
dc.relation.references | [30] A. A. Naassani, E. Monmasson, and J.-P. Louis, “Synthesis of direct torque and rotor flux control algorithms by means of sliding-mode theory,” Ind. Electron. IEEE Trans., vol. 52, no. 3, pp. 785–799, 2005. | es_CO |
dc.relation.references | [31] S. A. Mir, M. E. Elbuluk, and D. S. Zinger, “Fuzzy implementation of direct self control of induction machines,” Ind. Appl. IEEE Trans., vol. 30, no. 3, pp. 729–735, May 1994. | es_CO |
dc.relation.references | [32] M. N. Uddin and M. Hafeez, “FLC-Based DTC Scheme to Improve the Dynamic Performance of an IM Drive,” Ind. Appl. IEEE Trans., vol. 48, no. 2, pp. 823–831, 2012. | es_CO |
dc.relation.references | [33] M. Hafeez, M. N. Uddin, and R. S. Rebeiro, “FLC based hysteresis band adaptation to optimize torque and stator flux ripples of a DTC based IM drive,” in 2010 IEEE Electrical Power & Energy Conference, 2010, pp. 1–5. | es_CO |
dc.relation.references | [34] K. N. Sujatha and K. Vaisakh, “Self-tuning Fuzzy PI scheme for DTC Induction Motor drive,” in Power and Energy Society General Meeting, 2010 IEEE, 2010, pp. 1–6. | es_CO |
dc.relation.references | [35] S. M. Jadhav and V. S. Patil, “Review of significant researches on multimedia information retrieval,” in 2012 International Conference on Communication, Information & Computing Technology (ICCICT), 2012, pp. 1–6. | es_CO |
dc.relation.references | [36] Y. Sayouti, A. Abbou, M. Akherraz, and H. Mahmoudi, “Sensor less low speed control with ANN MRAS for direct torque controlled induction motor drive,” in 2011 International Conference on Power Engineering, Energy and Electrical Drives, 2011, pp. 1–5. | es_CO |
dc.relation.references | [37] L. M. Grzesiak and B. Ufnalski, “DTC drive with ANN-based stator flux estimator,” in Power Electronics and Applications, 2005 European Conference on, 2005, p. 10 pp.- P.10. | es_CO |
dc.relation.references | [38] B. Karanayil, M. F. Rahman, and C. Grantham, “Online Stator and Rotor Resistance Estimation Scheme Using Artificial Neural Networks for Vector Controlled Speed Sensorless Induction Motor Drive,” IEEE Trans. Ind. Electron., vol. 54, no. 1, pp. 167– 176, 2007. | es_CO |
dc.relation.references | [39] X. Qu, B. Song, and H. Li, “DTC with adaptive stator flux observer and stator 131 resistance estimator for induction motors,” in 2010 8th World Congress on Intelligent Control and Automation, 2010, pp. 2460–2463. | es_CO |
dc.relation.references | [40] P. Z. Grabowski, M. P. Kazmierkowski, B. K. Bose, and F. Blaabjerg, “A simple direct torque neuro-fuzzy control of PWM-inverter-fed induction motor drive,” IEEE Trans. Ind. Electron., vol. 47, no. 4, pp. 863–870, 2000. | es_CO |
dc.relation.references | [41] V. Faraji and D. A. Khaburi, “A new approach to DTC-ISVM for induction motor drive system fed by indirect matrix converter,” in 2011 2nd Power Electronics, Drive Systems and Technologies Conference, 2011, pp. 367–372. | es_CO |
dc.relation.references | [42] D. Sun, X. Liu, L. Shang, and Y. B. Ivonne, “Four-switch three-phase inverter fed DTC system considering DC-link voltage imbalance,” in 2008 International Conference on Electrical Machines and Systems, 2008, pp. 1068–1072. | es_CO |
dc.relation.references | [43] M. Elgueta and J. Dixon, Aplicación de un inversor multinivel como variador de frecuencia de un motor de inducción trifásico, Tesis de m. Pontificia Universidad Catolica De Chile, 2005. | es_CO |
dc.relation.references | [44] E. Bárcenas Bárcenas, R. Echavarría Solís, and S. Ramírez guerrero, Análisis y desarrollo de un inversor, Tesis para. Centro nacional de investigación y desarrollo tecnológico CENIT, 2002. | es_CO |
dc.relation.references | [45] A. Nordvall, Multilevel Inverter Topology Survey, Thesis for. CHALMERS UNIVERSITY OF TECHNOLOGY, 2011. | es_CO |
dc.relation.references | [46] N. Mittal, B. Singh, S. P. Singh, R. Dixit, and D. Kumar, “Multilevel inverters: A literature survey on topologies and control strategies,” in 2012 2nd International Conference on Power, Control and Embedded Systems, 2012, pp. 1–11. | es_CO |
dc.relation.references | [47] A. Nabae, I. Takahashi, and H. Akagi, “A New Neutral-Point-Clamped PWM Inverter,” IEEE Trans. Ind. Appl., vol. IA-17, no. 5, pp. 518–523, 1981. | es_CO |
dc.relation.references | [48] A. Breton, Diseño y construcción de un inversor trifásico multinivel de cuatro etapas para compensación armónica y de reactivos, Memoria pa. Pontificia Universidad Catolica De Chile Escuela De Ingenieria. | es_CO |
dc.relation.references | [49] S. Khomfoi and M. T. Leon, “Multilevel Power Converters,” in Power electronic Handbook, 2009. | es_CO |
dc.relation.references | [50] J. G. Proakis, D. G. Manolakis, and V. K. Ingle, “Digital signal processing,” 2007. | es_CO |
dc.rights.accessrights | http://purl.org/coar/access_right/c_abf2 | es_CO |
dc.type.coarversion | http://purl.org/coar/resource_type/c_2df8fbb1 | es_CO |
Aparece en las colecciones: | Maestría en Controles Industriales |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
Gamboa_2020_TG.pdf | Gamboa_2020_TG.pdf | 5,7 MB | Adobe PDF | Visualizar/Abrir |
Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.