• Repositorio Institucional Universidad de Pamplona
  • Tesis de maestría y doctorado
  • Facultad de Ciencias Básicas
  • Maestría en Biología Molecular y Biotecnología
  • Por favor, use este identificador para citar o enlazar este ítem: http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/2932
    Registro completo de metadatos
    Campo DC Valor Lengua/Idioma
    dc.contributor.authorJaimes Méndez, Diego Alexander.-
    dc.date.accessioned2022-09-27T14:20:04Z-
    dc.date.available2021-06-09-
    dc.date.available2022-09-27T14:20:04Z-
    dc.date.issued2021-
    dc.identifier.citationJaimes Méndez, D. A. (2021). Caracterización del perfil de las proteasas intestinales de Belminus herreri, Belminus ferroae y Belminus corredori (Hemíptera: Triatominae) en condiciones de hemolinfagia y hematofagia, [Trabajo de Grado Maestria, Universidad de Pamplona]. Repositorio Hulago Universidad de Pamplona. http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/2932es_CO
    dc.identifier.urihttp://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/2932-
    dc.descriptionEn el presente estudio se establecieron las características de la actividad proteolítica intestinal, en insectos de la subfamilia Triatominae, pertenecientes al género Belminus (B. ferroae, B. herreri y B. corredori). Se determinó que el pH óptimo en las tres especies, bajo condiciones de alimentación de hematofagia y hemolinfagia es de 5.5, también se observó que de las tres especies alimentadas con hemolinfa B. ferroae fue quien obtuvo los valores más altos de actividad proteolítica medida sobre el sustrato azocaseina a pH 5.5 con una absorbancia de 0393. Analizando el grupo alimentado con sangre B. corredori fue quien obtuvo la mayor hidrólisis de azocaseina en pH 5.5 con una DO de 0,0336. En los análisis de actividad proteolítica posingesta se concluye que los tiempos de digestión de sangre y hemolinfa son diferentes. En las tres especies alimentadas con hemolinfa se observa actividad proteolítica a partir del día 1 posingesta y el primer pico en el día 2, por el contrario, cuando las especies son alimentadas con sangre la hidrólisis de la azocaseina se hace notoria a partir del día 5 en B. herreri y el primer pico se observa en el día 7 tanto en B. herreri como en B. ferroae. Esto sugiere que la hemolinfa es mucho más sencilla de digerir por estas tres especies que la sangre. Por otra parte, se estableció que las proteasas presentes en el intestino de las tres especies de Belminus en las dos condiciones de alimentación son proteasas cisteínicas y aspárticas, para lo cual se utilizaron inhibidores específicos como N- Tosil-L-fenilalanil Clorometil cetona (TPCK), Tosil-Lisil-clorometilcetona (TLCK), el Fluoruro de fenilmetilsulfonilo (PMSF), pepstatin A y Trans-epoxisuccinil-Lleucilamído-(4-guanidin butano) E-64. Estas enzimas son catalogadas como proteasas ácidas por su mejor acción a pH bajo, lo cual fue coherente con el pH óptimo de acción de la actividad proteolítica mostrado por estas especies (5.5). Por lo tanto, en este trabajo se reporta por primera vez en especies del género Belminus la presencia de proteasa cisteínicas y aspártica, resultado que coincide con previas caracterizaciones en otras especies de la subfamilia con comportamiento marcadamente hematófago. El conocimiento de algunos procesos fisiológicos relacionados con la digestión de estas dos dietas involucradas en la ruta de insectos predadores a hematófagos o viceversa, sin duda puede aportar en el entendimiento de la evolución de los Triatominae. Por otra parte, además de actuar las proteasas en procesos vitales como la digestión, también están implicadas en el desarrollo de huevos e inmunidad, en la capacidad vectora de agentes causantes de enfermedades, por esto las proteasas pueden ser un blanco interesante en el control de vectores.es_CO
    dc.description.abstractEl autor no proporciona la información sobre este ítem.es_CO
    dc.format.extent75es_CO
    dc.format.mimetypeapplication/pdfes_CO
    dc.language.isoeses_CO
    dc.publisherUniversidad de Pamplona – Facultad de Ciencias Basicas.es_CO
    dc.subjectTriatominae.es_CO
    dc.subjectBelminus.es_CO
    dc.subjectActividad proteolítica.es_CO
    dc.subjectProteasas.es_CO
    dc.subjectInhibidores.es_CO
    dc.subjectPH.es_CO
    dc.titleCaracterización del perfil de las proteasas intestinales de Belminus herreri, Belminus ferroae y Belminus corredori (Hemíptera: Triatominae) en condiciones de hemolinfagia y hematofagiaes_CO
    dc.typehttp://purl.org/coar/resource_type/c_bdcces_CO
    dc.date.accepted2021-03-09-
    dc.relation.referencesAlbritton, E.C. (1952). Standard Values in Blood. Prepared under the direction of the Committee on the Handbook of Biological Data, American Institute of Biological Sciences, the National Research Council. W. B. Saunders Co., West Washington Square, Philadelphia 5.es_CO
    dc.relation.referencesAlmant, P.L. & Dittmer, D.S. (1971). Blood and other body fluids. In respiration and circulation. Bethesda, MDI: Federation of American Societies of Experimental Biology. Pag. 540.es_CO
    dc.relation.referencesAlvarenga, E. S. L., Mansur, J. F., Justi, S. A., Figueira-Mansur, J., Dos Santos, V. M., Lopez, S. G., Masuda, H., Lara, F. A., Melo, A. C. A., & Moreira, M. F. (2015). Chitin is a component of the Rhodnius prolixus midgut. Insect Biochemistry and Molecular Biology, 69, 61–70. https://doi.org/10.1016/j.ibmb.2015.04.003es_CO
    dc.relation.referencesAmino, R., Tanaka, A.S., & Schenkman, S. (2001). Triapsin, an unusual activable serine protease from the saliva of the hematophagous vector of Chagas’ disease Triatoma infestans (Hemiptera: Reduviidae). Insect Biochem. Mol. Biol. 31, 465–472. https://www.sciencedirect.com/science/article/pii/S096517480000151Xes_CO
    dc.relation.referencesAzambuja, P., Guimaraes, J.A., & Garcia, E.S. (1983). Haemolytic factor from the crop of Rhodnius prolixus: evidence and partial characterization. J Insect Physiol 29:833–837. https://doi.org/10.1016/0022-1910(83)90149-Xes_CO
    dc.relation.referencesBalczun, C., Siemanowski, J., Pausch, J.K., Helling, S., Marcus, K., Stephan, C., Meyer, H.E., Schneider, T., Cizmowski, C., Oldenburg, M., H€ohn, S., Meiser, C.K., Schuhmann, W., Schaub, G.A. (2012a). Intestinal aspartate proteases TiCatD and TiCatD2 of the hematophagous bug Triatoma infestans (Reduviidae): sequence characterisation, expression pattern and characterisation of proteolytic activity. Insect Biochem Mol Biol. https://doi.org/10.1016/j.ibmb.2011.12.006es_CO
    dc.relation.referencesBalczun, C., Meiser, C.K., & Schaub, G.A. (2012b). Chapter 12, Triatomines as Vectors of American Tripanosomiasis. Arthropods as Vectors of Emerging Diseases. Parasitology Research Monograph 3. Heinz Mehlhorn Editor. Springer. Pag.275-300es_CO
    dc.relation.referencesBarrett, A. J., Kembhavi, A. A., Brown M. A., Kirschke, H., Knight, C. G., Tamai, M., & Hanada, K. (1982). L-trans-epoxysuccinylleucylamido (4-guanidino) butane (E-64) and its analogues as inhibitors of cysteine proteinases including cathepsins B, H and L. Biochem. J. 201, 189-198. https://portlandpress.com/biochemj/article/201/1/189/13523/L-trans-Epoxysuccinyl-leucylamido4-guanidinoes_CO
    dc.relation.referencesBarros, V.C., Assumpcao, J.G., Cadete, A.M., Santos, V.C., Cavalcante, R.R., Araújo, R.N., Pereira, M.H., & Gontijo, N.F. (2009) The role of salivary and intestinal complement system inhibitors in the midgut protection of triatomines and mosquitoes. PLoS One 4(6): e6047es_CO
    dc.relation.referencesBen-Mahmoud, S., Ramos, J., Shatters Jr, R., Rougé, P., Powell, C., Smagghe, G., & Borovsky, D. (2014). Cloning and characterization of a basic cysteine-like protease (cathepsin L1) expressed in the gut of larval Diaprepes abbreviatus L. (Coleoptera: Curculionidae). Journal of Insect Physiology. https://doi.org/10.1016/j.jinsphys.2014.11.001es_CO
    dc.relation.referencesBeyond, R. & Bond, J.S. (2001). Proteolytic Enzymes, second edition. Oxford University press. p. 322.es_CO
    dc.relation.referencesMeiser, C.K., Piechura, H., Meyer, H.E., Warscheid, B., Schaub, G.A., & Balczun, C. (2010). A salivary serine protease of the haematophagous reduviid Panstrongylus megistus: sequence characterization, expression pattern and characterization of proteolytic activity. Insect Mol. Biol. 19, 409–421.es_CO
    dc.relation.referencesPatel, S., Siroya, H., & Upadhyay, D. (2020). Study on Proteases: A Review. Studies in Indian Place Names (UGC care journal), 71, 216–223.es_CO
    dc.relation.referencesPasternack, M. S., Sitkovsky, M. V., & Eisen, H. N. (1983). The site of action of N-a-tosyl-L-lysylchloromethyl-ketone (TLCK) on cloned cytotoxic T lymphocytes. J. Immunol. 131: 2477.es_CO
    dc.relation.referencesZhu, H., Dinsdale, D., Alnemri, E.S., & Cohen, G.M. (1997). Apoptosis in human monocytic THP.1 cells involves several distinct targets of N-tosyl-L-phenylalanyl chloromethyl ketone (TPCK), Cell Death Differ. 4. 590–599. https://doi.org/10.1038/sj.cdd.4400284es_CO
    dc.relation.referencesPoinar, G. (2019). A primitive triatomine bug, Paleotriatoma metaxytaxa gen. et sp. nov. (Hemiptera: Reduviidae: Triatominae), in mid-Cretaceous amber from northern Myanmar. Cretac. Res. 93, 90–97. https://doi.org/10.1016/j.cretres.2018.09.004.es_CO
    dc.relation.referencesPong, S.S., Nuss, D.L., & Koch, G. (1975). Inhibition of Initiation of Protein Synthesis in Mammalian Tissue Culture Cells by L-1-Tosylamido-2-phenylethyl Chloromethyl Ketone. J. Biol. Chem., 250, 240. https://www.jbc.org/content/250/1/240.full.pdfes_CO
    dc.relation.referencesPowers, J.C., Asgian, J.L., Erici O.D., & James, K.E. (2002). Irreversible inhibitors of serine, cystein and theonine proteases. Chem. Rev., 102(12), 4639-4750. https://doi.org/10.1021/cr010182ves_CO
    dc.relation.referencesQuan, P. C., Ishizaka, T., & Bloom, B. R. (1982). Studies on the mechanism of NK cell lysis. J. Immunol. 128: 1786. https://www.jimmunol.org/content/128/4/1786.shortes_CO
    dc.relation.referencesBillker, O., Miller, A. J. & Sinden, R. E. (2000). Determination of mosquito bloodmeal pH in situ by ion-selective microelectrode measurement: implications for the regulation of malarial gametogenesis. Parasitology 120, 547–551.es_CO
    dc.relation.referencesQuintal, R.E., & Polanco, G.G. (1977). Feeding preferences of Triatoma dimidiata maculipennis in Yucatan, Mexico. Am J Trop Med Hyg; 26:176–178. https://doi.org/10.4269/ajtmh.1977.26.176es_CO
    dc.relation.referencesZhou, D., Chang, X., Bao, S., Song, L., Zhu, B., Dong, X., Zong, Y., Li, D., Zhang, M., Liu, Y., & Murata, Y. (2014). Purification and partial characterisation of a cathepsin L-like proteinase from sea cucumber (Stichopus japonicus) and its tissue distribution in body wall. Food Chemistry. https://doi.org/10.1016/j.foodchem.2014.02.105es_CO
    dc.relation.referencesRamzi, S., & Zibaee, A. (2014). Digestive proteolytic activity in Apodiphus amygdali Germar (Hemiptera: Pentatomidae): effect of endogenous inhibitors. Journal of Emtomological And Acarological Research. Volume 46:1868. https://doi.org/10.4081/jear.2014.1868es_CO
    dc.relation.referencesRawlings, N.D., Barrett, A.J., & Bateman, A., (2010). MEROPS: the peptidase database. Nucleic Acids Res. 38, D227–D233. https://doi.org/10.1093/nar/gkp971es_CO
    dc.relation.referencesRawlings, N.D., Barrett, A.J., Mehta, D.P., & Freeze, H.N. (1998). “Handbook of proteolytic Enzymes”, Handb. Proteolytic Enzym., Vol 1, pp. 1983-1941es_CO
    dc.relation.referencesRibeiro, J. M. C., Genta, F. A., Sorgine, M. H. F., Logullo, R., Mesquita, R. D., Paiva-Silva, G. O., Majerowicz, D., Medeiros, M., Koerich, L., Terra, W. R., Ferreira, C., Pimentel, A. C., Bisch, P. M., Leite, D. C., Diniz, M. M. P., da Junior, J. L. S. G. V., Da Silva, M. L., Araujo, R. N., Gandara, A. C. P., & Oliveira, P. L. (2014). An Insight into the Transcriptome of the Digestive Tract of the Bloodsucking Bug, Rhodnius prolixus. PLOS Neglected Tropical Diseases, 8(1), 27. https://doi.org/10.1371/journal.pntd.0002594es_CO
    dc.relation.referencesBurgos, M.H., Gutierrez, L.S., Lammuel, E., & Isola, E.L. (1989). Midgut extract rich in peritrophic membrane from Triatoma infestans induces differentiation of Trypanosoma cruzi. Microsc. electr_on. Biol. Cel. 13, 151e166.es_CO
    dc.relation.referencesRimoldi, O.J., Peluffo, R.O., González, S.M., & Brenner, R.R. (1985). Lipid digestion, absorption and transport in Triatoma infestans. Comp Biochem Physiol B 82:187–190. https://doi.org/10.1016/0305-0491(85)90150-6es_CO
    dc.relation.referencesRosa, J.A., Solano, R.C., Gardim, S., Pinto, M.R., Mendoça, V.G., Ferreira Filho, J.C., Carvalho, E.O., Camargo, L.M., Oliveira, J., Nascimento, J.D., Cilense, M., & Almeida, C.E. (2012). Description of Rhodnius montenegrensis n. sp. (Hemiptera: Reduviidae: Triatominae) from the state of Rondônia, Brazil. Zootaxa 3472: 62-76. https://www.mapress.com/j/zt/article/view/zootaxa.3478.1.8/23650es_CO
    dc.relation.referencesRokhlin, O.W., Guseva, N.V., Taghiyev, A.F., Glover, R.A., & Cohen, M.B. (2004). Multiple effects of N-alpha-tosyl-L-phenylalanyl chloromethyl ketone (TPCK) on apoptotic pathways in human prostatic carcinoma cell lines, Cancer Biol. Ther. 3., 761–768. https://doi.org/10.4161/cbt.3.8.970es_CO
    dc.relation.referencesSalvatella, R., Basmadjian, Y., Rosa, R., & Puime, A. (1993). Triatoma delpontei Romaña & Abalos, 1947 (Hemiptera, Triatominae) en el estado brasileño de Rio Grande do Sul. Rev Inst Med Trop Sao Paulo 35:73-6 https://www.scielo.br/pdf/rimtsp/v35n1/a10v35n1.pdfes_CO
    dc.relation.referencesSandoval, C.M., Nieves Blanco, E.E., Gutiérrez, R., Jaimes, D.A., Ortiz, N., Otarola, F., & Aldana, J. (2015). Morphometric Analysis of the Host Effect on Phenotypical Variation of Belminus ferroae (Hemiptera: Triatominae). Psyche, ID 613614, 12 pages. https://doi.org/10.1155/2015/613614es_CO
    dc.relation.referencesChristensen, H.A., Sousa, O.E., & de Vasquez, A.M. (1988). Host feeding profiles of Triatoma dimidiata in peridomestic habitats of western Panama. Am. J. Trop. Med. Hyg. 38, 477–479. https://doi.org/10.4269/ajtmh.1988.38.477es_CO
    dc.relation.referencesBleackley, R. C., Lobe, C. G., Duggan, B., Ehrman, N., Fregeau, C., Meier, M., Letellier, M., Havele, C., Shaw, J., & Paetkau, V. (1988). The isolation and characterization of a family of serine protease genes expressed in activated cytotoxic T lymphocytes. Immunol. Rev. 103: 5. https://doi.org/10.1111/j.1600-065X.1988.tb00746.xes_CO
    dc.relation.referencesSandoval, C.M., Medone, P., Nieves, E.E., Jaimes, D.A., Ortiz, N., & Rabinovich, J.E. (2013). Demographic fitness of Belminus ferroae (Hemiptera: Triatominae) on three different host under SC-CER96940 Universidad de Pamplona Pamplona - Norte de Santander - Colombia Tels: (7) 5685303 - 5685304 - 5685305 - Fax: 5682750 www.unipamplona.edu.co “Formando líderes para la construcción de un nuevo país en paz” 59 laboratory conditions. Memories institute Oswaldo Cruz, Vol. 108(7), p: 854-864. https://doi.org/10.1590/0074-0276130211es_CO
    dc.relation.referencesSandoval, C.M., Ortiz, N., Jaimes, D., Lorosa, E., Galvão, C., Rodriguez, O., Scorza, J.V., & Gutiérrez, R. (2010). Feeding behaviour of Belminus ferroae (Hemiptera: Reduviidae), a predaceous Triatominae colonizing rural houses in Norte de Santander, Colombia. Medical and Veterinary Entomology 24: 124-131. https://doi.org/10.1111/j.1365-2915.2010.00868.xes_CO
    dc.relation.referencesSandoval, C.M., Pabón, E., Jurberg, J., & Galvão, C. (2007). Belminus ferroae sp. from the Colombian north-east, with a key to the species of the genus (Hemiptera: Reduviidae: Triatominae). Zootaxa 1443: 55-64. https://www.mapress.com/j/zt/article/view/3295es_CO
    dc.relation.referencesSandoval, C.M., Duarte, R., Gutiérrez, R., Rocha, D.S., Angulo, V.M., Esteban, L., Reyes, M., Jurberg, J., & Galvão, C. (2004). Feeding sources and natural infection of Belminus herreri (Hemiptera, Reduviidae, Triatominae) from dwellings in Cesar, Colombia. Mem Inst Oswaldo Cruz 99: 137-140. http://dx.doi.org/10.1590/S0074-02762004000200004es_CO
    dc.relation.referencesBuck, J. B. (1953). Physical properties and chemical composition of insect blood, in Insect Physiology, (K. D. Roeder, editor), New York, John Wiley and Sons, Inc., , 147.es_CO
    dc.relation.referencesSandoval, C.M., Joya, M.I., Gutiérrez, R., & Angulo, V.M. (2000). Cleptohaematophagy of the Triatomine bug Belminus herreri. Med Vet Entomol 14: 100-101. https://doi.org/10.1046/j.13652915.2000.00210.xes_CO
    dc.relation.referencesSarath, G., De La Motte, R., & Wagner, F. (1989). Protease assay methods. In: Beynon, R.J., Bond, J.S. (Eds.), Proteolytic Enzymes: A Practical Approach. Oxford University Press, Oxford, pp. 25–55.es_CO
    dc.relation.referencesSchaub, G.A., Meiser, C.K., & Balczun, C. (2011) Interactions of Trypanosoma cruzi and triatomines. In: Mehlhorn H (ed) Progress in parasitology, vol 2, Parasitology research monographs. Springer, Berlin, pp 155–178.es_CO
    dc.relation.referencesSchaub, G.A. (2009). Interactions of trypanosomatids and triatomines. Adv. Insect Physiol. 37, 177e242. https://doi.org/10.1016/S0065-2806(09)37004-6es_CO
    dc.relation.referencesCobben, R. H. (1978). Evolutionary trends in Heteroptera Part II: Mouthpart-structures and feeding strategies. Wageningen, Mededelingen Landbouwhogeschool 78-5. H. Veenman & Zonen B.V.,v+407 p https://library.wur.nl/WebQuery/wurpubs/fulltext/294330es_CO
    dc.relation.referencesSchaub, G.A. (2008). Kissing bugs. In: Mehlhorn H (ed) Encyclopedia of parasitology, vol 1, 3rd edn. Springer, Heidelberg, pp 684–686.es_CO
    dc.relation.referencesSchechter, I., & Berger, A. (1967). On the size of the active site in proteases. I. Papain. Biochem. Biophys. Res. Commun. 27, 157–162.es_CO
    dc.relation.referencesBlow, F., & Douglas, A. E. (2019). The hemolymph microbiome of insects. Journal of Insect Physiology, 115(April), 33–39. https://doi.org/10.1016/j.jinsphys.2019.04.002es_CO
    dc.relation.referencesSchoellmann, G., & Shaw, E. (1963). Direct Evidence for the Presence of Histidine in the Active Center of Chymotrypsin. Biochem., 2, 252. https://doi.org/10.1021/bi00902a008.es_CO
    dc.relation.referencesSchoellmann, G., & Shaw, E. (1962). A new method for labelling the active center of chymotrypsin, Biochem. Biophys. Res. Commun. 7. 36–40. https://doi.org/10.1016/0006-291X(62)90140-7es_CO
    dc.relation.referencesSchofield, C.J., & Galvão, C. (2009). Classification, evolution and species groups within the Triatominae. Acta Trop 110: 88-100. https://doi.org/10.1016/j.actatropica.2009.01.010es_CO
    dc.relation.referencesCalderón Arguedas, O., Chinchilla, M., García, F., & Vargas, M. (2003). Variaciones biológicas de Trypanosoma cruzi (Kinetoplastida: Trypanosomatidae) asociadas con la ingestión de diferentes tipos de sangre por el vector (Hemíptera: Reduviidae). Parasitol. Latinoam. 58 (2), 3–10. http://dx.doi.org/10.4067/S0717-77122003000100001es_CO
    dc.relation.referencesSchofield, C.J. (1996). Overview – biosystematics of the Reduviidae. In: Schofield, C.J., Dujardin, J.P., Jurberg, J. (Eds.), Proceedings of the International Workshop on Population Genetics and Control of Triatominae. Santo Domingo de Los Colorados, Ecuador Mexico City, INDRE, pp. 483– 516es_CO
    dc.relation.referencesSegura Egea, J.J., Jiménez Rubio-Manzanares, A., Llamas Cadaval, R., & Jiménez Planas, A. (1997). El ácido etilen diamino tetraacético (EDTA) y su uso en endodoncia. ENDODONCIA Volumen 15 Número 2 Abril-Junio 1997- https://personal.us.es/segurajj/documentos/CV-ArtSin%20JCR/Endodoncia-Edta-1997.pdfes_CO
    dc.relation.referencesSharma, A., & Radha Kishan, K.V. (2011). Serine protease inhibitor mediated peptide band resynthesis in diverse protein molecules. FEBS Letters 585. 3465-3470. https://doi.org/10.1016/j.febslet.2011.10.004es_CO
    dc.relation.referencesMorrissey, J. H., Fakhrai, H., & Edgington, T. S. (1987). Molecular cloning of the cDNA for tissue factor, the cellular receptor for the initiation of the coagulation protease cascade. Cell 50: 129. https://doi.org/10.1016/0092-8674(87)90669-6es_CO
    dc.relation.referencesShaw, E., & Glover, G. (1970). Further observations on substrate-derived chloromethyl ketones that inactivate trypsin Arch. Biochem. Biophys., 139, 298. https://doi.org/10.1016/00039861(70)90481-9es_CO
    dc.relation.referencesShaw, E., Mares-guia, M., & Cohen, W. (1965) Evidence for an Active-Center Histidine in Trypsin through Use of a Specific Reagent, 1-Chloro-3-tosylamido-7-amino-2-heptanone, the Chloromethyl Ketone Derived from Nα-Tosyl-L-lysine Biochem., 4, 2219. https://doi.org/10.1021/bi00886a039es_CO
    dc.relation.referencesSigma-Aldrich. (2018). PMSF. Recuperado de https://www.sigmaaldrich.com/content/dam/sigmaaldrich/docs/Sigma/Product_Information_Sheet/1/p7626pis.pdfes_CO
    dc.relation.referencesSigma.Aldrich. (2001). Pepstatin A. Recuperado de http://www.sigmaaldrich.com/content/dam/sigmaaldrich/docs/Sigma/Product_Information_Sheet/1/p5318pis.pdfes_CO
    dc.relation.referencesBond, J.S. & Butler, P.E. (1987). Intracellular proteases. Ann. Rev. Biochem., 56, 333. https://www.annualreviews.org/doi/pdf/10.1146/annurev.bi.56.070187.002001es_CO
    dc.relation.referencesSilva, C.P., & Terra, W.R. (1994). Digestive and absorptive sites along the midgut of the cotton seed sucker bug Dysdercus peruvianus (Hemiptera: Pyrrhocoridae). Insect Biochemistry and Molecular Biology 24, 493–505. https://doi.org/10.1016/0965-1748(94)90044-2es_CO
    dc.relation.referencesSojka, D., Franta, Z., Horn, M., Caffrey, C.R., Mareš, M., & Kopáček, P. (2013). New insights into the machinery of blood digestion by ticks. Trends Parasitol.;29(6): 276–85. https://doi.org/10.1016/j.pt.2013.04.002es_CO
    dc.relation.referencesCarcavallo, R.U., Rocha da Silva, D., Galíndez, G., Itamar, Sherlock I., Galvão, C., Martínez, A., & Tonn, R.J. Cortón E (1998). Feeding sources and patterns. In: Carcavallo R, Galindez I, Jurberg J, Lent H (eds). AtlasOf Chagas Disease Vectors in the Americas. Fiocruz, Rio de Janeiro.es_CO
    dc.relation.referencesSolomon, D. H., O’Brian, C. A., & Weinstein, I. B. (1985). N-a-Tosyl-L-lysine chloromethyl ketone and N-a-tosyl-L-phenylalanine chloromethyl ketone inhibit protein kinase C. FEBS Lett. 190:342. https://doi.org/10.1016/0014-5793(85)81315-6es_CO
    dc.relation.referencesSreedharan, S.K., Verma, C., Caves, L.S.D., Brocklehurs, S.M., Gharbias, S.E., Shars, H.N., & Brocklehurs, K. (1996). Demonstration that 1-trans-epoxysuccinyl-L-leucylamido-(4-guanidino) butane (E-64) is one of the most effective low Mr inhibitors of trypsin-catalysed hydrolysis. Characterization by kinetic analysis and by energy minimization and molecular dynamics simulation of the E-64–β-trypsin complex. Biochem. J., 316, 777. SC-CER96940 Universidad de Pamplona Pamplona - Norte de Santander - Colombia Tels: (7) 5685303 - 5685304 - 5685305 - Fax: 5682750 www.unipamplona.edu.co “Formando líderes para la construcción de un nuevo país en paz” 61 https://portlandpress.com/biochemj/article/316/3/777/32656/Demonstration-that-1-transepoxysuccinyl-les_CO
    dc.relation.referencesCohen, A.C. (1993). Organization of digestion and preliminary characterization of salivary trypsinlike enzymes in a predaceous Heteropteran, Zelus renardii. Journal of Insect Physiology 39, 823– 829. https://doi.org/10.1016/0022-1910(93)90114-7es_CO
    dc.relation.referencesStål, C. (1859). Monographie der Gattung Conorhinus and Verwandten. Berliner Entomologische Zeitschrift, 3, 99–117. https://doi.org/10.1002/mmnd.18590030202es_CO
    dc.relation.referencesTamaki, F., Pimentel, A., Dias, A., Cardoso, A., Ribeiro, A., Ferreira, C., & Terra, W. (2014). Physiology of digestion and the molecular characterization of the major digestive enzymes from Periplaneta Americana. Journal of Insect Physiology. https://doi.org/10.1016/j.jinsphys.2014.08.007es_CO
    dc.relation.referencesTakahashi, K., & Chang, W. J. (1976). The Structure and Function of Acid Proteases J. Biochem.(Tokyo), 80, 497. https://www.jstage.jst.go.jp/article/biochemistry1922/80/3/80_3_497/_pdf/-char/jaes_CO
    dc.relation.referencesTakanona, T., & Hori, K. (1974). Digestive enzymes in the salivary gland and midgut of the bug Stenotus binotatus. Comparative Biochemistry and Physiology 47A, 521–528. https://doi.org/10.1016/0300-9629(74)90015-2es_CO
    dc.relation.referencesTerra, W.R., & Ferreira, C. (2005). Biochemistry of digestion. In: Gilbert, L.I., Iatrou, K., Gill, S.S. (Eds.), Comprehensive Molecular Insect Science, vol. 4. Elsevier, Oxford, pp. 171–224.es_CO
    dc.relation.referencesTerra, W.R., Ferreira, C., Jordão, B.P., & Dillon, R.J. (1996). Digestive enzymes. In: Lehane, M.J., Billingsley, P.F. (Eds.), Biology of the Insect Midgut. Chapman & Hall, London, pp. 153–194.es_CO
    dc.relation.referencesBorges, E.C., Machado E.M.M., Garcia E.S., & Azambuja, P. (2006) Trypanosoma cruzi: effects of infection on cathepsin D activity in the midgut of Rhodnius prolixus. Exp Parasitol 112:130–133. https://doi.org/10.1016/j.exppara.2005.09.008es_CO
    dc.relation.referencesTerra, W.R., & Ferreira, C. (1994). Insect digestive enzymes: properties, compartmentalization and function. Comparative Biochemistry and Physiology 109B, 1–62. https://doi.org/10.1016/0305-0491(94)90141-4es_CO
    dc.relation.referencesCastillo Neyra, R., Chou, C. L., Quispe Machaca, V., Ancca Juarez, J., Malaga Chavez, F.S., Bastos Mazuelos, M., Naquira, C., Bern, C., Gilman, R.H., & Levy, M. Z. (2015). The potential of canine sentinels for reemerging Trypanosoma cruzi transmission. Prev. Met. Med. 120, 349-356 https://doi.org/10.1016/j.prevetmed.2015.04.014es_CO
    dc.relation.referencesTerra, W.R. (1988). Physiology and biochemistry of insect digestion: an evolutionary perspective. Brazilian Journal of Medical and Biological Research 21, 675–734.es_CO
    dc.relation.referencesColebatch, Gillian., Eats, Peter., & Cooper, Paul. (2001). Preliminary characterization of digestive proteases of de green mirid Creontiades dilutus (Hemiptera: Miridae). Insect Biochemistry and molecular biology. 31. Pag. 415-423. https://doi.org/10.1016/S0965-1748(00)00136-3es_CO
    dc.relation.referencesTerra, W.R., Ferreira, C., & Garcia, E.S. (1988). Origin, distribution, properties and functions of the major Rhodnius prolixus midgut hydrolases. Insect Biochem 18:423–434. https://doi.org/10.1016/0020-1790(88)90058-3es_CO
    dc.relation.referencesTerra, W. R., De Bianchi, G. & Lara, F. J. S. (1974). Phvsical properties and chemical composition of the haemolymph of Rhynchsociara americana (Diptera) larvae. Comp. Biochem. Physiol. 47B, 117-129.es_CO
    dc.relation.referencesTurini, P., Kurooka, S., Steer, M., Corbascio. A., & Singer T.P. (1969). The action of phenylmethylsulfonyl Fluoride on human acetylcholinesterase, chymotrypsin and trypsin. J. Pharmacol. Exp. Ther., vol. 167, 98. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.864.7652&rep=rep1&type=pdfes_CO
    dc.relation.referencesUmezawa, H., Takita, T., & Shiba, T. (1978). Bioactive Peptides Produced by Microorganisms, Halsted, New York.es_CO
    dc.relation.referencesUmezawa, H. (1976). Methods in Enzymology, 45, 689es_CO
    dc.relation.referencesUmezawa, H., Ayogi, T., Morishima, H., Matsuzaki, M., Hamada, M., & Takeuchi, T. (1970). Pepstatin, a new pepsin inhibitor produced by Actinomycetes, J. Antibiot. 23. 259–262. https://doi.org/10.7164/antibiotics.23.259es_CO
    dc.relation.referencesvan der Hoorn, R.A. (2008). Plant proteases: from phenotypes to molecular mechanisms. Annu Rev Plant Biol. 59:191‐223. https://doi.org/10.1146/annurev.arplant.59.032607.092835es_CO
    dc.relation.referencesVaseva, I., Sabotic, J., Sustar-Vozlic, J., Meglic, V., Kidric, M., Demirevska, K., & Simova-Stoilova L. (2012). The response of plants to drought stress: the role of dehydrins, chaperones, proteases and protease inhibitors in maintaining cellular protein function. In: Droughts: New Research. Neves DF and Sanz JD. (Eds.) 1-45. https://www.researchgate.net/profile/Irina_Vaseva/publication/309201201_The_response_of_pla nts_to_drought_stress_the_role_of_dehydrins_chaperones_proteases_and_protease_inhibitors _in_maintaining_cellular_protein_function/links/58330cb308ae138f1c0a7b27/The-response-ofplants-to-drought-stress-the-role-of-dehydrins-chaperones-proteases-and-protease-inhibitors-inmaintaining-cellular-protein-function.pdfes_CO
    dc.relation.referencesBrown, J. J., Rodríguez-Ruano, S. M., Poosakkannu, A., Batani, G., Schmidt, J. O., Roachel, W., Zima, J. J., Hypša, V., & Nováková, E. (2020). Ontogeny, species identity and environment dominate microbiome dynamics in wild populations of kissing bugs (Triatominae). BioRxiv. https://doi.org/10.1101/2020.06.05.135871es_CO
    dc.relation.referencesChapman, R.F. (1998). The insects: structure and function. New York: Cambridge University Press. Pag.53-55. ISBN-13 978-0-521-57890-5.es_CO
    dc.relation.referencesDarvishzadeh, A., Bandani, A., Amiri, A., & Mousavi, S. (2015). Serine and cysteine proteases of Rhynchophorus ferrugineus (Coleoptera: Curculionidae) larvae raised on date palms (Phoenix dactylifera). Journal of Asia-Pacific Entomology. https://doi.org/10.1016/j.aspen.2015.07.008es_CO
    dc.relation.referencesWaniek, P.J. (2014). Pathways of insect protein digestion: Triatominae (kissing bugs). Entomol. Ornithol. Herpetol. 3, e109es_CO
    dc.relation.referencesWaniek, P.J., Araujo, A.C., Momoli, M.M., Azambuja, P., Jansen, A.M., & Genta, F.A. (2014). Serine carboxypeptidases of Triatoma brasiliensis (Hemiptera, Reduviidae): Sequence characterization, expression pattern and activity localization. Journal of insect physiology 63, 920. https://doi.org/10.1016/j.jinsphys.2014.02.003es_CO
    dc.relation.referencesWaniek, P.J., Pacheco Costa, J.E., Jansen, A.M., & Araújo, C.A.C. (2012). Cathepsin L of Triatoma brasiliensis (Reduviidae, Triatominae): sequence characterization, expression pattern and zymography. J. Insect Physiol. 58, 178–187. https://doi.org/10.1016/j.jinsphys.2011.11.008es_CO
    dc.relation.referencesWenk, P., Lucic, S., & Betz, O. (2010). Functional anatomy of the hypopharynx and the salivary pump in the feeding apparatus of the assassin bug Rhodnius prolixus (Reduviidae, Heteroptera). Zoomorphology 129:225–234. https://doi.org/10.1007/s00435-010-0115-7es_CO
    dc.relation.referencesXiao, R., Zhang, Z., Wang, H., Han, Y., Gou, M., Li, B., Duan, D., Wang, J., Liu, X., & Li, Q. (2014). Identification and characterization of a cathepsin D homologue from lampreys (Lampetra japonica). Developmental and Comparative Immunology. https://doi.org/10.1016/j.dci.2014.10.014es_CO
    dc.relation.referencesWHO (World Health Organization), 2020. Chagas Disease (American Trypanosomiasis). World Health Organization. https://www.who.int/chagas/disease/en/, Accessed date: 03-july-2020.es_CO
    dc.relation.referencesWyatt, G. R. (1961). The biochemistry of insect hemolymph. A. Rev. Ent. 6, 75-102.es_CO
    dc.relation.referencesWyatt, G. R., Loughheed, T. C., & Wyatt, S. S. (1956) The chemistry of insect hemolymph. Organic components of the hemolyrnph of the silk-worm, Bombyx mori, and two other species, ft. gen. Physiol. 39, 853-868.es_CO
    dc.relation.referencesWyatt, G. R., Loughheed, T. C., & Wyatt, S. S. (1956). J. Gen. Physiol. 39, 853–868.es_CO
    dc.relation.referencesZhao, A., Li, Y., Leng, C., Wang, P., & Li, Y. (2019). Inhibitory effect of protease inhibitors on larval midgut protease activities and the performance of Plutella xylostella (Lepidoptera: Plutellidae). Frontiers in Physiology, 10(JAN), 1–9. https://doi.org/10.3389/fphys.2018.01963es_CO
    dc.relation.referencesDe Fuentes-Vicente, J. A., Gutiérrez-Cabrera, A. E., Flores-Villegas, A. L., Lowenberger, C., Benelli, G., Salazar-Schettino, P. M., & Córdoba-Aguilar, A. (2018). What makes an effective Chagas disease vector? Factors underlying Trypanosoma cruzi-triatomine interactions. Acta Tropica, 183, 23–31. https://doi.org/10.1016/j.actatropica.2018.04.008es_CO
    dc.relation.referencesChristeller, J.T., Farley, P.C., Ramsay, R.J., Sullivan, P.A., & Laing, W.A. (1998). Purification, characterization and cloning of an aspartic proteinase inhibitor from squash phloem exudates, Eur. J. Biochem. 254. 160–167. https://febs.onlinelibrary.wiley.com/doi/epdf/10.1046/j.14321327.1998.2540160.xes_CO
    dc.relation.referencesBuarque, D. S., Braz, G. R. C., Martins, R. M., Tanaka-Azevedo, A. M., Gomes, C. M., Oliveira, F. A. A., Schenkman, S., & Tanaka, A. S. (2013). Differential Expression Profiles in the Midgut of Triatoma infestans Infected with Trypanosoma cruzi. PLOS ONE, 8(5). https://doi.org/10.1371/journal.pone.0061203es_CO
    dc.relation.referencesDeu, E., Verdoes M., & Bogyo, M. (2012). New approaches for dissecting protease functions to improve probe development and drug discovery. Nat Struct Mol Biol 19, 9-16. https://doi.org/10.1038/nsmb.2203es_CO
    dc.relation.referencesDorn, P.L., Justi, S.A., Dale, C., Stevens, L., Galvão, C., Lima-Cordón, & R., Monroy, C. (2018). Description of Triatoma mopan sp. n. from a cave in Belize (Hemiptera, Reduviidae,Triatominae). ZooKeys 775, 69–95. https://doi.org/10.3897/zookeys.775.22553.es_CO
    dc.relation.referencesMonteiro, F. A., Weirauch, C., Felix, M., Lazoski, C., & Abad-Franch, F. (2018). Evolution, Systematics, and Biogeography of the Triatominae, Vectors of Chagas Disease. Advances in Parasitology, 99, 265–344. https://doi.org/10.1016/bs.apar.2017.12.002es_CO
    dc.relation.referencesDos Santos, C., Da costa Marques, M., Tenorio, H., Carvalho, E., & Vieira, H. (2016). Purification and characterization of trypsin from Luphiosilurus alexandri pyloric cecum. Biochemistry and Biophysics Reports. https://doi.org/10.1016/j.bbrep.2016.08.003es_CO
    dc.relation.referencesDunn, B.M. (1989) In Proteolytic Enzymes: A Practical Approach, R.J. Beynon and J.S. Bond, eds. (IRL Press,), p. 63.es_CO
    dc.relation.referencesFerreira, C., Ribeiro, A.F., Garcia, E.S., & Terra, W.R. (1988) Digestive enzymes trapped between and associated with the double plasma membranes of Rhodnius prolixus posterior midgut cells. Insect Biochem 18:521–530. https://doi.org/10.1016/0020-1790(88)90003-0es_CO
    dc.relation.referencesFlorkin, M., & Jeuniaux, C. (1964). Hemolymph: composition. In The Physiology of Insecta (Edited by Rockstein, M.), Vol. 3, pp. 109-152. Academic Press, New York.es_CO
    dc.relation.referencesMurdock, L.L.; Brookhart, G.; Dunn, P.E.; Foard, D.E., & Kelley, S. (1987). Cysteine digestive proteinases in Coleoptera. Comparative Biochemistry and Physiology-B. vol. 87, p. 783-787. https://doi.org/10.1016/0305-0491(87)90388-9es_CO
    dc.relation.referencesFoissac, X., Edwards, M.G., Du, J.P., Gatehouse, A.M.R., & Gatehouse, J.A. (2002). Putativeprotein digestion in a sap-sucking homopteran plant pest (rice brown plant hopper; Nilaparvata lugens: Delphacidae identification of trypsin like and cathepsin B-like proteases. Insect Biochem. Mol. Biol. 32, 967–978. https://doi.org/10.1016/S0965-1748(02)00033-4es_CO
    dc.relation.referencesGalvão, C., & Angulo, V.M. (2006). Belminus corredori, a new species of Bolboderini (Hemiptera: Reduviidae: Triatominae) from Santander, Colombia. Zootaxa 1241: 61-68. https://www.researchgate.net/profile/Cleber_Galvao/publication/279893840_Belminus_Corredori _A_New_Species_Of_Bolboderini_Hemiptera_Reduviidae_Triatominae_From_Santander_Colo mbia/links/5d3e0350a6fdcc370a694741/Belminus-Corredori-A-New-Species-Of-BolboderiniHemiptera-Reduviidae-Triatominae-From-Santander-Colombia.pdfes_CO
    dc.relation.referencesGarcia, E.S., & Guimarães, J.A. (1979). Proteolytic enzymes in the Rhodnius prolixus midgut. Experientia 35, 305–306. https://doi.org/10.1007/BF01964315es_CO
    dc.relation.referencesGarcia, E.S., & Garcia, M.L.M. (1977). Control of protease secretion in intestine of fifth instar larvae of Rhodnius prolixus. J. Insect Physiol. 23, 247e251. https://doi.org/10.1016/00221910(77)90038-5es_CO
    dc.relation.referencesGaunt, M., & Miles, M. (2000). The ecotopes and evolution of triatomine bugs (Triatominae) and their associated trypanosomes. Mem Inst Oswaldo Cruz 95: 557-565. http://dx.doi.org/10.1590/S0074-02762000000400019es_CO
    dc.relation.referencesNunome, J., & Horiba, M. (1955). J. Sericult. Sc. Japan, 24, 35.es_CO
    dc.relation.referencesGhilchik, M. W., & Morris, A. S. (1971). Modification of hyperacute rejection of sheep kidney heterografts in the dog using a trypsin inhibitor. Nature 233: 557. https://doi.org/10.1038/233557a0es_CO
    dc.relation.referencesGold, A. (1967) Sulfonylation with sulfonyl halides Methods in Enzymology, vol. 11, 706 (1967).es_CO
    dc.relation.referencesGold, A. & Fahrney, D. (1964). Sulfonyl Fluorides as Inhibitors of Esterases. II. Formation and Reactions of Phenylmethanesulfonyl α-Chymotrypsin Biochemistry, vol. 3, 783. https://doi.org/10.1021/bi00894a009es_CO
    dc.relation.referencesGoldberg, A. L., & Rock, K. L. (1992) Proteolysis, proteasomes and antigen presentation. Nature 357: 375. https://doi.org/10.1038/357375a0es_CO
    dc.relation.referencesGomis-Rüth, F.X. (2003). Structural aspects of the metzincin clan of metalloendopeptidases. Mol. Biotechnol. 24:157–202. https://doi.org/10.1385/MB:24:2:157es_CO
    dc.relation.referencesNC-IUBMB, (2020). Recommendations of the Nomenclature Committee of the International Union of Biochemistry and Molecular Biology on the Nomenclature and Classification of Enzymes by the Reactions they Catalyse.Available at: https://www.qmul.ac.uk/sbcs/iubmb/enzyme/EC34/es_CO
    dc.relation.referencesGonzález, A.E. (2010). Histología y biología celular, Teresa Fortoul y Andrés Castell. Editorial McGraw Hill, primera edición. Pag. 147-149. ISBN: 978-607-15-0340-4.es_CO
    dc.relation.referencesGonzalez, M.S., Nogueira, N.F., Mello, C.B., De Souza, W., Schaub, G.A., Azambuja, P., & Garcia, E.S. (1999). Influence of brain and azadirachtin on Trypanosoma cruzi development in the vector, Rhodnius prolixus. Exp. Parasitol. 92, 100e108. https://doi.org/10.1006/expr.1998.4387es_CO
    dc.relation.referencesGonzales, M.S.., Azambuja, P., de Souza, W., Feder, D., Nogueira, N.F., & Garcia, E.S. (1998). Role of the head in the ultrastructural midgut organization in Rhodnius prolixus larvae: evidence from head transplantation experiments and ecdysone therapy. J. Insect Physiol. 44, 553e560. https://doi.org/10.1016/S0022-1910(98)00048-1es_CO
    dc.relation.referencesGoodchild, A.J.P. (1952). A study of the digestive system of the West African cacao capsid bugs (Hemiptera Miridae). Proceedings of the Zoological Society of London 122, 543–572.es_CO
    dc.relation.referencesOliveira, J., Ayala, J.M., Justi, S.A., Rosa, J.A., & Galvão, C. (2018). Description of a new species of Nesotriatoma Usinger, 1944 from Cuba and revalidation of synonymy between Nesotriatoma bruneri (Usinger, 1944) and N. flavida (Neiva, 1911) (Hemiptera, Reduviidae, Triatominae). J. Vector Ecol. 43, 148–157. https://doi.org/10.1111/jvec.12294.es_CO
    dc.relation.referencesGoodchild, A.J.P. (1966). Evolution of the alimentary canal in the Hemiptera. Biological Reviews 41, 97–140. https://doi.org/10.1111/j.1469-185X.1966.tb01540.xes_CO
    dc.relation.referencesGorchakov, R., Trosclair, L. P., Wozniak, E. J., Feria, P. T., Garcia, M. N., Gunter, S. M., & Murray, K.O. (2016). Trypanosoma cruzi Infection Prevalence and Bloodmeal Analysis in Triatomine Vectors of Chagas Disease from Rural Peridomestic Locations in Texas, 2013-2014. Journal of Medical Entomology, 53(4), 911–918. https://doi.org/10.1093/jme/tjw040es_CO
    dc.relation.referencesGovrin, E., & Levine, A. (1999). Purification of Active Cysteine Proteases by Affinity Chromatography with Attached E-64 Inhibitor. Protein Expression and Purification 15, 247–250. https://doi.org/10.1006/prep.1999.1033es_CO
    dc.relation.referencesGrillo, L.A.M., Majerowicz, D., & Gondim, K.C. (2007). Lipid metabolism in Rhodnius prolixus (Hemiptera: Reduviidae): role of a midgut triacylglycerol-lipase. Insect Biochem Mol Biol 37:579– 588. https://doi.org/10.1016/j.ibmb.2007.03.002es_CO
    dc.relation.referencesGutschmidt, S., Hoper, R., & Gossrau, R. (1984). Kinetic characterization of brush border membrane proteases in relationship to mucosal architecture by section biochemistry. Adv. Exp. Med. Biol. 167: 209. https://doi.org/10.1007/978-1-4615-9355-3_16es_CO
    dc.relation.referencesHara, S., Halicka, D., Bruno, S., Gong, J., Traganos, F., & Darzynkiewicz, Z. (1996). Effect of Protease Inhibitors on Early Events of Apoptosis. Exp. Cell Res., 223, 372. https://doi.org/10.1006/excr.1996.0092.es_CO
    dc.relation.referencesNandan, A., & Nampoothiri, K. M. (2020). Therapeutic and biotechnological applications of substrate specific microbial aminopeptidases. Applied Microbiology and Biotechnology, 104 (12), 5243–5257. https://doi.org/10.1007/s00253-020-10641-9es_CO
    dc.relation.referencesHedstrom, L. (2002). Serine Protease Mechanism and Specificity Chem. Rev., 102(12), 45014524. https://doi.org/10.1021/cr000033xes_CO
    dc.relation.referencesHeimpel, A. M. (1955). Canad. J. ZooI., 33, 99.es_CO
    dc.relation.referencesHerrer, A., Lent, H., & Wygodzinsky, P. (1954). Contribución al conocimiento del género Belminus Stål, 1859 (Triatominae, Reduviidae, Hemiptera). An Inst Med Reg Tucumán 4: 85-106.es_CO
    dc.relation.referencesBillingsley, P.F., & Downe, A.E.R. (1988). Ultrastructural localization of cathepsin B in the midgut of Rhodnius prolixus Stal (Hemiptera, Reduviidae) during blood digestion. Int J Insect Morphol Embryol 17:295–302. https://doi.org/10.1016/0020-7322(88)90010-4es_CO
    dc.relation.referencesHerrer, A. (1955). Tripanosomiasis americana en el Perú. V. Triatominos del valle interandino del Marañón. Rev Perú Med Exp Salud Publica 9: 69-81. http://www.scielo.org.pe/pdf/rins/v9n12/a09v9n1-2.pdfes_CO
    dc.relation.referencesHori, K. (1970). Some variations in the activities of salivary amylase and protease of Lygus disponsi Linnavuori (Hemiptera: Miridae). Applied Entomology and Zoology 5, 51–61. https://doi.org/10.1303/aez.5.51es_CO
    dc.relation.referencesHouseman, J.G., Morrison, P.E., & Downe, A.E.R. (1985). Cathepsin B and aminopeptidase in the posterior midgut of Phymata wolffii Stål (Hemiptera: Phymatidae). Canadian Journal of Zoology 63, 1288–1291. https://doi.org/10.1139/z85-193es_CO
    dc.relation.referencesHouseman, J.G., Macnaughton, W.K., & Downe, A.E.R. (1984). Cathepsin B and aminopeptidase in the posterior midgut of Euschistis euschistoides (Hemiptera: Pentatomidae). Canadian Journal of Entomology 116, 1393–1396. https://doi.org/10.4039/Ent1161393-10es_CO
    dc.relation.referencesHouseman, J.G., & Downe, A.E.R. (1983b). Activity cycles and the control of four digestive proteinases in the posterior midgut of Rhodnius prolixus Stal (Hemiptera, Reduviidae). J Insect Physiol 29:141–148. https://doi.org/10.1016/0022-1910(83)90137-3es_CO
    dc.relation.referencesHouseman, J.G., & Downe, A.E.R. (1983a). Activity cycles and the control of four digestive proteinases in the posterior midgut of Rhodnius prolixus Stål (Hemiptera: Reduviidae). J. Insect Physiol. 29, 141–148. https://doi.org/10.1016/0022-1910(83)90137-3es_CO
    dc.relation.referencesHouseman, J.G., & Downe, A.E.R. (1982b). Identification and partial characterization of digestive proteases from two species of bedbug (Hemiptera: Cimicidae). Canadian Journal of Zoology 60, 1837– 1840. https://doi.org/10.1139/z82-238es_CO
    dc.relation.referencesNapoleão, T. H., Albuquerque, L. P., Santos, N. D. L., Nova, I. C. V., Lima, T. A., Paiva, P. M. G., & Pontual, E. V. (2019). Insect midgut structures and molecules as targets of plant-derived protease inhibitors and lectins. Pest Management Science, 75(5), 1212–1222. https://doi.org/10.1002/ps.5233es_CO
    dc.relation.referencesHouseman, J.G., & Downe, A.E.R. (1982a). Characterisation of an acidic protease from the posterior midgut of Rhodnius prolixus Stål (Hemiptera: Reduviidae). Insect Biochemistry 12, 651– 655. https://doi.org/10.1016/0020-1790(82)90052-Xes_CO
    dc.relation.referencesHouseman, J.G., & Downe, A.E.R. (1981b). Identification and partial characterization of digestive proteinases from Triatoma phyllosoma pallidipennis Stål (Hemiptera:Reduviidae). Comp. Biochem. Physiol. B70, 713–717. https://doi.org/10.1016/0305-0491(81)90006-7es_CO
    dc.relation.referencesOliveira, J. & Alevi, K.C.C. (2017). Taxonomic status of Panstrongylus herreri Wygodzinsky, 1948 and the number of Chagas disease vectors. Rev. Soc. Bras. Med. Trop. 50, 434–435. https://www.scielo.br/pdf/rsbmt/v50n3/0037-8682-rsbmt-50-03-00434.pdfes_CO
    dc.relation.referencesHouseman, J.G., & Downe, A.E.R. (1981a). Exoproteinase activity in posterior midgut of Rhodnius prolixus Stål (Hemiptera: Reduviidae). Insect Biochem. 11, 579–582. https://doi.org/10.1016/0020-1790(81)90026-3es_CO
    dc.relation.referencesHouseman, J.G., & Downe, A.E.R. (1980). Endoproteinase activity in the posterior midgut of Rhodnius prolixus Stål (Hemiptera, Reduviidae). Insect Biochem. 10, 363e366. https://doi.org/10.1016/0020-1790(80)90004-9es_CO
    dc.relation.referencesHouseman, J. (1978). A thiol-activated digestive protease from adults of Rhodnius prolixus Stål (Hemiptera: Reduviidae). Canadian Journal of Zoology 56, 1140–1143. https://doi.org/10.1139/z78-157es_CO
    dc.relation.referencesHuang, Y., Sheikh, M.S., Fornace Jr. A.J., & Holbrook, N.J. (1999). Serine protease inhibitor TPCK prevents taxol-induced cell death and blocks c-Raf-1 and Bcl-2 phosphorylation in human breast carcinoma cells, Oncogene 18. 3431–3439. https://doi.org/10.1038/sj.onc.1202685es_CO
    dc.relation.referencesIsola, E.L., Lammel, E.M., & Gonzalez Cappa, S.M. (1986). Trypanosoma cruzi: differentiation after interaction of epimastigotes and Triatoma infestans intestinal homogenate. Exp. Parasitol. 62, 329e335. https://doi.org/10.1016/0014-4894(86)90039-1es_CO
    dc.relation.referencesIsola, E.L., Lammel, E.M., Katzin, V.J., & Gonzalez Cappa, S.M., (1981). Influence of organ extracts of Triatoma infestans on differentiation of Trypanosoma cruzi. J. Parasitol. 67, 53e58. https://www.jstor.org/stable/3280778es_CO
    dc.relation.referencesJansen, A.M., Roque, A.L.R., & Xavier, S.C.C. (2017). Trypanosoma cruzi enzootic cycle: general aspects, domestic and synanthropic hosts and reservoirs. In: Telleria J, Tibayrenc M, editors. American Trypanosomiasis. 2nd ed. London: Elsevier. p. 243–64 https://doi.org/10.1016/B978-012-801029-7.00012-5es_CO
    dc.relation.referencesJung, G., Ueno, H., & Hayashi, R. (1998). Proton-relay system of carboxypeptidase Y as a sole catalytic site: studies on mutagenic replacement of His 397. J. Biochem. 124, 446–450. https://doi.org/10.1093/oxfordjournals.jbchem.a022133es_CO
    dc.relation.referencesNascimento, J.D., Ravazi, A., Alevi, K.C.C., Pardo-Diaz, C., Salgado-Roa, F.C., da Rosa, J.A., de Azeredo Oliveira, M.T.V., de Oliveira, J., Hernández, C., Salazar, C., & Ramírez, J.D. (2019). Taxonomical over splitting in the Rhodnius prolixus (Insecta: Hemiptera: Reduviidae) clade: are R. taquarussuensis (da Rosa et al., 2017) and R. neglectus (Lent, 1954) the same species? PLoS One 14, e0211285. https://doi.org/10.1371/journal.pone.0211285es_CO
    dc.relation.referencesJurberg, J., Rocha, D.S., & Galvão, C. (2009). Rhodnius zeledoni sp. nov. afim de Rhodnius paraensis Sherlock, Guitton & Miles, 1977 (Hemiptera, Reduviidae, Triatominae). Biota Neotrop 9: 123-128. https://doi.org/10.1590/S1676-06032009000100014es_CO
    dc.relation.referencesOng, E.B., Shaw, E., & Schoellmann, G. (1965). The Identification of the Histidine Residue at the Active Center of Chymotrypsin. J. Biol. Chem., 240, 694. https://pdfs.semanticscholar.org/9915/004cd1bbbc0b1e8497625a84cf8f75ac38bd.pdfes_CO
    dc.relation.referencesKatunuma, N. & Kominami, E. (1995). Structure, Properties, Mechanisms, and Assays of Cysteine Protease Inhibitors: Cystatins and E-64 Derivatives Methods Enzymol., 251, 382. https://www.sciencedirect.com/science/article/pii/0076687995511423es_CO
    dc.relation.referencesKollien, A.H., Waniek, P.J., Nisbet, A.J., Billingsley, P.F., & Schaub, G.A. (2004). Activity and sequence characterization of two cysteine proteases in the digestive tract of the reduviid bug Triatoma infestans. Insect Mol. Biol. 13, 569e579. https://doi.org/10.1111/j.09621075.2004.00504.xes_CO
    dc.relation.referencesKollien, A.H., & Schaub, G.A. (2000). The development of Trypanosoma cruzi in Triatominae. Parasitol Today 16:381–387. https://doi.org/10.1016/S0169-4758(00)01724-5es_CO
    dc.relation.referencesKollien, A.H., Schmidt, J., & Schaub, G.A. (1998). Modes of association of Trypanosoma cruzi with the intestinal tract of the vector Triatoma infestans. Acta Trop. 70, 127e141. https://doi.org/10.1016/S0001-706X(97)00117-4es_CO
    dc.relation.referencesKreft, S., Ravnikar, M., Mesko, P., Pungercar, J., Umek, A., Kregar, I., & Strukelj, B. (1997). Jasmonic acid inducible aspartic proteinase inhibitors from potato, Phytochemistry 44 (1997) 1001–1006. https://doi.org/10.1016/S0031-9422(96)00668-1es_CO
    dc.relation.referencesLassoued, I., Hajji, S., Mhamdi, S., Jridi, M., Bayoudh, A., Barkia, A. & Nasri, M. (2015). Digestive alkaline proteases from thornback ray (Raja clavata): Characteristics and applications Laboratory. International Journal of Biological Macromolecules. https://doi.org/10.1016/j.ijbiomac.2015.07.038es_CO
    dc.relation.referencesLehane, M.J. (2005). Managing the blood meal. In: Lehane, M.J. (Ed.), Biology of Blood-Sucking Insects, second ed. Cambridge University Press, Cambridge, pp. 84-115.es_CO
    dc.relation.referencesLehane, M.J. (1994). Digestive enzymes, hemolysins and symbionts in the search for vaccines against blood sucking insects. Int. J. Parasitol. 24, 27e32. https://doi.org/10.1016/00207519(94)90056-6es_CO
    dc.relation.referencesLehane, M.J. (1991). Managing the blood meal. In: Lehane MJ (ed) Biology of blood-sucking insects. Harper Collins, London, pp 79–110.es_CO
    dc.relation.referencesNogueira, N.F., Gonzales, M., Garcia, E.M., & de Souza, W. (1997). Effect of azadirachtin A on the fine structure of the midgut of Rhodnius prolixus. J. Invertebr. Pathol. 69, 58e63. https://doi.org/10.1006/jipa.1996.4635es_CO
    dc.relation.referencesOsuna, E. & Ayala, J.M. (1993). Belminus pittieri, nueva especie de Bolboderini (Triatominae: Reduviidae: Heteroptera). Boletín de Entomología Venezolana, 8, 147–150.es_CO
    dc.relation.referencesLenarcic, B., & Turk, V. (1999). Thyroglobulin Type-1 domains in equistatin inhibit both papainlike cysteine proteinases and cathepsin D, J. Biol. Chem. 274. 563–566. Doi: 10.1074/jbc.274.2.563 o https://www.jbc.org/content/274/2/563.shortes_CO
    dc.relation.referencesLent, H., Jurberg, J. & Carcavallo, R.U. (1995) Belminus laportei sp. n. da Região Amazônica. (Hemiptera: Reduviidae: Triatominae). Memórias do Instituto Oswaldo Cruz, 90, 33–39. http://dx.doi.org/10.1590/s0074-02761995000100008.es_CO
    dc.relation.referencesLent, H., & Wygodzinsky, P. (1979). Revision of the Triatominae (Hemiptera, Reduviidae) and their significance as vectors of Chagas disease. Bull Am Mus Nat Hist 163: 123-520. http://hdl.handle.net/2246/1282 o https://www.cabdirect.org/cabdirect/abstract/19822902845es_CO
    dc.relation.referencesLi, W., Zhao, X., Yuan, W., & Wu, K. (2016). Activities of Digestive Enzymes in the Omnivorous Pest Apolygus lucorum (Hemiptera: Miridae). Journal of Economic Entomology, 1–10, doi: 10.1093/jee/tow263. https://doi.org/10.1093/jee/tow263es_CO
    dc.relation.referencesLima-Cordón, R.A., Monroy, M.C., Stevens, L., Rodas, A., Rodas, G.A., Dorn, P.L., & Justi, S.A., (2019). Description of Triatoma huehuetenanguensis sp. n., a potential Chagas disease vector (Hemiptera, Reduviidae, Triatominae). ZooKeys. 820, 51–70. https:// doi.org/10.3897/zookeys.820.27258.es_CO
    dc.relation.referencesLomate, P.R., & Bonning, B.C. (2016). Distinct properties of proteases and nucleases in the gut, salivary gland and saliva of southern green stink bug, Nezara viridula. Scientific Reports | 6:27587. https://doi.org/10.1038/srep27587es_CO
    dc.relation.referencesLopez Ordoñez, T., Rodriguez, M.H., & Hernandez-Hernandez, F.D. (2001). Characterization of a cDNA encoding a cathepsin L-like protein of Rhodnius prolixus. Insect Mol. Biol. 10, 505e511. https://doi.org/10.1046/j.0962-1075.2001.00290.xes_CO
    dc.relation.referencesLotspeich-Steininger; C.A.; Stiene-Martin, E.A.; & Koepke, J.A. (1992). Clinical Hematology: Principles, Procedures, Correlations. Lippincott (Philadelphia, PA) p. 18.es_CO
    dc.relation.referencesMarciniszyn, J. (1977), Adv. Exp. Med. Biol. 95, 199.es_CO
    dc.relation.referencesMatsumoto, K., Yamamoto, D., Ohishi, H., Tomoo, K., Ishida, T., Inoue, M., Sadatome, T., Kitamura, K., & Mizuno, H. (1989). Mode of binding of E-64-c, a potent thiol protease inhibitor, to papain as determined by X-ray crystal analysis of the complex. FEBS Lett. 245, 177–180es_CO
    dc.relation.referencesOuali, R., de Brito, K. C. V., Salmon, D., & Bousbata, S. (2020). High-throughput identification of the Rhodnius prolixus midgut proteome unravels a sophisticated hematophagic machinery. Proteomes, 8(3). https://doi.org/10.3390/PROTEOMES8030016es_CO
    dc.relation.referencesNoireau, F., & Dujardin, J.P. (2010). Biology of Triatominae. In: Telleria J, Tibayrenc M (eds) American Trypanosomiasis Chagas Disease: One Hundred Years of Research. Elsevier insights, London.es_CO
    dc.rights.accessrightshttp://purl.org/coar/access_right/c_abf2es_CO
    dc.type.coarversionhttp://purl.org/coar/resource_type/c_2df8fbb1es_CO
    Aparece en las colecciones: Maestría en Biología Molecular y Biotecnología

    Ficheros en este ítem:
    Fichero Descripción Tamaño Formato  
    Jaimes_2021_TG.pdfJaimes_2021_TG1,85 MBAdobe PDFVisualizar/Abrir


    Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.