Por favor, use este identificador para citar o enlazar este ítem:
http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/2932
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | Jaimes Méndez, Diego Alexander. | - |
dc.date.accessioned | 2022-09-27T14:20:04Z | - |
dc.date.available | 2021-06-09 | - |
dc.date.available | 2022-09-27T14:20:04Z | - |
dc.date.issued | 2021 | - |
dc.identifier.citation | Jaimes Méndez, D. A. (2021). Caracterización del perfil de las proteasas intestinales de Belminus herreri, Belminus ferroae y Belminus corredori (Hemíptera: Triatominae) en condiciones de hemolinfagia y hematofagia, [Trabajo de Grado Maestria, Universidad de Pamplona]. Repositorio Hulago Universidad de Pamplona. http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/2932 | es_CO |
dc.identifier.uri | http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/2932 | - |
dc.description | En el presente estudio se establecieron las características de la actividad proteolítica intestinal, en insectos de la subfamilia Triatominae, pertenecientes al género Belminus (B. ferroae, B. herreri y B. corredori). Se determinó que el pH óptimo en las tres especies, bajo condiciones de alimentación de hematofagia y hemolinfagia es de 5.5, también se observó que de las tres especies alimentadas con hemolinfa B. ferroae fue quien obtuvo los valores más altos de actividad proteolítica medida sobre el sustrato azocaseina a pH 5.5 con una absorbancia de 0393. Analizando el grupo alimentado con sangre B. corredori fue quien obtuvo la mayor hidrólisis de azocaseina en pH 5.5 con una DO de 0,0336. En los análisis de actividad proteolítica posingesta se concluye que los tiempos de digestión de sangre y hemolinfa son diferentes. En las tres especies alimentadas con hemolinfa se observa actividad proteolítica a partir del día 1 posingesta y el primer pico en el día 2, por el contrario, cuando las especies son alimentadas con sangre la hidrólisis de la azocaseina se hace notoria a partir del día 5 en B. herreri y el primer pico se observa en el día 7 tanto en B. herreri como en B. ferroae. Esto sugiere que la hemolinfa es mucho más sencilla de digerir por estas tres especies que la sangre. Por otra parte, se estableció que las proteasas presentes en el intestino de las tres especies de Belminus en las dos condiciones de alimentación son proteasas cisteínicas y aspárticas, para lo cual se utilizaron inhibidores específicos como N- Tosil-L-fenilalanil Clorometil cetona (TPCK), Tosil-Lisil-clorometilcetona (TLCK), el Fluoruro de fenilmetilsulfonilo (PMSF), pepstatin A y Trans-epoxisuccinil-Lleucilamído-(4-guanidin butano) E-64. Estas enzimas son catalogadas como proteasas ácidas por su mejor acción a pH bajo, lo cual fue coherente con el pH óptimo de acción de la actividad proteolítica mostrado por estas especies (5.5). Por lo tanto, en este trabajo se reporta por primera vez en especies del género Belminus la presencia de proteasa cisteínicas y aspártica, resultado que coincide con previas caracterizaciones en otras especies de la subfamilia con comportamiento marcadamente hematófago. El conocimiento de algunos procesos fisiológicos relacionados con la digestión de estas dos dietas involucradas en la ruta de insectos predadores a hematófagos o viceversa, sin duda puede aportar en el entendimiento de la evolución de los Triatominae. Por otra parte, además de actuar las proteasas en procesos vitales como la digestión, también están implicadas en el desarrollo de huevos e inmunidad, en la capacidad vectora de agentes causantes de enfermedades, por esto las proteasas pueden ser un blanco interesante en el control de vectores. | es_CO |
dc.description.abstract | El autor no proporciona la información sobre este ítem. | es_CO |
dc.format.extent | 75 | es_CO |
dc.format.mimetype | application/pdf | es_CO |
dc.language.iso | es | es_CO |
dc.publisher | Universidad de Pamplona – Facultad de Ciencias Basicas. | es_CO |
dc.subject | Triatominae. | es_CO |
dc.subject | Belminus. | es_CO |
dc.subject | Actividad proteolítica. | es_CO |
dc.subject | Proteasas. | es_CO |
dc.subject | Inhibidores. | es_CO |
dc.subject | PH. | es_CO |
dc.title | Caracterización del perfil de las proteasas intestinales de Belminus herreri, Belminus ferroae y Belminus corredori (Hemíptera: Triatominae) en condiciones de hemolinfagia y hematofagia | es_CO |
dc.type | http://purl.org/coar/resource_type/c_bdcc | es_CO |
dc.date.accepted | 2021-03-09 | - |
dc.relation.references | Albritton, E.C. (1952). Standard Values in Blood. Prepared under the direction of the Committee on the Handbook of Biological Data, American Institute of Biological Sciences, the National Research Council. W. B. Saunders Co., West Washington Square, Philadelphia 5. | es_CO |
dc.relation.references | Almant, P.L. & Dittmer, D.S. (1971). Blood and other body fluids. In respiration and circulation. Bethesda, MDI: Federation of American Societies of Experimental Biology. Pag. 540. | es_CO |
dc.relation.references | Alvarenga, E. S. L., Mansur, J. F., Justi, S. A., Figueira-Mansur, J., Dos Santos, V. M., Lopez, S. G., Masuda, H., Lara, F. A., Melo, A. C. A., & Moreira, M. F. (2015). Chitin is a component of the Rhodnius prolixus midgut. Insect Biochemistry and Molecular Biology, 69, 61–70. https://doi.org/10.1016/j.ibmb.2015.04.003 | es_CO |
dc.relation.references | Amino, R., Tanaka, A.S., & Schenkman, S. (2001). Triapsin, an unusual activable serine protease from the saliva of the hematophagous vector of Chagas’ disease Triatoma infestans (Hemiptera: Reduviidae). Insect Biochem. Mol. Biol. 31, 465–472. https://www.sciencedirect.com/science/article/pii/S096517480000151X | es_CO |
dc.relation.references | Azambuja, P., Guimaraes, J.A., & Garcia, E.S. (1983). Haemolytic factor from the crop of Rhodnius prolixus: evidence and partial characterization. J Insect Physiol 29:833–837. https://doi.org/10.1016/0022-1910(83)90149-X | es_CO |
dc.relation.references | Balczun, C., Siemanowski, J., Pausch, J.K., Helling, S., Marcus, K., Stephan, C., Meyer, H.E., Schneider, T., Cizmowski, C., Oldenburg, M., H€ohn, S., Meiser, C.K., Schuhmann, W., Schaub, G.A. (2012a). Intestinal aspartate proteases TiCatD and TiCatD2 of the hematophagous bug Triatoma infestans (Reduviidae): sequence characterisation, expression pattern and characterisation of proteolytic activity. Insect Biochem Mol Biol. https://doi.org/10.1016/j.ibmb.2011.12.006 | es_CO |
dc.relation.references | Balczun, C., Meiser, C.K., & Schaub, G.A. (2012b). Chapter 12, Triatomines as Vectors of American Tripanosomiasis. Arthropods as Vectors of Emerging Diseases. Parasitology Research Monograph 3. Heinz Mehlhorn Editor. Springer. Pag.275-300 | es_CO |
dc.relation.references | Barrett, A. J., Kembhavi, A. A., Brown M. A., Kirschke, H., Knight, C. G., Tamai, M., & Hanada, K. (1982). L-trans-epoxysuccinylleucylamido (4-guanidino) butane (E-64) and its analogues as inhibitors of cysteine proteinases including cathepsins B, H and L. Biochem. J. 201, 189-198. https://portlandpress.com/biochemj/article/201/1/189/13523/L-trans-Epoxysuccinyl-leucylamido4-guanidino | es_CO |
dc.relation.references | Barros, V.C., Assumpcao, J.G., Cadete, A.M., Santos, V.C., Cavalcante, R.R., Araújo, R.N., Pereira, M.H., & Gontijo, N.F. (2009) The role of salivary and intestinal complement system inhibitors in the midgut protection of triatomines and mosquitoes. PLoS One 4(6): e6047 | es_CO |
dc.relation.references | Ben-Mahmoud, S., Ramos, J., Shatters Jr, R., Rougé, P., Powell, C., Smagghe, G., & Borovsky, D. (2014). Cloning and characterization of a basic cysteine-like protease (cathepsin L1) expressed in the gut of larval Diaprepes abbreviatus L. (Coleoptera: Curculionidae). Journal of Insect Physiology. https://doi.org/10.1016/j.jinsphys.2014.11.001 | es_CO |
dc.relation.references | Beyond, R. & Bond, J.S. (2001). Proteolytic Enzymes, second edition. Oxford University press. p. 322. | es_CO |
dc.relation.references | Meiser, C.K., Piechura, H., Meyer, H.E., Warscheid, B., Schaub, G.A., & Balczun, C. (2010). A salivary serine protease of the haematophagous reduviid Panstrongylus megistus: sequence characterization, expression pattern and characterization of proteolytic activity. Insect Mol. Biol. 19, 409–421. | es_CO |
dc.relation.references | Patel, S., Siroya, H., & Upadhyay, D. (2020). Study on Proteases: A Review. Studies in Indian Place Names (UGC care journal), 71, 216–223. | es_CO |
dc.relation.references | Pasternack, M. S., Sitkovsky, M. V., & Eisen, H. N. (1983). The site of action of N-a-tosyl-L-lysylchloromethyl-ketone (TLCK) on cloned cytotoxic T lymphocytes. J. Immunol. 131: 2477. | es_CO |
dc.relation.references | Zhu, H., Dinsdale, D., Alnemri, E.S., & Cohen, G.M. (1997). Apoptosis in human monocytic THP.1 cells involves several distinct targets of N-tosyl-L-phenylalanyl chloromethyl ketone (TPCK), Cell Death Differ. 4. 590–599. https://doi.org/10.1038/sj.cdd.4400284 | es_CO |
dc.relation.references | Poinar, G. (2019). A primitive triatomine bug, Paleotriatoma metaxytaxa gen. et sp. nov. (Hemiptera: Reduviidae: Triatominae), in mid-Cretaceous amber from northern Myanmar. Cretac. Res. 93, 90–97. https://doi.org/10.1016/j.cretres.2018.09.004. | es_CO |
dc.relation.references | Pong, S.S., Nuss, D.L., & Koch, G. (1975). Inhibition of Initiation of Protein Synthesis in Mammalian Tissue Culture Cells by L-1-Tosylamido-2-phenylethyl Chloromethyl Ketone. J. Biol. Chem., 250, 240. https://www.jbc.org/content/250/1/240.full.pdf | es_CO |
dc.relation.references | Powers, J.C., Asgian, J.L., Erici O.D., & James, K.E. (2002). Irreversible inhibitors of serine, cystein and theonine proteases. Chem. Rev., 102(12), 4639-4750. https://doi.org/10.1021/cr010182v | es_CO |
dc.relation.references | Quan, P. C., Ishizaka, T., & Bloom, B. R. (1982). Studies on the mechanism of NK cell lysis. J. Immunol. 128: 1786. https://www.jimmunol.org/content/128/4/1786.short | es_CO |
dc.relation.references | Billker, O., Miller, A. J. & Sinden, R. E. (2000). Determination of mosquito bloodmeal pH in situ by ion-selective microelectrode measurement: implications for the regulation of malarial gametogenesis. Parasitology 120, 547–551. | es_CO |
dc.relation.references | Quintal, R.E., & Polanco, G.G. (1977). Feeding preferences of Triatoma dimidiata maculipennis in Yucatan, Mexico. Am J Trop Med Hyg; 26:176–178. https://doi.org/10.4269/ajtmh.1977.26.176 | es_CO |
dc.relation.references | Zhou, D., Chang, X., Bao, S., Song, L., Zhu, B., Dong, X., Zong, Y., Li, D., Zhang, M., Liu, Y., & Murata, Y. (2014). Purification and partial characterisation of a cathepsin L-like proteinase from sea cucumber (Stichopus japonicus) and its tissue distribution in body wall. Food Chemistry. https://doi.org/10.1016/j.foodchem.2014.02.105 | es_CO |
dc.relation.references | Ramzi, S., & Zibaee, A. (2014). Digestive proteolytic activity in Apodiphus amygdali Germar (Hemiptera: Pentatomidae): effect of endogenous inhibitors. Journal of Emtomological And Acarological Research. Volume 46:1868. https://doi.org/10.4081/jear.2014.1868 | es_CO |
dc.relation.references | Rawlings, N.D., Barrett, A.J., & Bateman, A., (2010). MEROPS: the peptidase database. Nucleic Acids Res. 38, D227–D233. https://doi.org/10.1093/nar/gkp971 | es_CO |
dc.relation.references | Rawlings, N.D., Barrett, A.J., Mehta, D.P., & Freeze, H.N. (1998). “Handbook of proteolytic Enzymes”, Handb. Proteolytic Enzym., Vol 1, pp. 1983-1941 | es_CO |
dc.relation.references | Ribeiro, J. M. C., Genta, F. A., Sorgine, M. H. F., Logullo, R., Mesquita, R. D., Paiva-Silva, G. O., Majerowicz, D., Medeiros, M., Koerich, L., Terra, W. R., Ferreira, C., Pimentel, A. C., Bisch, P. M., Leite, D. C., Diniz, M. M. P., da Junior, J. L. S. G. V., Da Silva, M. L., Araujo, R. N., Gandara, A. C. P., & Oliveira, P. L. (2014). An Insight into the Transcriptome of the Digestive Tract of the Bloodsucking Bug, Rhodnius prolixus. PLOS Neglected Tropical Diseases, 8(1), 27. https://doi.org/10.1371/journal.pntd.0002594 | es_CO |
dc.relation.references | Burgos, M.H., Gutierrez, L.S., Lammuel, E., & Isola, E.L. (1989). Midgut extract rich in peritrophic membrane from Triatoma infestans induces differentiation of Trypanosoma cruzi. Microsc. electr_on. Biol. Cel. 13, 151e166. | es_CO |
dc.relation.references | Rimoldi, O.J., Peluffo, R.O., González, S.M., & Brenner, R.R. (1985). Lipid digestion, absorption and transport in Triatoma infestans. Comp Biochem Physiol B 82:187–190. https://doi.org/10.1016/0305-0491(85)90150-6 | es_CO |
dc.relation.references | Rosa, J.A., Solano, R.C., Gardim, S., Pinto, M.R., Mendoça, V.G., Ferreira Filho, J.C., Carvalho, E.O., Camargo, L.M., Oliveira, J., Nascimento, J.D., Cilense, M., & Almeida, C.E. (2012). Description of Rhodnius montenegrensis n. sp. (Hemiptera: Reduviidae: Triatominae) from the state of Rondônia, Brazil. Zootaxa 3472: 62-76. https://www.mapress.com/j/zt/article/view/zootaxa.3478.1.8/23650 | es_CO |
dc.relation.references | Rokhlin, O.W., Guseva, N.V., Taghiyev, A.F., Glover, R.A., & Cohen, M.B. (2004). Multiple effects of N-alpha-tosyl-L-phenylalanyl chloromethyl ketone (TPCK) on apoptotic pathways in human prostatic carcinoma cell lines, Cancer Biol. Ther. 3., 761–768. https://doi.org/10.4161/cbt.3.8.970 | es_CO |
dc.relation.references | Salvatella, R., Basmadjian, Y., Rosa, R., & Puime, A. (1993). Triatoma delpontei Romaña & Abalos, 1947 (Hemiptera, Triatominae) en el estado brasileño de Rio Grande do Sul. Rev Inst Med Trop Sao Paulo 35:73-6 https://www.scielo.br/pdf/rimtsp/v35n1/a10v35n1.pdf | es_CO |
dc.relation.references | Sandoval, C.M., Nieves Blanco, E.E., Gutiérrez, R., Jaimes, D.A., Ortiz, N., Otarola, F., & Aldana, J. (2015). Morphometric Analysis of the Host Effect on Phenotypical Variation of Belminus ferroae (Hemiptera: Triatominae). Psyche, ID 613614, 12 pages. https://doi.org/10.1155/2015/613614 | es_CO |
dc.relation.references | Christensen, H.A., Sousa, O.E., & de Vasquez, A.M. (1988). Host feeding profiles of Triatoma dimidiata in peridomestic habitats of western Panama. Am. J. Trop. Med. Hyg. 38, 477–479. https://doi.org/10.4269/ajtmh.1988.38.477 | es_CO |
dc.relation.references | Bleackley, R. C., Lobe, C. G., Duggan, B., Ehrman, N., Fregeau, C., Meier, M., Letellier, M., Havele, C., Shaw, J., & Paetkau, V. (1988). The isolation and characterization of a family of serine protease genes expressed in activated cytotoxic T lymphocytes. Immunol. Rev. 103: 5. https://doi.org/10.1111/j.1600-065X.1988.tb00746.x | es_CO |
dc.relation.references | Sandoval, C.M., Medone, P., Nieves, E.E., Jaimes, D.A., Ortiz, N., & Rabinovich, J.E. (2013). Demographic fitness of Belminus ferroae (Hemiptera: Triatominae) on three different host under SC-CER96940 Universidad de Pamplona Pamplona - Norte de Santander - Colombia Tels: (7) 5685303 - 5685304 - 5685305 - Fax: 5682750 www.unipamplona.edu.co “Formando líderes para la construcción de un nuevo país en paz” 59 laboratory conditions. Memories institute Oswaldo Cruz, Vol. 108(7), p: 854-864. https://doi.org/10.1590/0074-0276130211 | es_CO |
dc.relation.references | Sandoval, C.M., Ortiz, N., Jaimes, D., Lorosa, E., Galvão, C., Rodriguez, O., Scorza, J.V., & Gutiérrez, R. (2010). Feeding behaviour of Belminus ferroae (Hemiptera: Reduviidae), a predaceous Triatominae colonizing rural houses in Norte de Santander, Colombia. Medical and Veterinary Entomology 24: 124-131. https://doi.org/10.1111/j.1365-2915.2010.00868.x | es_CO |
dc.relation.references | Sandoval, C.M., Pabón, E., Jurberg, J., & Galvão, C. (2007). Belminus ferroae sp. from the Colombian north-east, with a key to the species of the genus (Hemiptera: Reduviidae: Triatominae). Zootaxa 1443: 55-64. https://www.mapress.com/j/zt/article/view/3295 | es_CO |
dc.relation.references | Sandoval, C.M., Duarte, R., Gutiérrez, R., Rocha, D.S., Angulo, V.M., Esteban, L., Reyes, M., Jurberg, J., & Galvão, C. (2004). Feeding sources and natural infection of Belminus herreri (Hemiptera, Reduviidae, Triatominae) from dwellings in Cesar, Colombia. Mem Inst Oswaldo Cruz 99: 137-140. http://dx.doi.org/10.1590/S0074-02762004000200004 | es_CO |
dc.relation.references | Buck, J. B. (1953). Physical properties and chemical composition of insect blood, in Insect Physiology, (K. D. Roeder, editor), New York, John Wiley and Sons, Inc., , 147. | es_CO |
dc.relation.references | Sandoval, C.M., Joya, M.I., Gutiérrez, R., & Angulo, V.M. (2000). Cleptohaematophagy of the Triatomine bug Belminus herreri. Med Vet Entomol 14: 100-101. https://doi.org/10.1046/j.13652915.2000.00210.x | es_CO |
dc.relation.references | Sarath, G., De La Motte, R., & Wagner, F. (1989). Protease assay methods. In: Beynon, R.J., Bond, J.S. (Eds.), Proteolytic Enzymes: A Practical Approach. Oxford University Press, Oxford, pp. 25–55. | es_CO |
dc.relation.references | Schaub, G.A., Meiser, C.K., & Balczun, C. (2011) Interactions of Trypanosoma cruzi and triatomines. In: Mehlhorn H (ed) Progress in parasitology, vol 2, Parasitology research monographs. Springer, Berlin, pp 155–178. | es_CO |
dc.relation.references | Schaub, G.A. (2009). Interactions of trypanosomatids and triatomines. Adv. Insect Physiol. 37, 177e242. https://doi.org/10.1016/S0065-2806(09)37004-6 | es_CO |
dc.relation.references | Cobben, R. H. (1978). Evolutionary trends in Heteroptera Part II: Mouthpart-structures and feeding strategies. Wageningen, Mededelingen Landbouwhogeschool 78-5. H. Veenman & Zonen B.V.,v+407 p https://library.wur.nl/WebQuery/wurpubs/fulltext/294330 | es_CO |
dc.relation.references | Schaub, G.A. (2008). Kissing bugs. In: Mehlhorn H (ed) Encyclopedia of parasitology, vol 1, 3rd edn. Springer, Heidelberg, pp 684–686. | es_CO |
dc.relation.references | Schechter, I., & Berger, A. (1967). On the size of the active site in proteases. I. Papain. Biochem. Biophys. Res. Commun. 27, 157–162. | es_CO |
dc.relation.references | Blow, F., & Douglas, A. E. (2019). The hemolymph microbiome of insects. Journal of Insect Physiology, 115(April), 33–39. https://doi.org/10.1016/j.jinsphys.2019.04.002 | es_CO |
dc.relation.references | Schoellmann, G., & Shaw, E. (1963). Direct Evidence for the Presence of Histidine in the Active Center of Chymotrypsin. Biochem., 2, 252. https://doi.org/10.1021/bi00902a008. | es_CO |
dc.relation.references | Schoellmann, G., & Shaw, E. (1962). A new method for labelling the active center of chymotrypsin, Biochem. Biophys. Res. Commun. 7. 36–40. https://doi.org/10.1016/0006-291X(62)90140-7 | es_CO |
dc.relation.references | Schofield, C.J., & Galvão, C. (2009). Classification, evolution and species groups within the Triatominae. Acta Trop 110: 88-100. https://doi.org/10.1016/j.actatropica.2009.01.010 | es_CO |
dc.relation.references | Calderón Arguedas, O., Chinchilla, M., García, F., & Vargas, M. (2003). Variaciones biológicas de Trypanosoma cruzi (Kinetoplastida: Trypanosomatidae) asociadas con la ingestión de diferentes tipos de sangre por el vector (Hemíptera: Reduviidae). Parasitol. Latinoam. 58 (2), 3–10. http://dx.doi.org/10.4067/S0717-77122003000100001 | es_CO |
dc.relation.references | Schofield, C.J. (1996). Overview – biosystematics of the Reduviidae. In: Schofield, C.J., Dujardin, J.P., Jurberg, J. (Eds.), Proceedings of the International Workshop on Population Genetics and Control of Triatominae. Santo Domingo de Los Colorados, Ecuador Mexico City, INDRE, pp. 483– 516 | es_CO |
dc.relation.references | Segura Egea, J.J., Jiménez Rubio-Manzanares, A., Llamas Cadaval, R., & Jiménez Planas, A. (1997). El ácido etilen diamino tetraacético (EDTA) y su uso en endodoncia. ENDODONCIA Volumen 15 Número 2 Abril-Junio 1997- https://personal.us.es/segurajj/documentos/CV-ArtSin%20JCR/Endodoncia-Edta-1997.pdf | es_CO |
dc.relation.references | Sharma, A., & Radha Kishan, K.V. (2011). Serine protease inhibitor mediated peptide band resynthesis in diverse protein molecules. FEBS Letters 585. 3465-3470. https://doi.org/10.1016/j.febslet.2011.10.004 | es_CO |
dc.relation.references | Morrissey, J. H., Fakhrai, H., & Edgington, T. S. (1987). Molecular cloning of the cDNA for tissue factor, the cellular receptor for the initiation of the coagulation protease cascade. Cell 50: 129. https://doi.org/10.1016/0092-8674(87)90669-6 | es_CO |
dc.relation.references | Shaw, E., & Glover, G. (1970). Further observations on substrate-derived chloromethyl ketones that inactivate trypsin Arch. Biochem. Biophys., 139, 298. https://doi.org/10.1016/00039861(70)90481-9 | es_CO |
dc.relation.references | Shaw, E., Mares-guia, M., & Cohen, W. (1965) Evidence for an Active-Center Histidine in Trypsin through Use of a Specific Reagent, 1-Chloro-3-tosylamido-7-amino-2-heptanone, the Chloromethyl Ketone Derived from Nα-Tosyl-L-lysine Biochem., 4, 2219. https://doi.org/10.1021/bi00886a039 | es_CO |
dc.relation.references | Sigma-Aldrich. (2018). PMSF. Recuperado de https://www.sigmaaldrich.com/content/dam/sigmaaldrich/docs/Sigma/Product_Information_Sheet/1/p7626pis.pdf | es_CO |
dc.relation.references | Sigma.Aldrich. (2001). Pepstatin A. Recuperado de http://www.sigmaaldrich.com/content/dam/sigmaaldrich/docs/Sigma/Product_Information_Sheet/1/p5318pis.pdf | es_CO |
dc.relation.references | Bond, J.S. & Butler, P.E. (1987). Intracellular proteases. Ann. Rev. Biochem., 56, 333. https://www.annualreviews.org/doi/pdf/10.1146/annurev.bi.56.070187.002001 | es_CO |
dc.relation.references | Silva, C.P., & Terra, W.R. (1994). Digestive and absorptive sites along the midgut of the cotton seed sucker bug Dysdercus peruvianus (Hemiptera: Pyrrhocoridae). Insect Biochemistry and Molecular Biology 24, 493–505. https://doi.org/10.1016/0965-1748(94)90044-2 | es_CO |
dc.relation.references | Sojka, D., Franta, Z., Horn, M., Caffrey, C.R., Mareš, M., & Kopáček, P. (2013). New insights into the machinery of blood digestion by ticks. Trends Parasitol.;29(6): 276–85. https://doi.org/10.1016/j.pt.2013.04.002 | es_CO |
dc.relation.references | Carcavallo, R.U., Rocha da Silva, D., Galíndez, G., Itamar, Sherlock I., Galvão, C., Martínez, A., & Tonn, R.J. Cortón E (1998). Feeding sources and patterns. In: Carcavallo R, Galindez I, Jurberg J, Lent H (eds). AtlasOf Chagas Disease Vectors in the Americas. Fiocruz, Rio de Janeiro. | es_CO |
dc.relation.references | Solomon, D. H., O’Brian, C. A., & Weinstein, I. B. (1985). N-a-Tosyl-L-lysine chloromethyl ketone and N-a-tosyl-L-phenylalanine chloromethyl ketone inhibit protein kinase C. FEBS Lett. 190:342. https://doi.org/10.1016/0014-5793(85)81315-6 | es_CO |
dc.relation.references | Sreedharan, S.K., Verma, C., Caves, L.S.D., Brocklehurs, S.M., Gharbias, S.E., Shars, H.N., & Brocklehurs, K. (1996). Demonstration that 1-trans-epoxysuccinyl-L-leucylamido-(4-guanidino) butane (E-64) is one of the most effective low Mr inhibitors of trypsin-catalysed hydrolysis. Characterization by kinetic analysis and by energy minimization and molecular dynamics simulation of the E-64–β-trypsin complex. Biochem. J., 316, 777. SC-CER96940 Universidad de Pamplona Pamplona - Norte de Santander - Colombia Tels: (7) 5685303 - 5685304 - 5685305 - Fax: 5682750 www.unipamplona.edu.co “Formando líderes para la construcción de un nuevo país en paz” 61 https://portlandpress.com/biochemj/article/316/3/777/32656/Demonstration-that-1-transepoxysuccinyl-l | es_CO |
dc.relation.references | Cohen, A.C. (1993). Organization of digestion and preliminary characterization of salivary trypsinlike enzymes in a predaceous Heteropteran, Zelus renardii. Journal of Insect Physiology 39, 823– 829. https://doi.org/10.1016/0022-1910(93)90114-7 | es_CO |
dc.relation.references | Stål, C. (1859). Monographie der Gattung Conorhinus and Verwandten. Berliner Entomologische Zeitschrift, 3, 99–117. https://doi.org/10.1002/mmnd.18590030202 | es_CO |
dc.relation.references | Tamaki, F., Pimentel, A., Dias, A., Cardoso, A., Ribeiro, A., Ferreira, C., & Terra, W. (2014). Physiology of digestion and the molecular characterization of the major digestive enzymes from Periplaneta Americana. Journal of Insect Physiology. https://doi.org/10.1016/j.jinsphys.2014.08.007 | es_CO |
dc.relation.references | Takahashi, K., & Chang, W. J. (1976). The Structure and Function of Acid Proteases J. Biochem.(Tokyo), 80, 497. https://www.jstage.jst.go.jp/article/biochemistry1922/80/3/80_3_497/_pdf/-char/ja | es_CO |
dc.relation.references | Takanona, T., & Hori, K. (1974). Digestive enzymes in the salivary gland and midgut of the bug Stenotus binotatus. Comparative Biochemistry and Physiology 47A, 521–528. https://doi.org/10.1016/0300-9629(74)90015-2 | es_CO |
dc.relation.references | Terra, W.R., & Ferreira, C. (2005). Biochemistry of digestion. In: Gilbert, L.I., Iatrou, K., Gill, S.S. (Eds.), Comprehensive Molecular Insect Science, vol. 4. Elsevier, Oxford, pp. 171–224. | es_CO |
dc.relation.references | Terra, W.R., Ferreira, C., Jordão, B.P., & Dillon, R.J. (1996). Digestive enzymes. In: Lehane, M.J., Billingsley, P.F. (Eds.), Biology of the Insect Midgut. Chapman & Hall, London, pp. 153–194. | es_CO |
dc.relation.references | Borges, E.C., Machado E.M.M., Garcia E.S., & Azambuja, P. (2006) Trypanosoma cruzi: effects of infection on cathepsin D activity in the midgut of Rhodnius prolixus. Exp Parasitol 112:130–133. https://doi.org/10.1016/j.exppara.2005.09.008 | es_CO |
dc.relation.references | Terra, W.R., & Ferreira, C. (1994). Insect digestive enzymes: properties, compartmentalization and function. Comparative Biochemistry and Physiology 109B, 1–62. https://doi.org/10.1016/0305-0491(94)90141-4 | es_CO |
dc.relation.references | Castillo Neyra, R., Chou, C. L., Quispe Machaca, V., Ancca Juarez, J., Malaga Chavez, F.S., Bastos Mazuelos, M., Naquira, C., Bern, C., Gilman, R.H., & Levy, M. Z. (2015). The potential of canine sentinels for reemerging Trypanosoma cruzi transmission. Prev. Met. Med. 120, 349-356 https://doi.org/10.1016/j.prevetmed.2015.04.014 | es_CO |
dc.relation.references | Terra, W.R. (1988). Physiology and biochemistry of insect digestion: an evolutionary perspective. Brazilian Journal of Medical and Biological Research 21, 675–734. | es_CO |
dc.relation.references | Colebatch, Gillian., Eats, Peter., & Cooper, Paul. (2001). Preliminary characterization of digestive proteases of de green mirid Creontiades dilutus (Hemiptera: Miridae). Insect Biochemistry and molecular biology. 31. Pag. 415-423. https://doi.org/10.1016/S0965-1748(00)00136-3 | es_CO |
dc.relation.references | Terra, W.R., Ferreira, C., & Garcia, E.S. (1988). Origin, distribution, properties and functions of the major Rhodnius prolixus midgut hydrolases. Insect Biochem 18:423–434. https://doi.org/10.1016/0020-1790(88)90058-3 | es_CO |
dc.relation.references | Terra, W. R., De Bianchi, G. & Lara, F. J. S. (1974). Phvsical properties and chemical composition of the haemolymph of Rhynchsociara americana (Diptera) larvae. Comp. Biochem. Physiol. 47B, 117-129. | es_CO |
dc.relation.references | Turini, P., Kurooka, S., Steer, M., Corbascio. A., & Singer T.P. (1969). The action of phenylmethylsulfonyl Fluoride on human acetylcholinesterase, chymotrypsin and trypsin. J. Pharmacol. Exp. Ther., vol. 167, 98. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.864.7652&rep=rep1&type=pdf | es_CO |
dc.relation.references | Umezawa, H., Takita, T., & Shiba, T. (1978). Bioactive Peptides Produced by Microorganisms, Halsted, New York. | es_CO |
dc.relation.references | Umezawa, H. (1976). Methods in Enzymology, 45, 689 | es_CO |
dc.relation.references | Umezawa, H., Ayogi, T., Morishima, H., Matsuzaki, M., Hamada, M., & Takeuchi, T. (1970). Pepstatin, a new pepsin inhibitor produced by Actinomycetes, J. Antibiot. 23. 259–262. https://doi.org/10.7164/antibiotics.23.259 | es_CO |
dc.relation.references | van der Hoorn, R.A. (2008). Plant proteases: from phenotypes to molecular mechanisms. Annu Rev Plant Biol. 59:191‐223. https://doi.org/10.1146/annurev.arplant.59.032607.092835 | es_CO |
dc.relation.references | Vaseva, I., Sabotic, J., Sustar-Vozlic, J., Meglic, V., Kidric, M., Demirevska, K., & Simova-Stoilova L. (2012). The response of plants to drought stress: the role of dehydrins, chaperones, proteases and protease inhibitors in maintaining cellular protein function. In: Droughts: New Research. Neves DF and Sanz JD. (Eds.) 1-45. https://www.researchgate.net/profile/Irina_Vaseva/publication/309201201_The_response_of_pla nts_to_drought_stress_the_role_of_dehydrins_chaperones_proteases_and_protease_inhibitors _in_maintaining_cellular_protein_function/links/58330cb308ae138f1c0a7b27/The-response-ofplants-to-drought-stress-the-role-of-dehydrins-chaperones-proteases-and-protease-inhibitors-inmaintaining-cellular-protein-function.pdf | es_CO |
dc.relation.references | Brown, J. J., Rodríguez-Ruano, S. M., Poosakkannu, A., Batani, G., Schmidt, J. O., Roachel, W., Zima, J. J., Hypša, V., & Nováková, E. (2020). Ontogeny, species identity and environment dominate microbiome dynamics in wild populations of kissing bugs (Triatominae). BioRxiv. https://doi.org/10.1101/2020.06.05.135871 | es_CO |
dc.relation.references | Chapman, R.F. (1998). The insects: structure and function. New York: Cambridge University Press. Pag.53-55. ISBN-13 978-0-521-57890-5. | es_CO |
dc.relation.references | Darvishzadeh, A., Bandani, A., Amiri, A., & Mousavi, S. (2015). Serine and cysteine proteases of Rhynchophorus ferrugineus (Coleoptera: Curculionidae) larvae raised on date palms (Phoenix dactylifera). Journal of Asia-Pacific Entomology. https://doi.org/10.1016/j.aspen.2015.07.008 | es_CO |
dc.relation.references | Waniek, P.J. (2014). Pathways of insect protein digestion: Triatominae (kissing bugs). Entomol. Ornithol. Herpetol. 3, e109 | es_CO |
dc.relation.references | Waniek, P.J., Araujo, A.C., Momoli, M.M., Azambuja, P., Jansen, A.M., & Genta, F.A. (2014). Serine carboxypeptidases of Triatoma brasiliensis (Hemiptera, Reduviidae): Sequence characterization, expression pattern and activity localization. Journal of insect physiology 63, 920. https://doi.org/10.1016/j.jinsphys.2014.02.003 | es_CO |
dc.relation.references | Waniek, P.J., Pacheco Costa, J.E., Jansen, A.M., & Araújo, C.A.C. (2012). Cathepsin L of Triatoma brasiliensis (Reduviidae, Triatominae): sequence characterization, expression pattern and zymography. J. Insect Physiol. 58, 178–187. https://doi.org/10.1016/j.jinsphys.2011.11.008 | es_CO |
dc.relation.references | Wenk, P., Lucic, S., & Betz, O. (2010). Functional anatomy of the hypopharynx and the salivary pump in the feeding apparatus of the assassin bug Rhodnius prolixus (Reduviidae, Heteroptera). Zoomorphology 129:225–234. https://doi.org/10.1007/s00435-010-0115-7 | es_CO |
dc.relation.references | Xiao, R., Zhang, Z., Wang, H., Han, Y., Gou, M., Li, B., Duan, D., Wang, J., Liu, X., & Li, Q. (2014). Identification and characterization of a cathepsin D homologue from lampreys (Lampetra japonica). Developmental and Comparative Immunology. https://doi.org/10.1016/j.dci.2014.10.014 | es_CO |
dc.relation.references | WHO (World Health Organization), 2020. Chagas Disease (American Trypanosomiasis). World Health Organization. https://www.who.int/chagas/disease/en/, Accessed date: 03-july-2020. | es_CO |
dc.relation.references | Wyatt, G. R. (1961). The biochemistry of insect hemolymph. A. Rev. Ent. 6, 75-102. | es_CO |
dc.relation.references | Wyatt, G. R., Loughheed, T. C., & Wyatt, S. S. (1956) The chemistry of insect hemolymph. Organic components of the hemolyrnph of the silk-worm, Bombyx mori, and two other species, ft. gen. Physiol. 39, 853-868. | es_CO |
dc.relation.references | Wyatt, G. R., Loughheed, T. C., & Wyatt, S. S. (1956). J. Gen. Physiol. 39, 853–868. | es_CO |
dc.relation.references | Zhao, A., Li, Y., Leng, C., Wang, P., & Li, Y. (2019). Inhibitory effect of protease inhibitors on larval midgut protease activities and the performance of Plutella xylostella (Lepidoptera: Plutellidae). Frontiers in Physiology, 10(JAN), 1–9. https://doi.org/10.3389/fphys.2018.01963 | es_CO |
dc.relation.references | De Fuentes-Vicente, J. A., Gutiérrez-Cabrera, A. E., Flores-Villegas, A. L., Lowenberger, C., Benelli, G., Salazar-Schettino, P. M., & Córdoba-Aguilar, A. (2018). What makes an effective Chagas disease vector? Factors underlying Trypanosoma cruzi-triatomine interactions. Acta Tropica, 183, 23–31. https://doi.org/10.1016/j.actatropica.2018.04.008 | es_CO |
dc.relation.references | Christeller, J.T., Farley, P.C., Ramsay, R.J., Sullivan, P.A., & Laing, W.A. (1998). Purification, characterization and cloning of an aspartic proteinase inhibitor from squash phloem exudates, Eur. J. Biochem. 254. 160–167. https://febs.onlinelibrary.wiley.com/doi/epdf/10.1046/j.14321327.1998.2540160.x | es_CO |
dc.relation.references | Buarque, D. S., Braz, G. R. C., Martins, R. M., Tanaka-Azevedo, A. M., Gomes, C. M., Oliveira, F. A. A., Schenkman, S., & Tanaka, A. S. (2013). Differential Expression Profiles in the Midgut of Triatoma infestans Infected with Trypanosoma cruzi. PLOS ONE, 8(5). https://doi.org/10.1371/journal.pone.0061203 | es_CO |
dc.relation.references | Deu, E., Verdoes M., & Bogyo, M. (2012). New approaches for dissecting protease functions to improve probe development and drug discovery. Nat Struct Mol Biol 19, 9-16. https://doi.org/10.1038/nsmb.2203 | es_CO |
dc.relation.references | Dorn, P.L., Justi, S.A., Dale, C., Stevens, L., Galvão, C., Lima-Cordón, & R., Monroy, C. (2018). Description of Triatoma mopan sp. n. from a cave in Belize (Hemiptera, Reduviidae,Triatominae). ZooKeys 775, 69–95. https://doi.org/10.3897/zookeys.775.22553. | es_CO |
dc.relation.references | Monteiro, F. A., Weirauch, C., Felix, M., Lazoski, C., & Abad-Franch, F. (2018). Evolution, Systematics, and Biogeography of the Triatominae, Vectors of Chagas Disease. Advances in Parasitology, 99, 265–344. https://doi.org/10.1016/bs.apar.2017.12.002 | es_CO |
dc.relation.references | Dos Santos, C., Da costa Marques, M., Tenorio, H., Carvalho, E., & Vieira, H. (2016). Purification and characterization of trypsin from Luphiosilurus alexandri pyloric cecum. Biochemistry and Biophysics Reports. https://doi.org/10.1016/j.bbrep.2016.08.003 | es_CO |
dc.relation.references | Dunn, B.M. (1989) In Proteolytic Enzymes: A Practical Approach, R.J. Beynon and J.S. Bond, eds. (IRL Press,), p. 63. | es_CO |
dc.relation.references | Ferreira, C., Ribeiro, A.F., Garcia, E.S., & Terra, W.R. (1988) Digestive enzymes trapped between and associated with the double plasma membranes of Rhodnius prolixus posterior midgut cells. Insect Biochem 18:521–530. https://doi.org/10.1016/0020-1790(88)90003-0 | es_CO |
dc.relation.references | Florkin, M., & Jeuniaux, C. (1964). Hemolymph: composition. In The Physiology of Insecta (Edited by Rockstein, M.), Vol. 3, pp. 109-152. Academic Press, New York. | es_CO |
dc.relation.references | Murdock, L.L.; Brookhart, G.; Dunn, P.E.; Foard, D.E., & Kelley, S. (1987). Cysteine digestive proteinases in Coleoptera. Comparative Biochemistry and Physiology-B. vol. 87, p. 783-787. https://doi.org/10.1016/0305-0491(87)90388-9 | es_CO |
dc.relation.references | Foissac, X., Edwards, M.G., Du, J.P., Gatehouse, A.M.R., & Gatehouse, J.A. (2002). Putativeprotein digestion in a sap-sucking homopteran plant pest (rice brown plant hopper; Nilaparvata lugens: Delphacidae identification of trypsin like and cathepsin B-like proteases. Insect Biochem. Mol. Biol. 32, 967–978. https://doi.org/10.1016/S0965-1748(02)00033-4 | es_CO |
dc.relation.references | Galvão, C., & Angulo, V.M. (2006). Belminus corredori, a new species of Bolboderini (Hemiptera: Reduviidae: Triatominae) from Santander, Colombia. Zootaxa 1241: 61-68. https://www.researchgate.net/profile/Cleber_Galvao/publication/279893840_Belminus_Corredori _A_New_Species_Of_Bolboderini_Hemiptera_Reduviidae_Triatominae_From_Santander_Colo mbia/links/5d3e0350a6fdcc370a694741/Belminus-Corredori-A-New-Species-Of-BolboderiniHemiptera-Reduviidae-Triatominae-From-Santander-Colombia.pdf | es_CO |
dc.relation.references | Garcia, E.S., & Guimarães, J.A. (1979). Proteolytic enzymes in the Rhodnius prolixus midgut. Experientia 35, 305–306. https://doi.org/10.1007/BF01964315 | es_CO |
dc.relation.references | Garcia, E.S., & Garcia, M.L.M. (1977). Control of protease secretion in intestine of fifth instar larvae of Rhodnius prolixus. J. Insect Physiol. 23, 247e251. https://doi.org/10.1016/00221910(77)90038-5 | es_CO |
dc.relation.references | Gaunt, M., & Miles, M. (2000). The ecotopes and evolution of triatomine bugs (Triatominae) and their associated trypanosomes. Mem Inst Oswaldo Cruz 95: 557-565. http://dx.doi.org/10.1590/S0074-02762000000400019 | es_CO |
dc.relation.references | Nunome, J., & Horiba, M. (1955). J. Sericult. Sc. Japan, 24, 35. | es_CO |
dc.relation.references | Ghilchik, M. W., & Morris, A. S. (1971). Modification of hyperacute rejection of sheep kidney heterografts in the dog using a trypsin inhibitor. Nature 233: 557. https://doi.org/10.1038/233557a0 | es_CO |
dc.relation.references | Gold, A. (1967) Sulfonylation with sulfonyl halides Methods in Enzymology, vol. 11, 706 (1967). | es_CO |
dc.relation.references | Gold, A. & Fahrney, D. (1964). Sulfonyl Fluorides as Inhibitors of Esterases. II. Formation and Reactions of Phenylmethanesulfonyl α-Chymotrypsin Biochemistry, vol. 3, 783. https://doi.org/10.1021/bi00894a009 | es_CO |
dc.relation.references | Goldberg, A. L., & Rock, K. L. (1992) Proteolysis, proteasomes and antigen presentation. Nature 357: 375. https://doi.org/10.1038/357375a0 | es_CO |
dc.relation.references | Gomis-Rüth, F.X. (2003). Structural aspects of the metzincin clan of metalloendopeptidases. Mol. Biotechnol. 24:157–202. https://doi.org/10.1385/MB:24:2:157 | es_CO |
dc.relation.references | NC-IUBMB, (2020). Recommendations of the Nomenclature Committee of the International Union of Biochemistry and Molecular Biology on the Nomenclature and Classification of Enzymes by the Reactions they Catalyse.Available at: https://www.qmul.ac.uk/sbcs/iubmb/enzyme/EC34/ | es_CO |
dc.relation.references | González, A.E. (2010). Histología y biología celular, Teresa Fortoul y Andrés Castell. Editorial McGraw Hill, primera edición. Pag. 147-149. ISBN: 978-607-15-0340-4. | es_CO |
dc.relation.references | Gonzalez, M.S., Nogueira, N.F., Mello, C.B., De Souza, W., Schaub, G.A., Azambuja, P., & Garcia, E.S. (1999). Influence of brain and azadirachtin on Trypanosoma cruzi development in the vector, Rhodnius prolixus. Exp. Parasitol. 92, 100e108. https://doi.org/10.1006/expr.1998.4387 | es_CO |
dc.relation.references | Gonzales, M.S.., Azambuja, P., de Souza, W., Feder, D., Nogueira, N.F., & Garcia, E.S. (1998). Role of the head in the ultrastructural midgut organization in Rhodnius prolixus larvae: evidence from head transplantation experiments and ecdysone therapy. J. Insect Physiol. 44, 553e560. https://doi.org/10.1016/S0022-1910(98)00048-1 | es_CO |
dc.relation.references | Goodchild, A.J.P. (1952). A study of the digestive system of the West African cacao capsid bugs (Hemiptera Miridae). Proceedings of the Zoological Society of London 122, 543–572. | es_CO |
dc.relation.references | Oliveira, J., Ayala, J.M., Justi, S.A., Rosa, J.A., & Galvão, C. (2018). Description of a new species of Nesotriatoma Usinger, 1944 from Cuba and revalidation of synonymy between Nesotriatoma bruneri (Usinger, 1944) and N. flavida (Neiva, 1911) (Hemiptera, Reduviidae, Triatominae). J. Vector Ecol. 43, 148–157. https://doi.org/10.1111/jvec.12294. | es_CO |
dc.relation.references | Goodchild, A.J.P. (1966). Evolution of the alimentary canal in the Hemiptera. Biological Reviews 41, 97–140. https://doi.org/10.1111/j.1469-185X.1966.tb01540.x | es_CO |
dc.relation.references | Gorchakov, R., Trosclair, L. P., Wozniak, E. J., Feria, P. T., Garcia, M. N., Gunter, S. M., & Murray, K.O. (2016). Trypanosoma cruzi Infection Prevalence and Bloodmeal Analysis in Triatomine Vectors of Chagas Disease from Rural Peridomestic Locations in Texas, 2013-2014. Journal of Medical Entomology, 53(4), 911–918. https://doi.org/10.1093/jme/tjw040 | es_CO |
dc.relation.references | Govrin, E., & Levine, A. (1999). Purification of Active Cysteine Proteases by Affinity Chromatography with Attached E-64 Inhibitor. Protein Expression and Purification 15, 247–250. https://doi.org/10.1006/prep.1999.1033 | es_CO |
dc.relation.references | Grillo, L.A.M., Majerowicz, D., & Gondim, K.C. (2007). Lipid metabolism in Rhodnius prolixus (Hemiptera: Reduviidae): role of a midgut triacylglycerol-lipase. Insect Biochem Mol Biol 37:579– 588. https://doi.org/10.1016/j.ibmb.2007.03.002 | es_CO |
dc.relation.references | Gutschmidt, S., Hoper, R., & Gossrau, R. (1984). Kinetic characterization of brush border membrane proteases in relationship to mucosal architecture by section biochemistry. Adv. Exp. Med. Biol. 167: 209. https://doi.org/10.1007/978-1-4615-9355-3_16 | es_CO |
dc.relation.references | Hara, S., Halicka, D., Bruno, S., Gong, J., Traganos, F., & Darzynkiewicz, Z. (1996). Effect of Protease Inhibitors on Early Events of Apoptosis. Exp. Cell Res., 223, 372. https://doi.org/10.1006/excr.1996.0092. | es_CO |
dc.relation.references | Nandan, A., & Nampoothiri, K. M. (2020). Therapeutic and biotechnological applications of substrate specific microbial aminopeptidases. Applied Microbiology and Biotechnology, 104 (12), 5243–5257. https://doi.org/10.1007/s00253-020-10641-9 | es_CO |
dc.relation.references | Hedstrom, L. (2002). Serine Protease Mechanism and Specificity Chem. Rev., 102(12), 45014524. https://doi.org/10.1021/cr000033x | es_CO |
dc.relation.references | Heimpel, A. M. (1955). Canad. J. ZooI., 33, 99. | es_CO |
dc.relation.references | Herrer, A., Lent, H., & Wygodzinsky, P. (1954). Contribución al conocimiento del género Belminus Stål, 1859 (Triatominae, Reduviidae, Hemiptera). An Inst Med Reg Tucumán 4: 85-106. | es_CO |
dc.relation.references | Billingsley, P.F., & Downe, A.E.R. (1988). Ultrastructural localization of cathepsin B in the midgut of Rhodnius prolixus Stal (Hemiptera, Reduviidae) during blood digestion. Int J Insect Morphol Embryol 17:295–302. https://doi.org/10.1016/0020-7322(88)90010-4 | es_CO |
dc.relation.references | Herrer, A. (1955). Tripanosomiasis americana en el Perú. V. Triatominos del valle interandino del Marañón. Rev Perú Med Exp Salud Publica 9: 69-81. http://www.scielo.org.pe/pdf/rins/v9n12/a09v9n1-2.pdf | es_CO |
dc.relation.references | Hori, K. (1970). Some variations in the activities of salivary amylase and protease of Lygus disponsi Linnavuori (Hemiptera: Miridae). Applied Entomology and Zoology 5, 51–61. https://doi.org/10.1303/aez.5.51 | es_CO |
dc.relation.references | Houseman, J.G., Morrison, P.E., & Downe, A.E.R. (1985). Cathepsin B and aminopeptidase in the posterior midgut of Phymata wolffii Stål (Hemiptera: Phymatidae). Canadian Journal of Zoology 63, 1288–1291. https://doi.org/10.1139/z85-193 | es_CO |
dc.relation.references | Houseman, J.G., Macnaughton, W.K., & Downe, A.E.R. (1984). Cathepsin B and aminopeptidase in the posterior midgut of Euschistis euschistoides (Hemiptera: Pentatomidae). Canadian Journal of Entomology 116, 1393–1396. https://doi.org/10.4039/Ent1161393-10 | es_CO |
dc.relation.references | Houseman, J.G., & Downe, A.E.R. (1983b). Activity cycles and the control of four digestive proteinases in the posterior midgut of Rhodnius prolixus Stal (Hemiptera, Reduviidae). J Insect Physiol 29:141–148. https://doi.org/10.1016/0022-1910(83)90137-3 | es_CO |
dc.relation.references | Houseman, J.G., & Downe, A.E.R. (1983a). Activity cycles and the control of four digestive proteinases in the posterior midgut of Rhodnius prolixus Stål (Hemiptera: Reduviidae). J. Insect Physiol. 29, 141–148. https://doi.org/10.1016/0022-1910(83)90137-3 | es_CO |
dc.relation.references | Houseman, J.G., & Downe, A.E.R. (1982b). Identification and partial characterization of digestive proteases from two species of bedbug (Hemiptera: Cimicidae). Canadian Journal of Zoology 60, 1837– 1840. https://doi.org/10.1139/z82-238 | es_CO |
dc.relation.references | Napoleão, T. H., Albuquerque, L. P., Santos, N. D. L., Nova, I. C. V., Lima, T. A., Paiva, P. M. G., & Pontual, E. V. (2019). Insect midgut structures and molecules as targets of plant-derived protease inhibitors and lectins. Pest Management Science, 75(5), 1212–1222. https://doi.org/10.1002/ps.5233 | es_CO |
dc.relation.references | Houseman, J.G., & Downe, A.E.R. (1982a). Characterisation of an acidic protease from the posterior midgut of Rhodnius prolixus Stål (Hemiptera: Reduviidae). Insect Biochemistry 12, 651– 655. https://doi.org/10.1016/0020-1790(82)90052-X | es_CO |
dc.relation.references | Houseman, J.G., & Downe, A.E.R. (1981b). Identification and partial characterization of digestive proteinases from Triatoma phyllosoma pallidipennis Stål (Hemiptera:Reduviidae). Comp. Biochem. Physiol. B70, 713–717. https://doi.org/10.1016/0305-0491(81)90006-7 | es_CO |
dc.relation.references | Oliveira, J. & Alevi, K.C.C. (2017). Taxonomic status of Panstrongylus herreri Wygodzinsky, 1948 and the number of Chagas disease vectors. Rev. Soc. Bras. Med. Trop. 50, 434–435. https://www.scielo.br/pdf/rsbmt/v50n3/0037-8682-rsbmt-50-03-00434.pdf | es_CO |
dc.relation.references | Houseman, J.G., & Downe, A.E.R. (1981a). Exoproteinase activity in posterior midgut of Rhodnius prolixus Stål (Hemiptera: Reduviidae). Insect Biochem. 11, 579–582. https://doi.org/10.1016/0020-1790(81)90026-3 | es_CO |
dc.relation.references | Houseman, J.G., & Downe, A.E.R. (1980). Endoproteinase activity in the posterior midgut of Rhodnius prolixus Stål (Hemiptera, Reduviidae). Insect Biochem. 10, 363e366. https://doi.org/10.1016/0020-1790(80)90004-9 | es_CO |
dc.relation.references | Houseman, J. (1978). A thiol-activated digestive protease from adults of Rhodnius prolixus Stål (Hemiptera: Reduviidae). Canadian Journal of Zoology 56, 1140–1143. https://doi.org/10.1139/z78-157 | es_CO |
dc.relation.references | Huang, Y., Sheikh, M.S., Fornace Jr. A.J., & Holbrook, N.J. (1999). Serine protease inhibitor TPCK prevents taxol-induced cell death and blocks c-Raf-1 and Bcl-2 phosphorylation in human breast carcinoma cells, Oncogene 18. 3431–3439. https://doi.org/10.1038/sj.onc.1202685 | es_CO |
dc.relation.references | Isola, E.L., Lammel, E.M., & Gonzalez Cappa, S.M. (1986). Trypanosoma cruzi: differentiation after interaction of epimastigotes and Triatoma infestans intestinal homogenate. Exp. Parasitol. 62, 329e335. https://doi.org/10.1016/0014-4894(86)90039-1 | es_CO |
dc.relation.references | Isola, E.L., Lammel, E.M., Katzin, V.J., & Gonzalez Cappa, S.M., (1981). Influence of organ extracts of Triatoma infestans on differentiation of Trypanosoma cruzi. J. Parasitol. 67, 53e58. https://www.jstor.org/stable/3280778 | es_CO |
dc.relation.references | Jansen, A.M., Roque, A.L.R., & Xavier, S.C.C. (2017). Trypanosoma cruzi enzootic cycle: general aspects, domestic and synanthropic hosts and reservoirs. In: Telleria J, Tibayrenc M, editors. American Trypanosomiasis. 2nd ed. London: Elsevier. p. 243–64 https://doi.org/10.1016/B978-012-801029-7.00012-5 | es_CO |
dc.relation.references | Jung, G., Ueno, H., & Hayashi, R. (1998). Proton-relay system of carboxypeptidase Y as a sole catalytic site: studies on mutagenic replacement of His 397. J. Biochem. 124, 446–450. https://doi.org/10.1093/oxfordjournals.jbchem.a022133 | es_CO |
dc.relation.references | Nascimento, J.D., Ravazi, A., Alevi, K.C.C., Pardo-Diaz, C., Salgado-Roa, F.C., da Rosa, J.A., de Azeredo Oliveira, M.T.V., de Oliveira, J., Hernández, C., Salazar, C., & Ramírez, J.D. (2019). Taxonomical over splitting in the Rhodnius prolixus (Insecta: Hemiptera: Reduviidae) clade: are R. taquarussuensis (da Rosa et al., 2017) and R. neglectus (Lent, 1954) the same species? PLoS One 14, e0211285. https://doi.org/10.1371/journal.pone.0211285 | es_CO |
dc.relation.references | Jurberg, J., Rocha, D.S., & Galvão, C. (2009). Rhodnius zeledoni sp. nov. afim de Rhodnius paraensis Sherlock, Guitton & Miles, 1977 (Hemiptera, Reduviidae, Triatominae). Biota Neotrop 9: 123-128. https://doi.org/10.1590/S1676-06032009000100014 | es_CO |
dc.relation.references | Ong, E.B., Shaw, E., & Schoellmann, G. (1965). The Identification of the Histidine Residue at the Active Center of Chymotrypsin. J. Biol. Chem., 240, 694. https://pdfs.semanticscholar.org/9915/004cd1bbbc0b1e8497625a84cf8f75ac38bd.pdf | es_CO |
dc.relation.references | Katunuma, N. & Kominami, E. (1995). Structure, Properties, Mechanisms, and Assays of Cysteine Protease Inhibitors: Cystatins and E-64 Derivatives Methods Enzymol., 251, 382. https://www.sciencedirect.com/science/article/pii/0076687995511423 | es_CO |
dc.relation.references | Kollien, A.H., Waniek, P.J., Nisbet, A.J., Billingsley, P.F., & Schaub, G.A. (2004). Activity and sequence characterization of two cysteine proteases in the digestive tract of the reduviid bug Triatoma infestans. Insect Mol. Biol. 13, 569e579. https://doi.org/10.1111/j.09621075.2004.00504.x | es_CO |
dc.relation.references | Kollien, A.H., & Schaub, G.A. (2000). The development of Trypanosoma cruzi in Triatominae. Parasitol Today 16:381–387. https://doi.org/10.1016/S0169-4758(00)01724-5 | es_CO |
dc.relation.references | Kollien, A.H., Schmidt, J., & Schaub, G.A. (1998). Modes of association of Trypanosoma cruzi with the intestinal tract of the vector Triatoma infestans. Acta Trop. 70, 127e141. https://doi.org/10.1016/S0001-706X(97)00117-4 | es_CO |
dc.relation.references | Kreft, S., Ravnikar, M., Mesko, P., Pungercar, J., Umek, A., Kregar, I., & Strukelj, B. (1997). Jasmonic acid inducible aspartic proteinase inhibitors from potato, Phytochemistry 44 (1997) 1001–1006. https://doi.org/10.1016/S0031-9422(96)00668-1 | es_CO |
dc.relation.references | Lassoued, I., Hajji, S., Mhamdi, S., Jridi, M., Bayoudh, A., Barkia, A. & Nasri, M. (2015). Digestive alkaline proteases from thornback ray (Raja clavata): Characteristics and applications Laboratory. International Journal of Biological Macromolecules. https://doi.org/10.1016/j.ijbiomac.2015.07.038 | es_CO |
dc.relation.references | Lehane, M.J. (2005). Managing the blood meal. In: Lehane, M.J. (Ed.), Biology of Blood-Sucking Insects, second ed. Cambridge University Press, Cambridge, pp. 84-115. | es_CO |
dc.relation.references | Lehane, M.J. (1994). Digestive enzymes, hemolysins and symbionts in the search for vaccines against blood sucking insects. Int. J. Parasitol. 24, 27e32. https://doi.org/10.1016/00207519(94)90056-6 | es_CO |
dc.relation.references | Lehane, M.J. (1991). Managing the blood meal. In: Lehane MJ (ed) Biology of blood-sucking insects. Harper Collins, London, pp 79–110. | es_CO |
dc.relation.references | Nogueira, N.F., Gonzales, M., Garcia, E.M., & de Souza, W. (1997). Effect of azadirachtin A on the fine structure of the midgut of Rhodnius prolixus. J. Invertebr. Pathol. 69, 58e63. https://doi.org/10.1006/jipa.1996.4635 | es_CO |
dc.relation.references | Osuna, E. & Ayala, J.M. (1993). Belminus pittieri, nueva especie de Bolboderini (Triatominae: Reduviidae: Heteroptera). Boletín de Entomología Venezolana, 8, 147–150. | es_CO |
dc.relation.references | Lenarcic, B., & Turk, V. (1999). Thyroglobulin Type-1 domains in equistatin inhibit both papainlike cysteine proteinases and cathepsin D, J. Biol. Chem. 274. 563–566. Doi: 10.1074/jbc.274.2.563 o https://www.jbc.org/content/274/2/563.short | es_CO |
dc.relation.references | Lent, H., Jurberg, J. & Carcavallo, R.U. (1995) Belminus laportei sp. n. da Região Amazônica. (Hemiptera: Reduviidae: Triatominae). Memórias do Instituto Oswaldo Cruz, 90, 33–39. http://dx.doi.org/10.1590/s0074-02761995000100008. | es_CO |
dc.relation.references | Lent, H., & Wygodzinsky, P. (1979). Revision of the Triatominae (Hemiptera, Reduviidae) and their significance as vectors of Chagas disease. Bull Am Mus Nat Hist 163: 123-520. http://hdl.handle.net/2246/1282 o https://www.cabdirect.org/cabdirect/abstract/19822902845 | es_CO |
dc.relation.references | Li, W., Zhao, X., Yuan, W., & Wu, K. (2016). Activities of Digestive Enzymes in the Omnivorous Pest Apolygus lucorum (Hemiptera: Miridae). Journal of Economic Entomology, 1–10, doi: 10.1093/jee/tow263. https://doi.org/10.1093/jee/tow263 | es_CO |
dc.relation.references | Lima-Cordón, R.A., Monroy, M.C., Stevens, L., Rodas, A., Rodas, G.A., Dorn, P.L., & Justi, S.A., (2019). Description of Triatoma huehuetenanguensis sp. n., a potential Chagas disease vector (Hemiptera, Reduviidae, Triatominae). ZooKeys. 820, 51–70. https:// doi.org/10.3897/zookeys.820.27258. | es_CO |
dc.relation.references | Lomate, P.R., & Bonning, B.C. (2016). Distinct properties of proteases and nucleases in the gut, salivary gland and saliva of southern green stink bug, Nezara viridula. Scientific Reports | 6:27587. https://doi.org/10.1038/srep27587 | es_CO |
dc.relation.references | Lopez Ordoñez, T., Rodriguez, M.H., & Hernandez-Hernandez, F.D. (2001). Characterization of a cDNA encoding a cathepsin L-like protein of Rhodnius prolixus. Insect Mol. Biol. 10, 505e511. https://doi.org/10.1046/j.0962-1075.2001.00290.x | es_CO |
dc.relation.references | Lotspeich-Steininger; C.A.; Stiene-Martin, E.A.; & Koepke, J.A. (1992). Clinical Hematology: Principles, Procedures, Correlations. Lippincott (Philadelphia, PA) p. 18. | es_CO |
dc.relation.references | Marciniszyn, J. (1977), Adv. Exp. Med. Biol. 95, 199. | es_CO |
dc.relation.references | Matsumoto, K., Yamamoto, D., Ohishi, H., Tomoo, K., Ishida, T., Inoue, M., Sadatome, T., Kitamura, K., & Mizuno, H. (1989). Mode of binding of E-64-c, a potent thiol protease inhibitor, to papain as determined by X-ray crystal analysis of the complex. FEBS Lett. 245, 177–180 | es_CO |
dc.relation.references | Ouali, R., de Brito, K. C. V., Salmon, D., & Bousbata, S. (2020). High-throughput identification of the Rhodnius prolixus midgut proteome unravels a sophisticated hematophagic machinery. Proteomes, 8(3). https://doi.org/10.3390/PROTEOMES8030016 | es_CO |
dc.relation.references | Noireau, F., & Dujardin, J.P. (2010). Biology of Triatominae. In: Telleria J, Tibayrenc M (eds) American Trypanosomiasis Chagas Disease: One Hundred Years of Research. Elsevier insights, London. | es_CO |
dc.rights.accessrights | http://purl.org/coar/access_right/c_abf2 | es_CO |
dc.type.coarversion | http://purl.org/coar/resource_type/c_2df8fbb1 | es_CO |
Aparece en las colecciones: | Maestría en Biología Molecular y Biotecnología |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
Jaimes_2021_TG.pdf | Jaimes_2021_TG | 1,85 MB | Adobe PDF | Visualizar/Abrir |
Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.