Por favor, use este identificador para citar o enlazar este ítem:
http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/2926
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | Hernández Pérez, Débora Elizabeth. | - |
dc.date.accessioned | 2022-09-26T21:46:07Z | - |
dc.date.available | 2021-06-10 | - |
dc.date.available | 2022-09-26T21:46:07Z | - |
dc.date.issued | 2021 | - |
dc.identifier.citation | Hernández Pérez, D. E. (2021). Estudio del papel de dos efectores downstream de la ruta de transducción de señales mediada por Pga1, en la morfología y la producción de Feruloil esterasas en Penicillium Rubens Wis 54-1255 [Trabajo de Grado Maestría, Universidad de Pamplona]. Repositorio Hulago Universidad de Pamplona. http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/2926 | es_CO |
dc.identifier.uri | http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/2926 | - |
dc.description | Las proteínas G heterotriméricas son importantes intermediarios moleculares de la señalización celular, investigadas exhaustivamente por sus funciones reguladoras en la morfogénesis, y el desarrollo de hongos filamentosos. Aunque sus mecanismos moleculares no se encuentran completamente dilucidados, se considera además que las proteínas G están involucradas en la regulación de la expresión de diferentes metabolitos secundarios, y exoenzimas de interés industrial y biotecnológico. En este contexto, esta investigación abordó el estudio de dos efectores downstream de la ruta de transducción de señales mediada por Pga1 (una subunidad alfa de proteínas G) recientemente identificados, y sus efectos reguladores en la morfología y producción de feruloil esterasas en Penicillium rubens Wis 54-1255. Mediante el uso de estrategias moleculares, como la ribointerferencia para la represión de la expresión génica, se realizó un análisis comparativo entre las cepas control y transformantes atenuados en la expresión de los efectores en mención, Pc22g05690 (ProPH) y Pc22g17420 (ProANK). Los resultados sugieren que el efector ProPH regula negativamente el crecimiento vegetativo y el proceso germinativo en P. rubens; mientras que, ProANK no presenta un efecto significativo sobre estos procesos. Además, ambas proteínas regulan positivamente la conidiación en el hongo, con efectos marcados en medios de cultivo nutricionalmente complejos. A nivel metabólico, los resultados indican que los efectores ProPH y ProANK actúan como reguladores negativos de la actividad xilanasa; pero no presentan efectos significativos sobre la actividad celulasa en el hongo. La proteína ProANK regula negativamente la actividad FAE en P. rubens; mientras que ProPH no demarca un efecto significativo sobre dicha actividad enzimática. Adicionalmente, se destaca la participación del gen creA como regulador negativo de la actividad feruloil esterasa en este organismo. Por último, se determinó un efecto positivo del xilano como sustrato inductor de enzimas con actividad feruloil esterasa en P. rubens Wis 54-1255; en contraste con la cascarilla de arroz, cuyo uso no resultó funcional para tal fin. | es_CO |
dc.description.abstract | La autora no proporciona información sobre este ítem. | es_CO |
dc.format.extent | 171 | es_CO |
dc.format.mimetype | application/pdf | es_CO |
dc.language.iso | es | es_CO |
dc.publisher | Universidad de Pamplona – Facultad de Ciencias Basicas. | es_CO |
dc.subject | Transducción de señales. | es_CO |
dc.subject | Efector downstream. | es_CO |
dc.subject | Morfología. | es_CO |
dc.subject | Inductor. | es_CO |
dc.subject | Exoenzimas. | es_CO |
dc.title | Estudio del papel de dos efectores downstream de la ruta de transducción de señales mediada por Pga1, en la morfología y la producción de Feruloil esterasas en Penicillium Rubens Wis 54-1255. | es_CO |
dc.type | http://purl.org/coar/resource_type/c_bdcc | es_CO |
dc.date.accepted | 2021-03-10 | - |
dc.relation.references | Altschul, S.F., Madden, T.L., Schäffer, A.A., Zhang, J., Zhang, Z., Miller, W., Lipman, D.J. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25: 3389–3402. | es_CO |
dc.relation.references | Alvira, E. Pejó T, M. Ballesteros, M.J. (2010). Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: A review. Bioresource Technology. 101: 4851–4861. | es_CO |
dc.relation.references | Anné, J. (1977). Somatic hybrization between Penicillium chrysogenum species after induced fusion of their protoplasts. Agricultura. 1–17 | es_CO |
dc.relation.references | Ansari, K., Martin, S., Farkasovsky, M., Ehbrecht, I.M., Kuntzel, H., (1999). Phospholipase C binds to the receptor-like GPR1 protein and controls pseudohyphal differentiation in Saccharomyces cerevisiae. J. Biol. Chem. 274: 30052–30058. | es_CO |
dc.relation.references | Aro N, Pakula T, Penttila M. (2005). Transcriptional regulation of plant cell wall degradation by filamentous fungi. FEMS Microbiology Reviews. 29: 719–739 | es_CO |
dc.relation.references | Bastos R, Coelho E, Coimbra M. (2018). Arabinoxylans from cereal by-products: Insights into structural features, recovery, and applications. Sustainable Recovery and Reutilization of Cereal Processing By-Products. 227-251. | es_CO |
dc.relation.references | Benoit, I. et al. (2006). Feruloyl esterases as a tool for the release ofphenolic compounds from agro-industrial by-products. Carbohydrated Research. 341: 1820–1827. | es_CO |
dc.relation.references | Benoit, I. et al. (2008). Biotechnological applications and potential of fungal feruloyl esterases based on prevalence, classification and biochemical diversity. Biotechnology Letters. 30: 387–396. | es_CO |
dc.relation.references | Boase, N.y Kelly, J. (2004). A role for creD, a carbon catabolite repression gene from A. nidulans, in ubiquitination, Mol. Microbiol. 53: 929-940. | es_CO |
dc.relation.references | Bohacz, J. (2016). Lignocellulose-degrading enzymes, free-radical transformations during composting of lignocellulosic waste and biothermal phases in small-scale reactors. Sci Total Environ. STOTEN-21542; 11. | es_CO |
dc.relation.references | Böhm J, Hoff B, O'Gorman CM, Wolfers S, Klix V, Binger D, Zadra I,… Kück U (2013). Sexual reproduction and mating-type- mediated strain development in the penicillin- producing fungus Penicillium chrysogenum. Proceedings of the National Academy of Sciences, 110: 1476- 1481. | es_CO |
dc.relation.references | Cabral, C., deFreitas, C., Fanchini, C., de Almeida, A., y Cano, E. (2018). Agroindustrial biomass for xylanase production by Penicillium chrysogenum: Purification, biochemical properties and hydrolysis of hemicelluloses. Electronic Journal of Biotechnology. 33: 39-45. | es_CO |
dc.relation.references | Zhong, Y., Peng, J., Chen, Z., Xie, H., Luo, D., Dai, J., Yan, F., et al (2015). Dry mycelium of Penicillium chrysogenum activates defense responses and restricts the spread of Tobacco Mosaic Virus in tobacco. Physiological and Molecular Plant Pathology. 92: 28- 37. | es_CO |
dc.relation.references | Cepeda-García C, Domínguez-Santos R, García-Rico RO, García-Estrada C, Cajiao A, Fierro F, Martín JF. (2014). Direct involvement of the CreA transcription factor in penicillin biosynthesis and expression of the pcbAB gene in Penicillium chrysogenum. Appl Microbiol Biotechnol. 98: 7113–7124. | es_CO |
dc.relation.references | Chavez R, Bull P, Eyzaguirre J. (2006). The xylanolytic enzyme system from the genus Penicillium. J. Biotechnol. 123: 413–433. | es_CO |
dc.relation.references | López, A. Ramirez, L. Rivero, L. Zapata, T. Y Ullán, V. (2011). Aplicación de una nueva FAE en la liberación químico- enzimática de ácido ferúlico a partír de pulpa de remolacha. Revista de Investigaciones de la facultad de Ciencias Agrarias. 19: 21-25 | es_CO |
dc.relation.references | Crepin, V. Faulds, C. Y Connerton, I. (2004). Funtional, classification of the microbial feruloyl esterases. Applied Microbiology and Biotechnology. 63: 647-652. | es_CO |
dc.relation.references | d´enfert. C. (1997). Fungal spore germination: insights from the molecular genetics of Aspergillus nidulans and Neurospora crassa. Fungal Genetics and Biology. 21: 163.172 | es_CO |
dc.relation.references | Dahlmann, T., Bohm, J., Becker, K., Y Kuck, U. (2015). Sexual recombination as a tool for engineering industrial Penicillium chrysogenum strains. Current Genetics. 61: 679- 683. | es_CO |
dc.relation.references | Damásio, A.R.L., Braga, C.M.P., Brenelli, L.B., Citadini, A.P., Mandelli, F., Cota, J., De Almeida, R.F., Salvador, V.H., et al., (2013). Biomass-to-bio-products application of feruloyl esterase from Aspergillus clavatus. Applied Microbiology and Biotechnology. 97: 6759– 6767. | es_CO |
dc.relation.references | De Vries R, Vankuyk P, Kester H, Visser J. (1999). The Aspergillus niger faeB gene encodes a second feruloyl esterase involved in pectin and xylan degradation and is specifically induced in the presence of aromatic compounds. Biochem. J. 363: 377–386. | es_CO |
dc.relation.references | Li L; Wright SJ; Krystofova S; Park, y Borkovich KA. (2007). Heterotrimeric G protein signaling in filamentous fungi. En: Annual Review of Microbiology. 61: 423–52 | es_CO |
dc.relation.references | De Vries R, Vankuyk P, Kester H, Visser J. (2002). The Aspergillus niger faeB gene encodes a second feruloyl esterase involved in pectin and xylan degradation and is specifically induced in the presence of aromatic compounds. Biochem. J. 363: 377–386. | es_CO |
dc.relation.references | De Vries R, Visser J, Graaff L. (1999). CreA modulates the XlnR-induced expression on xylose of Aspergillus niger genes involved in xylan degradation. Res. Microbiol. 150: 281−285. | es_CO |
dc.relation.references | Degani, O. (2013). Cochliobolus heterostrophus G-Protein Alpha and ¨Beta Subunit Double Mutant Reveals Shared and Distinct Roles in Development and Virulence. Physiological and Molecular Plant Pathology. 82: 35-45. | es_CO |
dc.relation.references | Delgado, M. et al. (2012). Arabidopsis Heterotrimeric G protein regulates cell vall defense and resistance to necrotrophic fungi. Molecular plant. 5: 98-114. | es_CO |
dc.relation.references | Dey, Tapati et al., (2016). Antioxidant phenolics and their microbial production by submerged and solid state fermentation process: A review. Trends in food science and Technology. 53: 60 74 | es_CO |
dc.relation.references | Lopéz, K. (2012). Caracterización de la actividad feruloil esterasa en cepas de Penicillium chrysogenum y escalado semi-industrial de la producción en el instituto de biotecnología de León (INBIOTEC), España. Trabajo de grado (Microbiología). Universidad de Pamplona | es_CO |
dc.relation.references | Dilokpimol A, Mäkelä M, Mansouri S, Belova O, Waterstraat M, Bunzel M, et al. (2017). Expanding the feruloyl esterase gene family of Aspergillus niger by characterization of a feruloyl esterase, FaeC. N Biotechnol. 37:200-209. | es_CO |
dc.relation.references | Dilokpimol, A. et al. (2016). Diversity of fungal feruloyl esterases: updated phylogenetic classification, properties, and industrial applications. Biotechnology for Biofuels. 9:231 | es_CO |
dc.relation.references | Domínguez-Santos R, García-Estrada C, Kosalková K, Prieto C, Santamarta I, Martín JF. (2015). PcFKH1, a novel regulatory factor from the forkhead family, controls the biosynthesis of penicillin in Penicillium chrysogenum. Biochimie. 115:162-176 | es_CO |
dc.relation.references | Domínguez-Santos R, Martín JF, Kosalková K, Prieto C, Ullán RV, García-Estrada C. (2012). The regulatory factor PcRFX1 controls the expression of the three genes of β-lactam biosynthesis in Penicillium chrysogenum. Fungal Genet Biol. 49(11):866-81 | es_CO |
dc.relation.references | Li, J; Mahajan, A; Y Tsai, Md. (2006). Ankyrin repeat: a unique motif mediating protein-protein interactions. Biochemistry. 26: 15168-78. | es_CO |
dc.relation.references | Donaghy, J.A., and McKay, A.M. (1994). Novel screening assay for the detection of phenolic acid esterases. World J. Microbiol. Biotechnol. 10: 41–44. | es_CO |
dc.relation.references | Dowzer, C. y Kelly, J.M. (1991). Analysis of the creA gene, a regulator of carbon catabolite repression in Aspergillus nidulans, Mol. Cell. Biol. 11: 5701-5709 | es_CO |
dc.relation.references | Duran, R; Cary, J. Y Calvo, A. (2010). Role of the Osmotic Stress Regulatory Pathway in Morphogenesis and Secondary Metabolism in Filamentous Fungi. Toxins. 2: 367-381. | es_CO |
dc.relation.references | Emri, T; Szilagyi, M; Justy, A; y Pocsi, (2008). I. Heterotrimeric G protein mediated regulation of proteinase production in Aspergillus nidulans. Acta Microbiologica e Immunologica Hungarica. 55: 111- 117. | es_CO |
dc.relation.references | Emri, T; Szilagyi, M; Justy, A; Y Pocsi, I. (2008). Heterotrimeric G protein mediated regulation of proteinase production in Aspergillus nidulans. Acta Microbiologica e Immunologica Hungarica. 55: 111- 117. | es_CO |
dc.relation.references | Faulds, C. Y Williamson, G. (1991). The purification and characterization of 4- hidroxy-3 methoxycinnamic (ferulic) acid esterase from Streptomyces olivochromogenes. Journal of General Microbiology. 137: 2339- 2345. | es_CO |
dc.relation.references | Lozano, O. Rodríguez, D. Bernáldez, V; Córdoba, J; Rodríguez, M. (2013). Influence of temperature and substrate conditions on the omt-1 gene expression of Aspergillus parasiticus in relation to its aflatoxin production. International Journal of Food Microbiology. 166: 263–269. | es_CO |
dc.relation.references | Faulds, C. Y Williamson, G. (1991). The purification and characterization of 4- hidroxy-3 methoxycinnamic (ferulic) acid esterase from Streptomyces olivochromogenes. Journal of General Microbiology. 137: 2339- 2345 | es_CO |
dc.relation.references | Fazary, A. y Ju, Y. (2007). Feruloyl esterases as biotechnological tools: current and future perspectives. En: Acta Biochim. Biophys. 39: 811-828. | es_CO |
dc.relation.references | Fazary, A. Y Ju, Yi-Hsu. (2008). The large- scale use of feruloyl esterases in industry. En: Biotechnology and Molecular Biology Reviews. 3: 95-110. | es_CO |
dc.relation.references | Mah, J. H., & Yu, J. H. (2006). Upstream and downstream regulation of asexual development in Aspergillus fumigatus. Eukaryotic Cell, 5(10): 1585–1595. | es_CO |
dc.relation.references | Fierro F, Laicha F, García, R, Martín F. (2004). High efficiency transformation of Penicillium nalgiovense with integrative and autonomously replicating plasmids. International Journal of Food Microbiology. 90: 237 – 248. | es_CO |
dc.relation.references | Fortwendel, JR. (2015). Orchestration of morphogenesis in filamentous fungi: Conser-ved roles for ras signaling networks. Fungal Biology Reviews. 29: 54–62. | es_CO |
dc.relation.references | García L. (2018). Búsqueda de nuevas feruloil esterasas fúngicas con aplicaciones biotecnológicas. Universidad de León. | es_CO |
dc.relation.references | García, R.O, Martín, J., y Fierro, F. (2011). Heterotrimeric Ga protein Pga1 from Penicillium chrysogenum triggers germination in response to carbon sources and affects negatively resistance to different stress conditions. Fungal Genetics and Biology. 48: 641–649 | es_CO |
dc.relation.references | García, R.O. Chávez, R. Fierro, F; y Martín, J. (2009). Effect of a heterotrimeric G protein α subunit on Conidia Germination, Stress Response, and Roquefortine C Production in Penicillium roqueforti. International Mycrobiology. 12: 123-129 | es_CO |
dc.relation.references | Garcia, R.O. et al. (2017). Heterotrimeric G protein alpha subunit controls growth, stress response, extracellular protease activity, and cyclopiazonic acid production in Penicillium camemberti. En: Fungal biology. 121: 754 -762. | es_CO |
dc.relation.references | García, R.O. y Fierro, F. (2017). Papel de las subunidades alfa de proteínas G en los procesos morfogénicos de hongos filamentosos de la división Ascomycota. En: Revista Iberoamericana de Micología. 34: 1–9. | es_CO |
dc.relation.references | Luengo, J.M., Revilla, G., Villanueva, J.R., and Martín, J.F. (1979). Lysine regulation of penicillin biosynthesis in low-producing and industrial strains of Penicillium chrysogenum. J. Gen. Microbiol. 115: 207–211. | es_CO |
dc.relation.references | García, RO. et al. (2008). The heterotrimeric G alpha protein pga1 regulates biosynthesis of penicillin, chrysogenin and roquefortine in Penicillium chrysogenum. En: Microbiology. 154: 3567-3578. | es_CO |
dc.relation.references | García, Ro., Martín, J., Fierro, F. (2007). The pga1 gene of Penicillium chrysogenum NRRL 1951 encodes a heterotrimeric G protein alpha subunit that controls growth and development. Research in Microbiology. 158: 437- 446. | es_CO |
dc.relation.references | Maller, J.L., (2003). Signal transduction. Fishing at the cell surface. Science. 300: 594–595 | es_CO |
dc.relation.references | García-Torres, I., Cervantes-López, M., Ortega-Arellano, A., Hernández-Alcántara, G., Flores López, L., De la Mora-De la Mora, J., et al., (2020). Proteínas con repeticiones de anquirina: estructura, función y retos bioquímicos. Mens. Bioquim. 44: 38-53 | es_CO |
dc.relation.references | Gil-Duran, C et al. (2014). The pcz1 Gene, which Encodes a Zn (II)2Cys6Protein, Is Involved in the Control of Growth, Conidiation, and Conidial Germination in the Filamentous Fungus Penicillium roqueforti. PLoS One. 10: 1-17. | es_CO |
dc.relation.references | Golapan N, Rodríguez D, Saucedo G, Nampoothiri KM. (2015). Review on technological and scientific aspects of feruloyl esterases: A versatile enzyme for biorefining of biomass. Bioresour Technol. 193: 534-44. | es_CO |
dc.relation.references | Golapan, N. et al. (2016). Review on technological and scientific aspects of feruloyl esterases: A versatile enzyme for biorefining of biomass. Bioresource Technology. 193: 534–544 | es_CO |
dc.relation.references | Goufo P, Ferreirab L, Trindadea H, Rosa E. (2015). Distribution of antioxidant compounds in the grain of the Mediterranean rice variety ‘Ariete’. CyTA - Journal of Food. 13:140–150. | es_CO |
dc.relation.references | Greenwald CJ. et al. (2010). Temporal and spatial regulation of gene expression during asexual development of Neurospora crassa. Genetics. 186: 1217–30. | es_CO |
dc.relation.references | Gronover, S; Tudzynski, P; Tudzynski, B. (2001). The role of G protein alpha subunit in the infection process of the of the gray mold fungus Botrytis cinérea. MPMI. 149: 1293-1302. | es_CO |
dc.relation.references | Gummer, J. et al. (2012). A comparative analysis ot the heterotrimeric G- protein Ga, Gb, and Gy subunits in the wheat pathogen Stagonospora nodorum. BMC Microbiology. 12: 131 | es_CO |
dc.relation.references | Luo, J., Ding, J., Wei, G., Zheng, T., Y Luo, Z. (2014). Characterization of a formaldehyde degrading fungus Penicillium chrysogenum DY-F2 isolated from deep sea sediment. International Biodeterioration & Biodegradation. 89: 45-49. | es_CO |
dc.relation.references | Gummer, J. et al. (2012). A comparative analysis ot the heterotrimeric G- protein Ga, Gb, and Gy subunits in the wheat pathogen Stagonospora nodorum. BMC Microbiology. 12: 131. | es_CO |
dc.relation.references | Bohn, J. et al., (2013). Sexual reproduction and mating-type- mediated strain development in the penicillin- producing fungus Penicillium chrysogenum. Proceedings of the National Academy of Sciences: 110: 1476- 1481. | es_CO |
dc.relation.references | Gutkind, J.S., (1998). The pathways connecting G protein-coupled receptors to the nucleus through divergent mitogen-activated protein kinase cascades. J. Biol. Chem. 273: 1839–1842 | es_CO |
dc.relation.references | Guzman, C. et al., (2017). Mechanism and regulation of sorbicillin biosynthesis by Penicillium chrysogenum. Microbial Biotechnology. 10: 958-968. | es_CO |
dc.relation.references | Guzmán, F, Salo O, Nygård Y, Lankhorst PP, Bovenberg RAL, Driessen AJM. (2017). Mechanism and regulation of sorbicillin biosynthesis by Penicillium chrysogenum. Microbial Biotechnology. 10: 958-968 | es_CO |
dc.relation.references | Hagiwara, D; Suzuki, S; Kamei, K; Gonoi, T; Kawamoto. (2014). The role of AtfA and HOG MAPK pathway in stress tolerance in conidia of Aspergillus fumigatus. Fungal Genetics and Biology. 73: 138–149. | es_CO |
dc.relation.references | Harispe L, Portela C, Scazzocchio C, Penalva MA, y Gorfinkiel L. (2008). Ras GTPase-activating protein regulation of actin cytoskeleton and hyphal polarity in Aspergillus nidulans. Eukaryotic cell. 7: 141–53. | es_CO |
dc.relation.references | Hartmann, T. et al. (2011). Shaping the fungal adaptome – Stress responses of Aspergillus fumigatus. International Journal of Medical Microbiology. 30: 408–416. | es_CO |
dc.relation.references | Hasper A, Visser J. y de Graaff L. (2000). The Aspergillus nger transcripcional activator XlnR which is involved in the degradation of the polysaccharides xylan and cellulose also regulates D-xylose reductase gene expresión. Mol Microbiol. 36:193-200. | es_CO |
dc.relation.references | Hewavitharana, T. y Wedegaertner, P. (2012). Non-canonical signaling and localizations of heterotrimeric G proteins. Cellular Signalling. 24: 25–34. | es_CO |
dc.relation.references | Hidalgo, P. et al., (2014). Molecular characterization of the PR- toxn gen cluster in Penicillium roqueforti y Penicillium chrysogenum: cross talk of secundary metabolite pathways. Fungal Genetics and Biology. 62: 11-24. | es_CO |
dc.relation.references | Luo, J., Ding, J., Wei, G., Zheng, T., Y Luo, Z. (2014). Characterization of a formaldehyde degrading fungus Penicillium chrysogenum DY-F2 isolated from deep sea sediment. International Biodeterioration & Biodegradation. 89: 45-49. | es_CO |
dc.relation.references | Marx F, Binder U, Leiter E, y Pócsi I. (2008). The Penicillium chrysogenum antifungal protein PAF, a promising tool for the development of new antifungal therapies and fungal cell biology studies. Cellular and Molecular Life Sciences. 65: 445-54 | es_CO |
dc.relation.references | Houbraken, J. et al. (2011). Fleming’s penicillin producing strain is not Penicillium chrysogenum but P. rubens. IMA Fungus. 2: 87–95 | es_CO |
dc.relation.references | HU, Y et al. (2013). G protein-cAMP signaling pathway mediated by PGA3 plays different roles in regulating the expressions of amylases and cellulases in Penicillium decumbens. Fungal Genetics and Biology. 58–59: 62–70. | es_CO |
dc.relation.references | Ichinose, S. Tanaka, M. Shintani, T. y Gomi K. (2018). Increased production of biomass degrading enzymes by double deletion of creA and creB genes involved in carbon catabolite repression in Aspergillus oryzae. Journal of Bioscience and Bioengineering. 125: 141-147. | es_CO |
dc.relation.references | IGAC (Instituto Geográfico Agustín Codazzi). (2006). Métodos analíticos de laboratorio de suelos. Sexta edición. Imprenta Nacional de Colombia. Bogotá. 648 p | es_CO |
dc.relation.references | Ilyes H, Fekete E, Karaffa L, Fekete E, Sandor E, Szentirmai A, Kubicek C. (2004). CreA mediated carbon catabolite repression of b-galactosidase formation in Aspergillus nidulans is growth rate dependent. FEMS Microbiology Letters. 235:147–151. | es_CO |
dc.relation.references | Ivey, FD; Kays, AM; Borkovich, K. (2002). Shared and independent roles for a Gai protein and adenylyl cyclase in regilating development and stress responses in Neurospora crassa. Eukartotic Cell. 1: 634-642. | es_CO |
dc.relation.references | Jaronski, S.T., (2010). Ecological factors in the inundative use of fungal entomopathogens. Biocontrol 55: 159–185. | es_CO |
dc.relation.references | Jiping M, Song S, Xiuquan J, Fei X, Hong M, Jin G, Jie X. (2019). Advances in catalytic conversion of lignocellulose to chemicals and liquid fuels. J. Energy Chem. 36: 74-86. | es_CO |
dc.relation.references | Kalai, S. Anzala, L; Bensoussan, M. Y Dantigny, P. (2017). Modelling the effect of temperatura, pH, Water activity, and organic acids on the germination time of Penicill.; Europe PMC plus. 240: 124-130. | es_CO |
dc.relation.references | Kalim, B y Mazhar, N., (2016). Optimization of fermentation media and growth conditions for microbial xylanase production. 3 Biotech, 6:122 | es_CO |
dc.relation.references | Marx, F. et al., (2008). The Penicillium chrysogenum antifungal protein PAF, a promising tool for the development of new antifungal therapies and fungal cell biology studies. Cellular and Molecular Life Sciences. 65: 445-54 | es_CO |
dc.relation.references | M. Wang, J.P. Ma, H.F. Liu, N.C. Luo, Z.T. Zhao, F. Wang. (2018). Sustainable Productions of Organic Acids and Their Derivatives from Biomass via Selective Oxidative Cleavage of C–C Bond. ACS Catal. 8(3): 2129–2165. | es_CO |
dc.relation.references | Kelly, J.M. (2004). The regulation of carbon metabolism in filamentous fungi, in: R. Brambl and G.A. Marzulf (Eds.), Mycota III, Berlin-Heidelberg: Springer-Verlagpp, pp 385-401. | es_CO |
dc.relation.references | Khan, S.M., Sleno, R., Gora, S., Zylbergold, P., Laverdure, J.-P., Labbe, J.-C., et al., (2013). The expanding roles of Gβγ subunits in G protein–coupled receptor signalling and drug action. Pharmacol. Rev. 65: 545–577. | es_CO |
dc.relation.references | Khodor, S. et al. (2010). Ankyrin-repeat containing proteins of microbes: a conserved structure with functional diversity. Trends in Microbiology. 18: 132–139. | es_CO |
dc.relation.references | Kobayashi, Y. Horikoshi, Y. (1982). Purification and characterization of extracellular porlyamine oxidase produced by Penicillium sp. Biochimica et Biophysica Acta. 1. | es_CO |
dc.relation.references | Koseki, T., Fushinobu, S., Ardiansyah; Shirakawa, H; y Komai, M. (2009). Occurrence, properties, and applications of feruloyl esterases. Applied Microbiology and Biotechnology. 84: 803– 810 | es_CO |
dc.relation.references | Kostylev, Otwell, Richardson, y Suzuki., (2015). Cloning Should Be Simple: Escherichia coli DH5α-Mediated Assembly of Multiple DNA Fragments with Short End Homologies. 8;10(9): e0137466. | es_CO |
dc.relation.references | Krijgsheld, P., Bleichrodt, R., van Veluw, G. J., Wang, F., Müller, W. H., Dijksterhuis, J., & Wösten, H. A. B. (2013). Development in Aspergillus. Studies in Mycology, 74(1): 1–29 | es_CO |
dc.relation.references | Krittikorn, K., Surasak J, Suganya Y, y Thanat Chookajorn., (2011). Characterization of band 3 ankyrin-Protein 4.2 complex by biochemical and mass spectrometry approaches. Biochem Biophys Res Commun. 406(3):332 | es_CO |
dc.relation.references | Lafon, A; Hoon, K; Seo, J; Yu, J; y Enfert, C. (2006). G-protein and cAMP-mediated signaling in Aspergilli: A genomic perspective. Fungal Genetics and Biology. 43: 490–502 | es_CO |
dc.relation.references | Matishuba, V; Kremnicky L, Mastihubova M, Willett, J y Cote G. (2002). A spectrophotometric assay for feruloyl esterases. Analytical Biochemistry. 309: 96–101. | es_CO |
dc.relation.references | Landry, B; Clarke, D y Lee, M. (2016). Studying Cellular Signal Transduction with OMIC Technologies. Journal of Molecular Biology. 427: 3416–3440. | es_CO |
dc.relation.references | Ma, D., Li, R., (2013). Current understanding of HOG-MAPK pathway in Aspergillus fumigatus. Mycopathologia. 175: 13–23 | es_CO |
dc.relation.references | Leiter, E. et al., (2004). Penicillium chrysogenum glucose oxidase- a study on its antifungal effects. Journal of Applied Microbiology. 97: 1201-1209 | es_CO |
dc.relation.references | Michkov, W. et al. (2012). Genetic and physicalinteractions between Ga subunits and components of the Gby dimer of hete-rotrimeric G proteins in Neurospora crassa. Eukaryotic Cell. 11: 1239–48. | es_CO |
dc.relation.references | Miller, L. (1972). Experiments in Molecular Genetics. Cold Spring Harbor Laboratory Press. Cold Spring Harbor; New York. ISBN 10: 0879691069 | es_CO |
dc.relation.references | Zhou, M. et al., (2015). Construction and expression of two-copy engineered yeast of feruloyl esterase. Electronic Journal of Biotechnology. 18: 338–342. | es_CO |
dc.relation.references | Minh D, N; Kim, H. y Chung, KA. (2015). Structural mechanism of G protein activation by G protein-coupled recept. En: European Journal of Pharmacology. 763: 214–222. | es_CO |
dc.relation.references | Mogensen J, Nielsen B , Hofmann G , Nielsen J. (2006). Transcription analysis using high-density micro-arrays of Aspergillus nidulans wild-type and creA mutant during growth on glucose or etanol. Fungal Genetics and Biology. 43:593–603. | es_CO |
dc.relation.references | Nguyen, E.V., Imanishi, S.Y., Haapaniemi, P., Yadav, A., Saloheimo, M., Corthals, G.L., Pakula, T., (2016). Quantitative site-specific phosphoproteomics of Trichoderma reesei signaling pathways upon induction of hydrolytic enzyme production. J. Proteome Res. 15 (2): 457– 467. | es_CO |
dc.relation.references | Nishimura A1, Kitano K, Takasaki J, Taniguchi M, Mizuno N, Tago K, Hakoshima T, et al., (2010). Structural basis for the specific inhibition of heterotrimeric Gq protein by a small molecule. Proc Natl Acad Sci.107(31), 13666-71. | es_CO |
dc.relation.references | Nuñes, D. (2012). Uso de residuos agrícolas para la producción de biocombustibles en el departamento del Meta. Tecnura. 16: 142-156. | es_CO |
dc.relation.references | Bolker, M. (1998). Sex and Crime: Heterotrimeric G Proteins in Fungal Mating and Pathogenesis. Fungal Genetics and Biology. 25:143–156. | es_CO |
dc.relation.references | Offermanns S. (2003). G-proteins as transducers in transmembrane signalling. Prog Biophys Mol Biol. 83(2): 101-30. | es_CO |
dc.relation.references | Oldham et al. (2007). Allosteric connections from the receptor to the nucleotide binding pocket of heterotrimeric G proteins. Proceedings of the National Academy of Sciences. 104: 7927-7932. | es_CO |
dc.relation.references | Olivares, H. et al. (2010). Combining substrate specificity analysis with support vector classifiers reveals feruloyl esterase as a phylogenetically informative protein group. PLoS ONE. 5: e12781 | es_CO |
dc.relation.references | Oliveira, D. et al., (2019). Feruloyl esterases: Biocatalysts to overcome biomass recalcitrance and for the production of bioactive compounds. Bioresource Technology. 278: 408–423. | es_CO |
dc.relation.references | Zuber, S. Hynes, Mj. Andrianopoulos, A. (2002). G-protein signaling mediates asexual development at 25 degrees C but has no effect on yeast-like growth at 37 degrees C in the dimorphic fungus Penicillium marneffei. Eukaryotic Cell. 1: 440–447. | es_CO |
dc.relation.references | Organización Mundial de la Salud (OMS). 2005. Manual De Bioseguridad En El Laboratorio. Tercera edición. ISBN 92 4 354650 3 | es_CO |
dc.relation.references | OshikatA, C. et al. (2017). Allergic bronchopulmonary micosis caused by Penicillium luteum. Medical Mycology Case Reports. 15: 9-11 | es_CO |
dc.relation.references | Palmqvist, E., Hahn, H B. (2000). Fermentation of lignocellulosic hydrolysates II: inhibitors and mechanism of inhibition. Bioresour. Technol. 74: 25–33 | es_CO |
dc.relation.references | Park, H; y Yu H. (2012). Genetic control of asexual sporulation in filamentous fungi. Current Opinion in Microbiology. 15: 669–77. | es_CO |
dc.relation.references | Peña A, y Contreras-Esquivel Juan Carlos. (2016). Methods and substrates for feruloyl esterase activity detection, a review. Journal of Molecular Catalysis B: Enzymatic. 130: 74-87. | es_CO |
dc.relation.references | Pontón, J. Quindós, G., Morangues, M., Gené, J., Y Guarro, J. (2002). Hongos y Actinomicetos alergénicos. Revista Iberoamericana de Micología. Bilbao. | es_CO |
dc.relation.references | Bonnin, E. et al. (2002). Release of ferulic acid from agroindustrial by-products by the cell wall degrading enzymes produced by Aspergillus niger I-1472. Enzyme and Microbial Technology. 31: 1000–1005. | es_CO |
dc.relation.references | Quiroz-Castañeda, R.E., and Folch-Mallol, J.L. (2011). Plant cell wall degrading and remodeling proteins: current perspectives. Biotecnol. Apl. 28: 205–215. | es_CO |
dc.relation.references | Rabemanolontsoa, H., Saka, S. (2016). Various pretreatments of lignocellulosics. Bioresour. Technol. 199: 83–91 | es_CO |
dc.relation.references | Reithner B, Brunner K, Schuhmacher R, Peissl I, Seidl V, et al. (2005). The G protein alpha subunit Tga1 of Trichoderma atroviride is involved in chitinase formation and differential production of antifungal metabolites. Fungal Genetics and Biology. 42: 749–760. | es_CO |
dc.relation.references | Calero F, Hera C, Pietro AD, Orejas M, Roncero MIG. (2008). Regulatory elements mediating expression of xylanase genes in Fusarium oxysporum. Fungal Genet Biol. 45: 28-34. | es_CO |
dc.relation.references | Rigbolt, Kt, Y Blagoev, B. (2012). Quantitative phosphoproteomics to characterize signaling networks. Seminars in Cell and Developmental Biology. 23: 863-871. | es_CO |
dc.relation.references | Rispail, N., Soanes, D.M., Ant, C., Czajkowski, R., Grunler, A., Huguet, R., et al., (2009). Comparative genomics of MAP kinase and calcium-calcineurin signalling components in plant and human pathogenic fungi. Fungal Genet. Biol. 46: 287–298. | es_CO |
dc.relation.references | Rodríguez, R. (2017). Identificación y caracterización de las enzimas feruloil esterasas PcFaeA y PcFaeB de Penicillium chrysogenum para la valoración de residuos agroindustriales. Scalado y análisis proteómico de la producción de extractor enzimático enriquecidos en PcFaeB. León España. Universidad de León- Instituto de Biotecnología de León. | es_CO |
dc.relation.references | Sakamoto T, Nishimura S, Kato T, Sunagawa Y, Tsuchiyama M, Kawasaki H. (2005). Efficient Extraction of Ferulic Acid from Sugar Beet Pulp Using the Culture Supernatant of Penicillium chrysogenum. J. Appl Glycosci. 52:115-120. | es_CO |
dc.relation.references | Santo, M Y Ishikawa, Y. (2010). Accessory proteins for heterotrimeric G-protein: Implication in the cardiovascular system. Pathophysiology. 17: 89–99. | es_CO |
dc.relation.references | Santos, R. et al. (2017). Casein phosphopeptides and ClCl2 increase penicillim production and cause an increment in microbody/ peroxisime proteins in Penicillium chrysogenum. Journal of proteomics. 156: 52-62. | es_CO |
dc.relation.references | Saulnier, L., Sado, P.-E., Branlard, G., Charmet, G., Guillon, F. (2007). Wheat arabinoxylans: exploiting variation in amount and composition to develop enhanced varieties. J Cereal Sci. 46: 261-281. | es_CO |
dc.relation.references | Boudreau, B.; Larson, T.; Brown, D.; Busman, M; Roberts, E.; Kendra, D.; Mcquade, K. (2013). Impact of temperature stress and validamycin A on compatible solutes and fumonisin production in F. verticillioides: Role of trehalose-6-phosphate synthase. Fungal Genetics and Biology. 57: 1–10. | es_CO |
dc.relation.references | Schaafsma, D. et al. (2008). Monomeric G-proteins as signal transducers in airway physiology and pathophysiology. Cellular Signalling. 20: 1705–1714. | es_CO |
dc.relation.references | Scheffzek, K., y WeltI, S. (2012). Pleckstrin homology (PH) like domains – versatile modules in protein–protein interaction platforms. FEBS Letters. 586: 2662–2673. | es_CO |
dc.relation.references | Calvo A Wilson R; Bok J; y Keller N. (2002). Relationship between Secondary Metabolism and Fungal Development. Microbiology and Molecular Biology Reviews. 66:447.459. | es_CO |
dc.relation.references | Segers, GC. y Nuss, DL. (2003). Constitutively activated Ga negatively regulates virulence, reproduction and hydrophobin gene expression in the chestnut blight fungus Cryphonectria parasítica. Fungal Genetics ang Biology. 38: 198-208 | es_CO |
dc.relation.references | Seibel, C. et al. (2009). Light- dependen roles of the G-protein α subunit GNA1 of Hypocrea jecorina (anamorph Trichoderma reesei). BMC Biology. 7:58 | es_CO |
dc.relation.references | Setala, T. et al. (2009)., Genetic Modification of Carbon Catabolite Repression in Trichoderma reesei for Improved Protein Production. Applied and Environmental Microbiology. 75: 4853–4860 | es_CO |
dc.relation.references | Shimizu K y Keller N., (2001). Genetic involvement of a Camp – DEPENDENT Protein kinase in a G protein signaling pathway regulating morphological and chemical transitions in Aspergillus nidulans. Genetics. 157:591-600. | es_CO |
dc.relation.references | Shpakov, O. (2013). Heterotrimeric G Proteins. Brenner's Encyclopedia of Genetics; Second Edition, 454-456 | es_CO |
dc.relation.references | Shwab, E. Y Keller, N. (2008). Regulation of secondary metabolite production in filamentous ascomycetes. Mycological Research. 112: 225-230. | es_CO |
dc.relation.references | Smith, G. (1960). An introduction to industrial mycology. Edward Arnold Ltd; London. B001SJLPK6. | es_CO |
dc.relation.references | Sondek, J. et al. (1996). Crystal structure of a G-protein beta gamma dimer at 2.1A resolution. Nature. 25: 369-374. | es_CO |
dc.relation.references | Braga CMP, Delabona P da S, Lima DJ da S, Paixão DAA, Pradella JG da C y Farinas CS. (2014). Addition of feruloyl esterase and xylanase produced on-site improves sugarcane bagasse hydrolysis. Bioresour. Technol. 170: 316-324 | es_CO |
dc.relation.references | Studt, L. Humpf, H. y Tudzynski, B. (2013). Signaling Governed by G Proteins and cAMP Is Crucial for Growth, Secondary Metabolism and Sexual Development in Fusarium fujikuroi. PLOS ONE. 8, e58185. | es_CO |
dc.relation.references | Cantoral, J.M., Díez, B., Barredo, J.L., Alvarez, E., and Martín, J.F. (1987). High–Frequency Transformation of Penicillium chrysogenum. Nat. Biotechnol. 5: 494–497. | es_CO |
dc.relation.references | Svanström, A. Y Melin, P. (2013). Intracellular trehalase activity is required for development, germination and heat-stress resistance of Aspergillus niger conidia. Research in Microbiology, 164: 91-99. | es_CO |
dc.relation.references | Syrovatkina, V. et al. (2016). Regulation, Signaling, and Physiological Functions of G-Proteins. Journal of Molecular Biology. 428: 3850–3868 | es_CO |
dc.relation.references | Tag, A; Hicks, J; Garifullina, G; Ake, C; Phillips, D; Beremand, M; Y Keller, N. (2000). G-protein signalling mediates differential production of toxic secondary metabolites. Molecular Microbiology. 38: 658-665 | es_CO |
dc.relation.references | Tamayo EN, Villanueva A, Hasper AA, de Graaff LH, Ramón D, Orejas M. (2008). CreA mediates repression of the regulatory gene xlnR which controls the production of xylanolytic enzymes in Aspergillus nidulans. Fungal Genet Biol. 45:984-93 | es_CO |
dc.relation.references | Tan, K; Heazlewood, J; Millar, A.; Oliver, R.; Solomon, P. (2009). Proteomic Identification of Extracellular Proteins Regulated by the Gna1 Gα Subunit in Stagonospora nodorum. Mycological Search. 113: 523–531 | es_CO |
dc.relation.references | Taylor, T; Krings, M; y Taylor, E. (2015). Ascomycota. Fossil Fungi. 129-171 | es_CO |
dc.relation.references | Tisch, D; Kubicek, C; y Schmoll, M. (2011). New insights into the mechanism of light modulated signaling by heterotrimeric G-proteins: ENVOY acts on gna1 and gna3 and adjusts cAMP levels in Trichoderma reesei (Hypocrea jecorina). Fungal Genetics and Biology. 48: 631– 640. | es_CO |
dc.relation.references | Topaka, E. Vafiadi, C. Y Chistakopoulos, P. (2007). Microbial production, characterization and applications of feruloyl esterases. Process Biochemistry. 42: 497–509. | es_CO |
dc.relation.references | Uda, S y Kuroda, S. (2016). Analysis of cellular signal transduction from an information theoretic approach. Seminars in Cell & Developmental Biology. 51: 24–31. | es_CO |
dc.relation.references | Brodhagen, M y Keller, N. (2006). Signalling oathways connecting mycotoxin production and sporulation. Molecular Plant Pathology. 7: 285.301 | es_CO |
dc.relation.references | Carrasco, U; Vera, R; Barkla, B; Zuñiga, E; Reyes, H; Fernandez, F; y Fierro, F. (2016). Proteomic analysis of the signaling pathway mediated by the heterotrimeric Ga protein Pga1 of Penicillium chrysogenum. Microbial Cell Factories. 16: 173. | es_CO |
dc.relation.references | Udatha, D et al., (2011). The interplay of descriptor- based computational analysis with pharmacophore modeling builds the basis for a novel classification scheme for feruloyl esterases. Biotechnology Advances. 29: 94-110. | es_CO |
dc.relation.references | Ullah S, Souza A, Hamann P, Ticona A, Oliveira G, Barbosa J, Freitas S, y Noronha E. (2019). Structural and functional characterisation of xylanase purified from Penicillium chrysogenum produced in response to raw agricultural waste. International Journal of Biological Macromolecules. International Journal of Biological Macromolecules. 127: (15), 385-395 | es_CO |
dc.relation.references | Ullan, R. et al. RNA-silencing in Penicillium chrysogenum and Acremonium chrysogenum: Validation studies using β-lactam genes expression. (2008). RNAJournal of Microbiological Methods. 75: 209–218. | es_CO |
dc.relation.references | Valle, M et al. (2015). Phylogenetic analysis of fungal heterotrimeric G protein-encoding genes and their expression during dimorphism in Mucor circinelloides. Fungal biology. 119: 1179 – 1193 | es_CO |
dc.relation.references | Villapun, P. Solano, R. Sierra, y C. Sanchez, M. (2005). Importancia de las proteínas G heterotriméricas en la biología molecular del cáncer de próstata. Actas Urológicas Españolas. 29: 948-954. | es_CO |
dc.relation.references | Wagner Rodrigo de Souza et al., (2013). The influence ofAspergillus nigertranscription factors AraR and XlnRin the gene expression during growth inD-xylose, L-arabinose andsteam exploded sugarcane bagasse. Fungal Genetics and Biology. 60: 29-45. | es_CO |
dc.relation.references | Wang DS, Shaw R, Winkelmann JC, Shaw G (1994). Binding of PH domains of beta‑adrenergic receptor kinase and beta‑spectrin to WD40/beta‑ transducin repeat containing regions of the beta‑subunit of trimeric G‑proteins. Biochem Biophys Res Commun. 203:29–35. | es_CO |
dc.relation.references | Weber, S.S., Bovenberg, R, y Driessen, A. (2012). Biosyntetic concepts for the production of B lactam antibiotics in Penicillium chrysogenum. Biotechnology Journal. 7: 225-236. | es_CO |
dc.relation.references | Wright, S Y Park, G. (2007). Heterotrimeric G Protein Signaling in Filamentous Fungi. Annual Review of Microbiology. 61: 423-452. | es_CO |
dc.relation.references | Xie, X-Q. Guan, Y. Ying, S-H. y Feng, M-G. (2013). Differentiated functions of Ras1 and Ras2 proteins in regulating the germination, growth, conidiation, multi-stresstolerance and virulence of Beauveria bassiana. Environmental Microbiology. 15: 447–62 | es_CO |
dc.relation.references | Carrasco, U; Vera, R; Barkla, B; Zuñiga, E; Reyes, H; Fernandez, F; Y Fierro, F. (2016). Proteomic analysis of the signaling pathway mediated by the heterotrimeric Ga protein Pga1 of Penicillium chrysogenum. Microbial Cell Factories. 16:173. | es_CO |
dc.relation.references | Cabañes, F. Bragulat, Y M. Castellá. (2010). Ochratoxin A producing species in the genus Penicillium. Toxins. 2: 1111-1120. | es_CO |
dc.relation.references | Xiros, C., Moukouli, M., Topakas, E., Christakopoulos, P. (2009). Factors affecting ferulic acid release from Brewer’s spent grain by Fusarium oxysporum enzymatic system. Bioresource Technology. 100: 5917–5921. | es_CO |
dc.relation.references | Xu, Q. et al. (2009). Bacterial Pleckstrin Homology Domains: A Prokaryotic Origin for the PH Domain. Journal of Molecular Biology. 396: 31–46 | es_CO |
dc.relation.references | Yang, Q; Y Borkovich, Ka. (1999). Mutational activation of a Gai causesuncontrolled proliferation of aerial hyphae and increased sensitivity to heat and oxidative stress in Neurospora crassa. Genetics. 151: 107–117 | es_CO |
dc.relation.references | Yang, Y; Li, X; Shao, Y; Chen, F. (2012). mrflbA, encoding a Putative FlbA, is Involved in Aerial Hyphal Development and Secondary Metabolite Production in Monascus ruber M-7. Fungal Biology. 116: 225-233 | es_CO |
dc.relation.references | Yu, J. Heterotrimeric G protein signaling and RGSs in Aspergillus nidulans. (2006). Journal of Microbiology. 44: 145-154 | es_CO |
dc.relation.references | YU, Xi. et al. (2017). The Ga1- Camp signaling pathway controls conidiation, development and secondary metabolism in the taxol- producing fungus Pestalotiopsis microspora. Microbiological Research. 203: 2939. | es_CO |
dc.relation.references | Zampieri, E; Balestrini, R. Kohler, A. Abbà, S; Martin, F; Y Bonfante, P. (2011). The Perigord black truffle responds to cold temperature with an extensive reprogramming of its transcriptional activity. Fungal Genetics and Biology. 48: 585–591. | es_CO |
dc.relation.references | Zaragoza, O.; Rodriguez, C.; y Gancedo, C. (2000). Isolation of the MIG1 gene from Candida albicans and effects of its disruption on catabolite repression. J. Bacteriol. 182: 320–6. | es_CO |
dc.relation.references | Zhang, J.W., Zhang, Y.M., Zhong, Y.H., Qu, Y.B., Wang, T.H., (2012). Ras GTPases modulate morphogenesis, sporulation and cellulase gene expression in the cellulolytic fungus Trichoderma reesei. PLoS One. 7 (11): 48786. | es_CO |
dc.relation.references | Cepeda-García C, Domínguez-Santos R, García-Rico R, García-Estrada C, Cajiao A, et al., (2014). Direct involvement of the CreA transcription factor in penicillin biosynthesis and expression of the pcbAB gene in Penicillium chrysogenum. Appl Microbiol Biotechnol. 98:7113-7124. | es_CO |
dc.relation.references | Zhang, S. et al., (2015). Expression of feruloyl esterase A from Aspergillus terreus and its application in biomass degradation. Protein Expression and Purification. 115:153-157. | es_CO |
dc.rights.accessrights | http://purl.org/coar/access_right/c_abf2 | es_CO |
dc.type.coarversion | http://purl.org/coar/resource_type/c_2df8fbb1 | es_CO |
Aparece en las colecciones: | Maestría en Biología Molecular y Biotecnología |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
Hernández_2021_TG.pdf | Hernández_2021_TG | 3,89 MB | Adobe PDF | Visualizar/Abrir |
Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.