• Repositorio Institucional Universidad de Pamplona
  • Tesis de maestría y doctorado
  • Facultad de Ciencias Básicas
  • Maestría en Biología Molecular y Biotecnología
  • Por favor, use este identificador para citar o enlazar este ítem: http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/2926
    Registro completo de metadatos
    Campo DC Valor Lengua/Idioma
    dc.contributor.authorHernández Pérez, Débora Elizabeth.-
    dc.date.accessioned2022-09-26T21:46:07Z-
    dc.date.available2021-06-10-
    dc.date.available2022-09-26T21:46:07Z-
    dc.date.issued2021-
    dc.identifier.citationHernández Pérez, D. E. (2021). Estudio del papel de dos efectores downstream de la ruta de transducción de señales mediada por Pga1, en la morfología y la producción de Feruloil esterasas en Penicillium Rubens Wis 54-1255 [Trabajo de Grado Maestría, Universidad de Pamplona]. Repositorio Hulago Universidad de Pamplona. http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/2926es_CO
    dc.identifier.urihttp://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/2926-
    dc.descriptionLas proteínas G heterotriméricas son importantes intermediarios moleculares de la señalización celular, investigadas exhaustivamente por sus funciones reguladoras en la morfogénesis, y el desarrollo de hongos filamentosos. Aunque sus mecanismos moleculares no se encuentran completamente dilucidados, se considera además que las proteínas G están involucradas en la regulación de la expresión de diferentes metabolitos secundarios, y exoenzimas de interés industrial y biotecnológico. En este contexto, esta investigación abordó el estudio de dos efectores downstream de la ruta de transducción de señales mediada por Pga1 (una subunidad alfa de proteínas G) recientemente identificados, y sus efectos reguladores en la morfología y producción de feruloil esterasas en Penicillium rubens Wis 54-1255. Mediante el uso de estrategias moleculares, como la ribointerferencia para la represión de la expresión génica, se realizó un análisis comparativo entre las cepas control y transformantes atenuados en la expresión de los efectores en mención, Pc22g05690 (ProPH) y Pc22g17420 (ProANK). Los resultados sugieren que el efector ProPH regula negativamente el crecimiento vegetativo y el proceso germinativo en P. rubens; mientras que, ProANK no presenta un efecto significativo sobre estos procesos. Además, ambas proteínas regulan positivamente la conidiación en el hongo, con efectos marcados en medios de cultivo nutricionalmente complejos. A nivel metabólico, los resultados indican que los efectores ProPH y ProANK actúan como reguladores negativos de la actividad xilanasa; pero no presentan efectos significativos sobre la actividad celulasa en el hongo. La proteína ProANK regula negativamente la actividad FAE en P. rubens; mientras que ProPH no demarca un efecto significativo sobre dicha actividad enzimática. Adicionalmente, se destaca la participación del gen creA como regulador negativo de la actividad feruloil esterasa en este organismo. Por último, se determinó un efecto positivo del xilano como sustrato inductor de enzimas con actividad feruloil esterasa en P. rubens Wis 54-1255; en contraste con la cascarilla de arroz, cuyo uso no resultó funcional para tal fin.es_CO
    dc.description.abstractLa autora no proporciona información sobre este ítem.es_CO
    dc.format.extent171es_CO
    dc.format.mimetypeapplication/pdfes_CO
    dc.language.isoeses_CO
    dc.publisherUniversidad de Pamplona – Facultad de Ciencias Basicas.es_CO
    dc.subjectTransducción de señales.es_CO
    dc.subjectEfector downstream.es_CO
    dc.subjectMorfología.es_CO
    dc.subjectInductor.es_CO
    dc.subjectExoenzimas.es_CO
    dc.titleEstudio del papel de dos efectores downstream de la ruta de transducción de señales mediada por Pga1, en la morfología y la producción de Feruloil esterasas en Penicillium Rubens Wis 54-1255.es_CO
    dc.typehttp://purl.org/coar/resource_type/c_bdcces_CO
    dc.date.accepted2021-03-10-
    dc.relation.referencesAltschul, S.F., Madden, T.L., Schäffer, A.A., Zhang, J., Zhang, Z., Miller, W., Lipman, D.J. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25: 3389–3402.es_CO
    dc.relation.referencesAlvira, E. Pejó T, M. Ballesteros, M.J. (2010). Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: A review. Bioresource Technology. 101: 4851–4861.es_CO
    dc.relation.referencesAnné, J. (1977). Somatic hybrization between Penicillium chrysogenum species after induced fusion of their protoplasts. Agricultura. 1–17es_CO
    dc.relation.referencesAnsari, K., Martin, S., Farkasovsky, M., Ehbrecht, I.M., Kuntzel, H., (1999). Phospholipase C binds to the receptor-like GPR1 protein and controls pseudohyphal differentiation in Saccharomyces cerevisiae. J. Biol. Chem. 274: 30052–30058.es_CO
    dc.relation.referencesAro N, Pakula T, Penttila M. (2005). Transcriptional regulation of plant cell wall degradation by filamentous fungi. FEMS Microbiology Reviews. 29: 719–739es_CO
    dc.relation.referencesBastos R, Coelho E, Coimbra M. (2018). Arabinoxylans from cereal by-products: Insights into structural features, recovery, and applications. Sustainable Recovery and Reutilization of Cereal Processing By-Products. 227-251.es_CO
    dc.relation.referencesBenoit, I. et al. (2006). Feruloyl esterases as a tool for the release ofphenolic compounds from agro-industrial by-products. Carbohydrated Research. 341: 1820–1827.es_CO
    dc.relation.referencesBenoit, I. et al. (2008). Biotechnological applications and potential of fungal feruloyl esterases based on prevalence, classification and biochemical diversity. Biotechnology Letters. 30: 387–396.es_CO
    dc.relation.referencesBoase, N.y Kelly, J. (2004). A role for creD, a carbon catabolite repression gene from A. nidulans, in ubiquitination, Mol. Microbiol. 53: 929-940.es_CO
    dc.relation.referencesBohacz, J. (2016). Lignocellulose-degrading enzymes, free-radical transformations during composting of lignocellulosic waste and biothermal phases in small-scale reactors. Sci Total Environ. STOTEN-21542; 11.es_CO
    dc.relation.referencesBöhm J, Hoff B, O'Gorman CM, Wolfers S, Klix V, Binger D, Zadra I,… Kück U (2013). Sexual reproduction and mating-type- mediated strain development in the penicillin- producing fungus Penicillium chrysogenum. Proceedings of the National Academy of Sciences, 110: 1476- 1481.es_CO
    dc.relation.referencesCabral, C., deFreitas, C., Fanchini, C., de Almeida, A., y Cano, E. (2018). Agroindustrial biomass for xylanase production by Penicillium chrysogenum: Purification, biochemical properties and hydrolysis of hemicelluloses. Electronic Journal of Biotechnology. 33: 39-45.es_CO
    dc.relation.referencesZhong, Y., Peng, J., Chen, Z., Xie, H., Luo, D., Dai, J., Yan, F., et al (2015). Dry mycelium of Penicillium chrysogenum activates defense responses and restricts the spread of Tobacco Mosaic Virus in tobacco. Physiological and Molecular Plant Pathology. 92: 28- 37.es_CO
    dc.relation.referencesCepeda-García C, Domínguez-Santos R, García-Rico RO, García-Estrada C, Cajiao A, Fierro F, Martín JF. (2014). Direct involvement of the CreA transcription factor in penicillin biosynthesis and expression of the pcbAB gene in Penicillium chrysogenum. Appl Microbiol Biotechnol. 98: 7113–7124.es_CO
    dc.relation.referencesChavez R, Bull P, Eyzaguirre J. (2006). The xylanolytic enzyme system from the genus Penicillium. J. Biotechnol. 123: 413–433.es_CO
    dc.relation.referencesLópez, A. Ramirez, L. Rivero, L. Zapata, T. Y Ullán, V. (2011). Aplicación de una nueva FAE en la liberación químico- enzimática de ácido ferúlico a partír de pulpa de remolacha. Revista de Investigaciones de la facultad de Ciencias Agrarias. 19: 21-25es_CO
    dc.relation.referencesCrepin, V. Faulds, C. Y Connerton, I. (2004). Funtional, classification of the microbial feruloyl esterases. Applied Microbiology and Biotechnology. 63: 647-652.es_CO
    dc.relation.referencesd´enfert. C. (1997). Fungal spore germination: insights from the molecular genetics of Aspergillus nidulans and Neurospora crassa. Fungal Genetics and Biology. 21: 163.172es_CO
    dc.relation.referencesDahlmann, T., Bohm, J., Becker, K., Y Kuck, U. (2015). Sexual recombination as a tool for engineering industrial Penicillium chrysogenum strains. Current Genetics. 61: 679- 683.es_CO
    dc.relation.referencesDamásio, A.R.L., Braga, C.M.P., Brenelli, L.B., Citadini, A.P., Mandelli, F., Cota, J., De Almeida, R.F., Salvador, V.H., et al., (2013). Biomass-to-bio-products application of feruloyl esterase from Aspergillus clavatus. Applied Microbiology and Biotechnology. 97: 6759– 6767.es_CO
    dc.relation.referencesDe Vries R, Vankuyk P, Kester H, Visser J. (1999). The Aspergillus niger faeB gene encodes a second feruloyl esterase involved in pectin and xylan degradation and is specifically induced in the presence of aromatic compounds. Biochem. J. 363: 377–386.es_CO
    dc.relation.referencesLi L; Wright SJ; Krystofova S; Park, y Borkovich KA. (2007). Heterotrimeric G protein signaling in filamentous fungi. En: Annual Review of Microbiology. 61: 423–52es_CO
    dc.relation.referencesDe Vries R, Vankuyk P, Kester H, Visser J. (2002). The Aspergillus niger faeB gene encodes a second feruloyl esterase involved in pectin and xylan degradation and is specifically induced in the presence of aromatic compounds. Biochem. J. 363: 377–386.es_CO
    dc.relation.referencesDe Vries R, Visser J, Graaff L. (1999). CreA modulates the XlnR-induced expression on xylose of Aspergillus niger genes involved in xylan degradation. Res. Microbiol. 150: 281−285.es_CO
    dc.relation.referencesDegani, O. (2013). Cochliobolus heterostrophus G-Protein Alpha and ¨Beta Subunit Double Mutant Reveals Shared and Distinct Roles in Development and Virulence. Physiological and Molecular Plant Pathology. 82: 35-45.es_CO
    dc.relation.referencesDelgado, M. et al. (2012). Arabidopsis Heterotrimeric G protein regulates cell vall defense and resistance to necrotrophic fungi. Molecular plant. 5: 98-114.es_CO
    dc.relation.referencesDey, Tapati et al., (2016). Antioxidant phenolics and their microbial production by submerged and solid state fermentation process: A review. Trends in food science and Technology. 53: 60 74es_CO
    dc.relation.referencesLopéz, K. (2012). Caracterización de la actividad feruloil esterasa en cepas de Penicillium chrysogenum y escalado semi-industrial de la producción en el instituto de biotecnología de León (INBIOTEC), España. Trabajo de grado (Microbiología). Universidad de Pamplonaes_CO
    dc.relation.referencesDilokpimol A, Mäkelä M, Mansouri S, Belova O, Waterstraat M, Bunzel M, et al. (2017). Expanding the feruloyl esterase gene family of Aspergillus niger by characterization of a feruloyl esterase, FaeC. N Biotechnol. 37:200-209.es_CO
    dc.relation.referencesDilokpimol, A. et al. (2016). Diversity of fungal feruloyl esterases: updated phylogenetic classification, properties, and industrial applications. Biotechnology for Biofuels. 9:231es_CO
    dc.relation.referencesDomínguez-Santos R, García-Estrada C, Kosalková K, Prieto C, Santamarta I, Martín JF. (2015). PcFKH1, a novel regulatory factor from the forkhead family, controls the biosynthesis of penicillin in Penicillium chrysogenum. Biochimie. 115:162-176es_CO
    dc.relation.referencesDomínguez-Santos R, Martín JF, Kosalková K, Prieto C, Ullán RV, García-Estrada C. (2012). The regulatory factor PcRFX1 controls the expression of the three genes of β-lactam biosynthesis in Penicillium chrysogenum. Fungal Genet Biol. 49(11):866-81es_CO
    dc.relation.referencesLi, J; Mahajan, A; Y Tsai, Md. (2006). Ankyrin repeat: a unique motif mediating protein-protein interactions. Biochemistry. 26: 15168-78.es_CO
    dc.relation.referencesDonaghy, J.A., and McKay, A.M. (1994). Novel screening assay for the detection of phenolic acid esterases. World J. Microbiol. Biotechnol. 10: 41–44.es_CO
    dc.relation.referencesDowzer, C. y Kelly, J.M. (1991). Analysis of the creA gene, a regulator of carbon catabolite repression in Aspergillus nidulans, Mol. Cell. Biol. 11: 5701-5709es_CO
    dc.relation.referencesDuran, R; Cary, J. Y Calvo, A. (2010). Role of the Osmotic Stress Regulatory Pathway in Morphogenesis and Secondary Metabolism in Filamentous Fungi. Toxins. 2: 367-381.es_CO
    dc.relation.referencesEmri, T; Szilagyi, M; Justy, A; y Pocsi, (2008). I. Heterotrimeric G protein mediated regulation of proteinase production in Aspergillus nidulans. Acta Microbiologica e Immunologica Hungarica. 55: 111- 117.es_CO
    dc.relation.referencesEmri, T; Szilagyi, M; Justy, A; Y Pocsi, I. (2008). Heterotrimeric G protein mediated regulation of proteinase production in Aspergillus nidulans. Acta Microbiologica e Immunologica Hungarica. 55: 111- 117.es_CO
    dc.relation.referencesFaulds, C. Y Williamson, G. (1991). The purification and characterization of 4- hidroxy-3 methoxycinnamic (ferulic) acid esterase from Streptomyces olivochromogenes. Journal of General Microbiology. 137: 2339- 2345.es_CO
    dc.relation.referencesLozano, O. Rodríguez, D. Bernáldez, V; Córdoba, J; Rodríguez, M. (2013). Influence of temperature and substrate conditions on the omt-1 gene expression of Aspergillus parasiticus in relation to its aflatoxin production. International Journal of Food Microbiology. 166: 263–269.es_CO
    dc.relation.referencesFaulds, C. Y Williamson, G. (1991). The purification and characterization of 4- hidroxy-3 methoxycinnamic (ferulic) acid esterase from Streptomyces olivochromogenes. Journal of General Microbiology. 137: 2339- 2345es_CO
    dc.relation.referencesFazary, A. y Ju, Y. (2007). Feruloyl esterases as biotechnological tools: current and future perspectives. En: Acta Biochim. Biophys. 39: 811-828.es_CO
    dc.relation.referencesFazary, A. Y Ju, Yi-Hsu. (2008). The large- scale use of feruloyl esterases in industry. En: Biotechnology and Molecular Biology Reviews. 3: 95-110.es_CO
    dc.relation.referencesMah, J. H., & Yu, J. H. (2006). Upstream and downstream regulation of asexual development in Aspergillus fumigatus. Eukaryotic Cell, 5(10): 1585–1595.es_CO
    dc.relation.referencesFierro F, Laicha F, García, R, Martín F. (2004). High efficiency transformation of Penicillium nalgiovense with integrative and autonomously replicating plasmids. International Journal of Food Microbiology. 90: 237 – 248.es_CO
    dc.relation.referencesFortwendel, JR. (2015). Orchestration of morphogenesis in filamentous fungi: Conser-ved roles for ras signaling networks. Fungal Biology Reviews. 29: 54–62.es_CO
    dc.relation.referencesGarcía L. (2018). Búsqueda de nuevas feruloil esterasas fúngicas con aplicaciones biotecnológicas. Universidad de León.es_CO
    dc.relation.referencesGarcía, R.O, Martín, J., y Fierro, F. (2011). Heterotrimeric Ga protein Pga1 from Penicillium chrysogenum triggers germination in response to carbon sources and affects negatively resistance to different stress conditions. Fungal Genetics and Biology. 48: 641–649es_CO
    dc.relation.referencesGarcía, R.O. Chávez, R. Fierro, F; y Martín, J. (2009). Effect of a heterotrimeric G protein α subunit on Conidia Germination, Stress Response, and Roquefortine C Production in Penicillium roqueforti. International Mycrobiology. 12: 123-129es_CO
    dc.relation.referencesGarcia, R.O. et al. (2017). Heterotrimeric G protein alpha subunit controls growth, stress response, extracellular protease activity, and cyclopiazonic acid production in Penicillium camemberti. En: Fungal biology. 121: 754 -762.es_CO
    dc.relation.referencesGarcía, R.O. y Fierro, F. (2017). Papel de las subunidades alfa de proteínas G en los procesos morfogénicos de hongos filamentosos de la división Ascomycota. En: Revista Iberoamericana de Micología. 34: 1–9.es_CO
    dc.relation.referencesLuengo, J.M., Revilla, G., Villanueva, J.R., and Martín, J.F. (1979). Lysine regulation of penicillin biosynthesis in low-producing and industrial strains of Penicillium chrysogenum. J. Gen. Microbiol. 115: 207–211.es_CO
    dc.relation.referencesGarcía, RO. et al. (2008). The heterotrimeric G alpha protein pga1 regulates biosynthesis of penicillin, chrysogenin and roquefortine in Penicillium chrysogenum. En: Microbiology. 154: 3567-3578.es_CO
    dc.relation.referencesGarcía, Ro., Martín, J., Fierro, F. (2007). The pga1 gene of Penicillium chrysogenum NRRL 1951 encodes a heterotrimeric G protein alpha subunit that controls growth and development. Research in Microbiology. 158: 437- 446.es_CO
    dc.relation.referencesMaller, J.L., (2003). Signal transduction. Fishing at the cell surface. Science. 300: 594–595es_CO
    dc.relation.referencesGarcía-Torres, I., Cervantes-López, M., Ortega-Arellano, A., Hernández-Alcántara, G., Flores López, L., De la Mora-De la Mora, J., et al., (2020). Proteínas con repeticiones de anquirina: estructura, función y retos bioquímicos. Mens. Bioquim. 44: 38-53es_CO
    dc.relation.referencesGil-Duran, C et al. (2014). The pcz1 Gene, which Encodes a Zn (II)2Cys6Protein, Is Involved in the Control of Growth, Conidiation, and Conidial Germination in the Filamentous Fungus Penicillium roqueforti. PLoS One. 10: 1-17.es_CO
    dc.relation.referencesGolapan N, Rodríguez D, Saucedo G, Nampoothiri KM. (2015). Review on technological and scientific aspects of feruloyl esterases: A versatile enzyme for biorefining of biomass. Bioresour Technol. 193: 534-44.es_CO
    dc.relation.referencesGolapan, N. et al. (2016). Review on technological and scientific aspects of feruloyl esterases: A versatile enzyme for biorefining of biomass. Bioresource Technology. 193: 534–544es_CO
    dc.relation.referencesGoufo P, Ferreirab L, Trindadea H, Rosa E. (2015). Distribution of antioxidant compounds in the grain of the Mediterranean rice variety ‘Ariete’. CyTA - Journal of Food. 13:140–150.es_CO
    dc.relation.referencesGreenwald CJ. et al. (2010). Temporal and spatial regulation of gene expression during asexual development of Neurospora crassa. Genetics. 186: 1217–30.es_CO
    dc.relation.referencesGronover, S; Tudzynski, P; Tudzynski, B. (2001). The role of G protein alpha subunit in the infection process of the of the gray mold fungus Botrytis cinérea. MPMI. 149: 1293-1302.es_CO
    dc.relation.referencesGummer, J. et al. (2012). A comparative analysis ot the heterotrimeric G- protein Ga, Gb, and Gy subunits in the wheat pathogen Stagonospora nodorum. BMC Microbiology. 12: 131es_CO
    dc.relation.referencesLuo, J., Ding, J., Wei, G., Zheng, T., Y Luo, Z. (2014). Characterization of a formaldehyde degrading fungus Penicillium chrysogenum DY-F2 isolated from deep sea sediment. International Biodeterioration & Biodegradation. 89: 45-49.es_CO
    dc.relation.referencesGummer, J. et al. (2012). A comparative analysis ot the heterotrimeric G- protein Ga, Gb, and Gy subunits in the wheat pathogen Stagonospora nodorum. BMC Microbiology. 12: 131.es_CO
    dc.relation.referencesBohn, J. et al., (2013). Sexual reproduction and mating-type- mediated strain development in the penicillin- producing fungus Penicillium chrysogenum. Proceedings of the National Academy of Sciences: 110: 1476- 1481.es_CO
    dc.relation.referencesGutkind, J.S., (1998). The pathways connecting G protein-coupled receptors to the nucleus through divergent mitogen-activated protein kinase cascades. J. Biol. Chem. 273: 1839–1842es_CO
    dc.relation.referencesGuzman, C. et al., (2017). Mechanism and regulation of sorbicillin biosynthesis by Penicillium chrysogenum. Microbial Biotechnology. 10: 958-968.es_CO
    dc.relation.referencesGuzmán, F, Salo O, Nygård Y, Lankhorst PP, Bovenberg RAL, Driessen AJM. (2017). Mechanism and regulation of sorbicillin biosynthesis by Penicillium chrysogenum. Microbial Biotechnology. 10: 958-968es_CO
    dc.relation.referencesHagiwara, D; Suzuki, S; Kamei, K; Gonoi, T; Kawamoto. (2014). The role of AtfA and HOG MAPK pathway in stress tolerance in conidia of Aspergillus fumigatus. Fungal Genetics and Biology. 73: 138–149.es_CO
    dc.relation.referencesHarispe L, Portela C, Scazzocchio C, Penalva MA, y Gorfinkiel L. (2008). Ras GTPase-activating protein regulation of actin cytoskeleton and hyphal polarity in Aspergillus nidulans. Eukaryotic cell. 7: 141–53.es_CO
    dc.relation.referencesHartmann, T. et al. (2011). Shaping the fungal adaptome – Stress responses of Aspergillus fumigatus. International Journal of Medical Microbiology. 30: 408–416.es_CO
    dc.relation.referencesHasper A, Visser J. y de Graaff L. (2000). The Aspergillus nger transcripcional activator XlnR which is involved in the degradation of the polysaccharides xylan and cellulose also regulates D-xylose reductase gene expresión. Mol Microbiol. 36:193-200.es_CO
    dc.relation.referencesHewavitharana, T. y Wedegaertner, P. (2012). Non-canonical signaling and localizations of heterotrimeric G proteins. Cellular Signalling. 24: 25–34.es_CO
    dc.relation.referencesHidalgo, P. et al., (2014). Molecular characterization of the PR- toxn gen cluster in Penicillium roqueforti y Penicillium chrysogenum: cross talk of secundary metabolite pathways. Fungal Genetics and Biology. 62: 11-24.es_CO
    dc.relation.referencesLuo, J., Ding, J., Wei, G., Zheng, T., Y Luo, Z. (2014). Characterization of a formaldehyde degrading fungus Penicillium chrysogenum DY-F2 isolated from deep sea sediment. International Biodeterioration & Biodegradation. 89: 45-49.es_CO
    dc.relation.referencesMarx F, Binder U, Leiter E, y Pócsi I. (2008). The Penicillium chrysogenum antifungal protein PAF, a promising tool for the development of new antifungal therapies and fungal cell biology studies. Cellular and Molecular Life Sciences. 65: 445-54es_CO
    dc.relation.referencesHoubraken, J. et al. (2011). Fleming’s penicillin producing strain is not Penicillium chrysogenum but P. rubens. IMA Fungus. 2: 87–95es_CO
    dc.relation.referencesHU, Y et al. (2013). G protein-cAMP signaling pathway mediated by PGA3 plays different roles in regulating the expressions of amylases and cellulases in Penicillium decumbens. Fungal Genetics and Biology. 58–59: 62–70.es_CO
    dc.relation.referencesIchinose, S. Tanaka, M. Shintani, T. y Gomi K. (2018). Increased production of biomass degrading enzymes by double deletion of creA and creB genes involved in carbon catabolite repression in Aspergillus oryzae. Journal of Bioscience and Bioengineering. 125: 141-147.es_CO
    dc.relation.referencesIGAC (Instituto Geográfico Agustín Codazzi). (2006). Métodos analíticos de laboratorio de suelos. Sexta edición. Imprenta Nacional de Colombia. Bogotá. 648 pes_CO
    dc.relation.referencesIlyes H, Fekete E, Karaffa L, Fekete E, Sandor E, Szentirmai A, Kubicek C. (2004). CreA mediated carbon catabolite repression of b-galactosidase formation in Aspergillus nidulans is growth rate dependent. FEMS Microbiology Letters. 235:147–151.es_CO
    dc.relation.referencesIvey, FD; Kays, AM; Borkovich, K. (2002). Shared and independent roles for a Gai protein and adenylyl cyclase in regilating development and stress responses in Neurospora crassa. Eukartotic Cell. 1: 634-642.es_CO
    dc.relation.referencesJaronski, S.T., (2010). Ecological factors in the inundative use of fungal entomopathogens. Biocontrol 55: 159–185.es_CO
    dc.relation.referencesJiping M, Song S, Xiuquan J, Fei X, Hong M, Jin G, Jie X. (2019). Advances in catalytic conversion of lignocellulose to chemicals and liquid fuels. J. Energy Chem. 36: 74-86.es_CO
    dc.relation.referencesKalai, S. Anzala, L; Bensoussan, M. Y Dantigny, P. (2017). Modelling the effect of temperatura, pH, Water activity, and organic acids on the germination time of Penicill.; Europe PMC plus. 240: 124-130.es_CO
    dc.relation.referencesKalim, B y Mazhar, N., (2016). Optimization of fermentation media and growth conditions for microbial xylanase production. 3 Biotech, 6:122es_CO
    dc.relation.referencesMarx, F. et al., (2008). The Penicillium chrysogenum antifungal protein PAF, a promising tool for the development of new antifungal therapies and fungal cell biology studies. Cellular and Molecular Life Sciences. 65: 445-54es_CO
    dc.relation.referencesM. Wang, J.P. Ma, H.F. Liu, N.C. Luo, Z.T. Zhao, F. Wang. (2018). Sustainable Productions of Organic Acids and Their Derivatives from Biomass via Selective Oxidative Cleavage of C–C Bond. ACS Catal. 8(3): 2129–2165.es_CO
    dc.relation.referencesKelly, J.M. (2004). The regulation of carbon metabolism in filamentous fungi, in: R. Brambl and G.A. Marzulf (Eds.), Mycota III, Berlin-Heidelberg: Springer-Verlagpp, pp 385-401.es_CO
    dc.relation.referencesKhan, S.M., Sleno, R., Gora, S., Zylbergold, P., Laverdure, J.-P., Labbe, J.-C., et al., (2013). The expanding roles of Gβγ subunits in G protein–coupled receptor signalling and drug action. Pharmacol. Rev. 65: 545–577.es_CO
    dc.relation.referencesKhodor, S. et al. (2010). Ankyrin-repeat containing proteins of microbes: a conserved structure with functional diversity. Trends in Microbiology. 18: 132–139.es_CO
    dc.relation.referencesKobayashi, Y. Horikoshi, Y. (1982). Purification and characterization of extracellular porlyamine oxidase produced by Penicillium sp. Biochimica et Biophysica Acta. 1.es_CO
    dc.relation.referencesKoseki, T., Fushinobu, S., Ardiansyah; Shirakawa, H; y Komai, M. (2009). Occurrence, properties, and applications of feruloyl esterases. Applied Microbiology and Biotechnology. 84: 803– 810es_CO
    dc.relation.referencesKostylev, Otwell, Richardson, y Suzuki., (2015). Cloning Should Be Simple: Escherichia coli DH5α-Mediated Assembly of Multiple DNA Fragments with Short End Homologies. 8;10(9): e0137466.es_CO
    dc.relation.referencesKrijgsheld, P., Bleichrodt, R., van Veluw, G. J., Wang, F., Müller, W. H., Dijksterhuis, J., & Wösten, H. A. B. (2013). Development in Aspergillus. Studies in Mycology, 74(1): 1–29es_CO
    dc.relation.referencesKrittikorn, K., Surasak J, Suganya Y, y Thanat Chookajorn., (2011). Characterization of band 3 ankyrin-Protein 4.2 complex by biochemical and mass spectrometry approaches. Biochem Biophys Res Commun. 406(3):332es_CO
    dc.relation.referencesLafon, A; Hoon, K; Seo, J; Yu, J; y Enfert, C. (2006). G-protein and cAMP-mediated signaling in Aspergilli: A genomic perspective. Fungal Genetics and Biology. 43: 490–502es_CO
    dc.relation.referencesMatishuba, V; Kremnicky L, Mastihubova M, Willett, J y Cote G. (2002). A spectrophotometric assay for feruloyl esterases. Analytical Biochemistry. 309: 96–101.es_CO
    dc.relation.referencesLandry, B; Clarke, D y Lee, M. (2016). Studying Cellular Signal Transduction with OMIC Technologies. Journal of Molecular Biology. 427: 3416–3440.es_CO
    dc.relation.referencesMa, D., Li, R., (2013). Current understanding of HOG-MAPK pathway in Aspergillus fumigatus. Mycopathologia. 175: 13–23es_CO
    dc.relation.referencesLeiter, E. et al., (2004). Penicillium chrysogenum glucose oxidase- a study on its antifungal effects. Journal of Applied Microbiology. 97: 1201-1209es_CO
    dc.relation.referencesMichkov, W. et al. (2012). Genetic and physicalinteractions between Ga subunits and components of the Gby dimer of hete-rotrimeric G proteins in Neurospora crassa. Eukaryotic Cell. 11: 1239–48.es_CO
    dc.relation.referencesMiller, L. (1972). Experiments in Molecular Genetics. Cold Spring Harbor Laboratory Press. Cold Spring Harbor; New York. ISBN 10: 0879691069es_CO
    dc.relation.referencesZhou, M. et al., (2015). Construction and expression of two-copy engineered yeast of feruloyl esterase. Electronic Journal of Biotechnology. 18: 338–342.es_CO
    dc.relation.referencesMinh D, N; Kim, H. y Chung, KA. (2015). Structural mechanism of G protein activation by G protein-coupled recept. En: European Journal of Pharmacology. 763: 214–222.es_CO
    dc.relation.referencesMogensen J, Nielsen B , Hofmann G , Nielsen J. (2006). Transcription analysis using high-density micro-arrays of Aspergillus nidulans wild-type and creA mutant during growth on glucose or etanol. Fungal Genetics and Biology. 43:593–603.es_CO
    dc.relation.referencesNguyen, E.V., Imanishi, S.Y., Haapaniemi, P., Yadav, A., Saloheimo, M., Corthals, G.L., Pakula, T., (2016). Quantitative site-specific phosphoproteomics of Trichoderma reesei signaling pathways upon induction of hydrolytic enzyme production. J. Proteome Res. 15 (2): 457– 467.es_CO
    dc.relation.referencesNishimura A1, Kitano K, Takasaki J, Taniguchi M, Mizuno N, Tago K, Hakoshima T, et al., (2010). Structural basis for the specific inhibition of heterotrimeric Gq protein by a small molecule. Proc Natl Acad Sci.107(31), 13666-71.es_CO
    dc.relation.referencesNuñes, D. (2012). Uso de residuos agrícolas para la producción de biocombustibles en el departamento del Meta. Tecnura. 16: 142-156.es_CO
    dc.relation.referencesBolker, M. (1998). Sex and Crime: Heterotrimeric G Proteins in Fungal Mating and Pathogenesis. Fungal Genetics and Biology. 25:143–156.es_CO
    dc.relation.referencesOffermanns S. (2003). G-proteins as transducers in transmembrane signalling. Prog Biophys Mol Biol. 83(2): 101-30.es_CO
    dc.relation.referencesOldham et al. (2007). Allosteric connections from the receptor to the nucleotide binding pocket of heterotrimeric G proteins. Proceedings of the National Academy of Sciences. 104: 7927-7932.es_CO
    dc.relation.referencesOlivares, H. et al. (2010). Combining substrate specificity analysis with support vector classifiers reveals feruloyl esterase as a phylogenetically informative protein group. PLoS ONE. 5: e12781es_CO
    dc.relation.referencesOliveira, D. et al., (2019). Feruloyl esterases: Biocatalysts to overcome biomass recalcitrance and for the production of bioactive compounds. Bioresource Technology. 278: 408–423.es_CO
    dc.relation.referencesZuber, S. Hynes, Mj. Andrianopoulos, A. (2002). G-protein signaling mediates asexual development at 25 degrees C but has no effect on yeast-like growth at 37 degrees C in the dimorphic fungus Penicillium marneffei. Eukaryotic Cell. 1: 440–447.es_CO
    dc.relation.referencesOrganización Mundial de la Salud (OMS). 2005. Manual De Bioseguridad En El Laboratorio. Tercera edición. ISBN 92 4 354650 3es_CO
    dc.relation.referencesOshikatA, C. et al. (2017). Allergic bronchopulmonary micosis caused by Penicillium luteum. Medical Mycology Case Reports. 15: 9-11es_CO
    dc.relation.referencesPalmqvist, E., Hahn, H B. (2000). Fermentation of lignocellulosic hydrolysates II: inhibitors and mechanism of inhibition. Bioresour. Technol. 74: 25–33es_CO
    dc.relation.referencesPark, H; y Yu H. (2012). Genetic control of asexual sporulation in filamentous fungi. Current Opinion in Microbiology. 15: 669–77.es_CO
    dc.relation.referencesPeña A, y Contreras-Esquivel Juan Carlos. (2016). Methods and substrates for feruloyl esterase activity detection, a review. Journal of Molecular Catalysis B: Enzymatic. 130: 74-87.es_CO
    dc.relation.referencesPontón, J. Quindós, G., Morangues, M., Gené, J., Y Guarro, J. (2002). Hongos y Actinomicetos alergénicos. Revista Iberoamericana de Micología. Bilbao.es_CO
    dc.relation.referencesBonnin, E. et al. (2002). Release of ferulic acid from agroindustrial by-products by the cell wall degrading enzymes produced by Aspergillus niger I-1472. Enzyme and Microbial Technology. 31: 1000–1005.es_CO
    dc.relation.referencesQuiroz-Castañeda, R.E., and Folch-Mallol, J.L. (2011). Plant cell wall degrading and remodeling proteins: current perspectives. Biotecnol. Apl. 28: 205–215.es_CO
    dc.relation.referencesRabemanolontsoa, H., Saka, S. (2016). Various pretreatments of lignocellulosics. Bioresour. Technol. 199: 83–91es_CO
    dc.relation.referencesReithner B, Brunner K, Schuhmacher R, Peissl I, Seidl V, et al. (2005). The G protein alpha subunit Tga1 of Trichoderma atroviride is involved in chitinase formation and differential production of antifungal metabolites. Fungal Genetics and Biology. 42: 749–760.es_CO
    dc.relation.referencesCalero F, Hera C, Pietro AD, Orejas M, Roncero MIG. (2008). Regulatory elements mediating expression of xylanase genes in Fusarium oxysporum. Fungal Genet Biol. 45: 28-34.es_CO
    dc.relation.referencesRigbolt, Kt, Y Blagoev, B. (2012). Quantitative phosphoproteomics to characterize signaling networks. Seminars in Cell and Developmental Biology. 23: 863-871.es_CO
    dc.relation.referencesRispail, N., Soanes, D.M., Ant, C., Czajkowski, R., Grunler, A., Huguet, R., et al., (2009). Comparative genomics of MAP kinase and calcium-calcineurin signalling components in plant and human pathogenic fungi. Fungal Genet. Biol. 46: 287–298.es_CO
    dc.relation.referencesRodríguez, R. (2017). Identificación y caracterización de las enzimas feruloil esterasas PcFaeA y PcFaeB de Penicillium chrysogenum para la valoración de residuos agroindustriales. Scalado y análisis proteómico de la producción de extractor enzimático enriquecidos en PcFaeB. León España. Universidad de León- Instituto de Biotecnología de León.es_CO
    dc.relation.referencesSakamoto T, Nishimura S, Kato T, Sunagawa Y, Tsuchiyama M, Kawasaki H. (2005). Efficient Extraction of Ferulic Acid from Sugar Beet Pulp Using the Culture Supernatant of Penicillium chrysogenum. J. Appl Glycosci. 52:115-120.es_CO
    dc.relation.referencesSanto, M Y Ishikawa, Y. (2010). Accessory proteins for heterotrimeric G-protein: Implication in the cardiovascular system. Pathophysiology. 17: 89–99.es_CO
    dc.relation.referencesSantos, R. et al. (2017). Casein phosphopeptides and ClCl2 increase penicillim production and cause an increment in microbody/ peroxisime proteins in Penicillium chrysogenum. Journal of proteomics. 156: 52-62.es_CO
    dc.relation.referencesSaulnier, L., Sado, P.-E., Branlard, G., Charmet, G., Guillon, F. (2007). Wheat arabinoxylans: exploiting variation in amount and composition to develop enhanced varieties. J Cereal Sci. 46: 261-281.es_CO
    dc.relation.referencesBoudreau, B.; Larson, T.; Brown, D.; Busman, M; Roberts, E.; Kendra, D.; Mcquade, K. (2013). Impact of temperature stress and validamycin A on compatible solutes and fumonisin production in F. verticillioides: Role of trehalose-6-phosphate synthase. Fungal Genetics and Biology. 57: 1–10.es_CO
    dc.relation.referencesSchaafsma, D. et al. (2008). Monomeric G-proteins as signal transducers in airway physiology and pathophysiology. Cellular Signalling. 20: 1705–1714.es_CO
    dc.relation.referencesScheffzek, K., y WeltI, S. (2012). Pleckstrin homology (PH) like domains – versatile modules in protein–protein interaction platforms. FEBS Letters. 586: 2662–2673.es_CO
    dc.relation.referencesCalvo A Wilson R; Bok J; y Keller N. (2002). Relationship between Secondary Metabolism and Fungal Development. Microbiology and Molecular Biology Reviews. 66:447.459.es_CO
    dc.relation.referencesSegers, GC. y Nuss, DL. (2003). Constitutively activated Ga negatively regulates virulence, reproduction and hydrophobin gene expression in the chestnut blight fungus Cryphonectria parasítica. Fungal Genetics ang Biology. 38: 198-208es_CO
    dc.relation.referencesSeibel, C. et al. (2009). Light- dependen roles of the G-protein α subunit GNA1 of Hypocrea jecorina (anamorph Trichoderma reesei). BMC Biology. 7:58es_CO
    dc.relation.referencesSetala, T. et al. (2009)., Genetic Modification of Carbon Catabolite Repression in Trichoderma reesei for Improved Protein Production. Applied and Environmental Microbiology. 75: 4853–4860es_CO
    dc.relation.referencesShimizu K y Keller N., (2001). Genetic involvement of a Camp – DEPENDENT Protein kinase in a G protein signaling pathway regulating morphological and chemical transitions in Aspergillus nidulans. Genetics. 157:591-600.es_CO
    dc.relation.referencesShpakov, O. (2013). Heterotrimeric G Proteins. Brenner's Encyclopedia of Genetics; Second Edition, 454-456es_CO
    dc.relation.referencesShwab, E. Y Keller, N. (2008). Regulation of secondary metabolite production in filamentous ascomycetes. Mycological Research. 112: 225-230.es_CO
    dc.relation.referencesSmith, G. (1960). An introduction to industrial mycology. Edward Arnold Ltd; London. B001SJLPK6.es_CO
    dc.relation.referencesSondek, J. et al. (1996). Crystal structure of a G-protein beta gamma dimer at 2.1A resolution. Nature. 25: 369-374.es_CO
    dc.relation.referencesBraga CMP, Delabona P da S, Lima DJ da S, Paixão DAA, Pradella JG da C y Farinas CS. (2014). Addition of feruloyl esterase and xylanase produced on-site improves sugarcane bagasse hydrolysis. Bioresour. Technol. 170: 316-324es_CO
    dc.relation.referencesStudt, L. Humpf, H. y Tudzynski, B. (2013). Signaling Governed by G Proteins and cAMP Is Crucial for Growth, Secondary Metabolism and Sexual Development in Fusarium fujikuroi. PLOS ONE. 8, e58185.es_CO
    dc.relation.referencesCantoral, J.M., Díez, B., Barredo, J.L., Alvarez, E., and Martín, J.F. (1987). High–Frequency Transformation of Penicillium chrysogenum. Nat. Biotechnol. 5: 494–497.es_CO
    dc.relation.referencesSvanström, A. Y Melin, P. (2013). Intracellular trehalase activity is required for development, germination and heat-stress resistance of Aspergillus niger conidia. Research in Microbiology, 164: 91-99.es_CO
    dc.relation.referencesSyrovatkina, V. et al. (2016). Regulation, Signaling, and Physiological Functions of G-Proteins. Journal of Molecular Biology. 428: 3850–3868es_CO
    dc.relation.referencesTag, A; Hicks, J; Garifullina, G; Ake, C; Phillips, D; Beremand, M; Y Keller, N. (2000). G-protein signalling mediates differential production of toxic secondary metabolites. Molecular Microbiology. 38: 658-665es_CO
    dc.relation.referencesTamayo EN, Villanueva A, Hasper AA, de Graaff LH, Ramón D, Orejas M. (2008). CreA mediates repression of the regulatory gene xlnR which controls the production of xylanolytic enzymes in Aspergillus nidulans. Fungal Genet Biol. 45:984-93es_CO
    dc.relation.referencesTan, K; Heazlewood, J; Millar, A.; Oliver, R.; Solomon, P. (2009). Proteomic Identification of Extracellular Proteins Regulated by the Gna1 Gα Subunit in Stagonospora nodorum. Mycological Search. 113: 523–531es_CO
    dc.relation.referencesTaylor, T; Krings, M; y Taylor, E. (2015). Ascomycota. Fossil Fungi. 129-171es_CO
    dc.relation.referencesTisch, D; Kubicek, C; y Schmoll, M. (2011). New insights into the mechanism of light modulated signaling by heterotrimeric G-proteins: ENVOY acts on gna1 and gna3 and adjusts cAMP levels in Trichoderma reesei (Hypocrea jecorina). Fungal Genetics and Biology. 48: 631– 640.es_CO
    dc.relation.referencesTopaka, E. Vafiadi, C. Y Chistakopoulos, P. (2007). Microbial production, characterization and applications of feruloyl esterases. Process Biochemistry. 42: 497–509.es_CO
    dc.relation.referencesUda, S y Kuroda, S. (2016). Analysis of cellular signal transduction from an information theoretic approach. Seminars in Cell & Developmental Biology. 51: 24–31.es_CO
    dc.relation.referencesBrodhagen, M y Keller, N. (2006). Signalling oathways connecting mycotoxin production and sporulation. Molecular Plant Pathology. 7: 285.301es_CO
    dc.relation.referencesCarrasco, U; Vera, R; Barkla, B; Zuñiga, E; Reyes, H; Fernandez, F; y Fierro, F. (2016). Proteomic analysis of the signaling pathway mediated by the heterotrimeric Ga protein Pga1 of Penicillium chrysogenum. Microbial Cell Factories. 16: 173.es_CO
    dc.relation.referencesUdatha, D et al., (2011). The interplay of descriptor- based computational analysis with pharmacophore modeling builds the basis for a novel classification scheme for feruloyl esterases. Biotechnology Advances. 29: 94-110.es_CO
    dc.relation.referencesUllah S, Souza A, Hamann P, Ticona A, Oliveira G, Barbosa J, Freitas S, y Noronha E. (2019). Structural and functional characterisation of xylanase purified from Penicillium chrysogenum produced in response to raw agricultural waste. International Journal of Biological Macromolecules. International Journal of Biological Macromolecules. 127: (15), 385-395es_CO
    dc.relation.referencesUllan, R. et al. RNA-silencing in Penicillium chrysogenum and Acremonium chrysogenum: Validation studies using β-lactam genes expression. (2008). RNAJournal of Microbiological Methods. 75: 209–218.es_CO
    dc.relation.referencesValle, M et al. (2015). Phylogenetic analysis of fungal heterotrimeric G protein-encoding genes and their expression during dimorphism in Mucor circinelloides. Fungal biology. 119: 1179 – 1193es_CO
    dc.relation.referencesVillapun, P. Solano, R. Sierra, y C. Sanchez, M. (2005). Importancia de las proteínas G heterotriméricas en la biología molecular del cáncer de próstata. Actas Urológicas Españolas. 29: 948-954.es_CO
    dc.relation.referencesWagner Rodrigo de Souza et al., (2013). The influence ofAspergillus nigertranscription factors AraR and XlnRin the gene expression during growth inD-xylose, L-arabinose andsteam exploded sugarcane bagasse. Fungal Genetics and Biology. 60: 29-45.es_CO
    dc.relation.referencesWang DS, Shaw R, Winkelmann JC, Shaw G (1994). Binding of PH domains of beta‑adrenergic receptor kinase and beta‑spectrin to WD40/beta‑ transducin repeat containing regions of the beta‑subunit of trimeric G‑proteins. Biochem Biophys Res Commun. 203:29–35.es_CO
    dc.relation.referencesWeber, S.S., Bovenberg, R, y Driessen, A. (2012). Biosyntetic concepts for the production of B lactam antibiotics in Penicillium chrysogenum. Biotechnology Journal. 7: 225-236.es_CO
    dc.relation.referencesWright, S Y Park, G. (2007). Heterotrimeric G Protein Signaling in Filamentous Fungi. Annual Review of Microbiology. 61: 423-452.es_CO
    dc.relation.referencesXie, X-Q. Guan, Y. Ying, S-H. y Feng, M-G. (2013). Differentiated functions of Ras1 and Ras2 proteins in regulating the germination, growth, conidiation, multi-stresstolerance and virulence of Beauveria bassiana. Environmental Microbiology. 15: 447–62es_CO
    dc.relation.referencesCarrasco, U; Vera, R; Barkla, B; Zuñiga, E; Reyes, H; Fernandez, F; Y Fierro, F. (2016). Proteomic analysis of the signaling pathway mediated by the heterotrimeric Ga protein Pga1 of Penicillium chrysogenum. Microbial Cell Factories. 16:173.es_CO
    dc.relation.referencesCabañes, F. Bragulat, Y M. Castellá. (2010). Ochratoxin A producing species in the genus Penicillium. Toxins. 2: 1111-1120.es_CO
    dc.relation.referencesXiros, C., Moukouli, M., Topakas, E., Christakopoulos, P. (2009). Factors affecting ferulic acid release from Brewer’s spent grain by Fusarium oxysporum enzymatic system. Bioresource Technology. 100: 5917–5921.es_CO
    dc.relation.referencesXu, Q. et al. (2009). Bacterial Pleckstrin Homology Domains: A Prokaryotic Origin for the PH Domain. Journal of Molecular Biology. 396: 31–46es_CO
    dc.relation.referencesYang, Q; Y Borkovich, Ka. (1999). Mutational activation of a Gai causesuncontrolled proliferation of aerial hyphae and increased sensitivity to heat and oxidative stress in Neurospora crassa. Genetics. 151: 107–117es_CO
    dc.relation.referencesYang, Y; Li, X; Shao, Y; Chen, F. (2012). mrflbA, encoding a Putative FlbA, is Involved in Aerial Hyphal Development and Secondary Metabolite Production in Monascus ruber M-7. Fungal Biology. 116: 225-233es_CO
    dc.relation.referencesYu, J. Heterotrimeric G protein signaling and RGSs in Aspergillus nidulans. (2006). Journal of Microbiology. 44: 145-154es_CO
    dc.relation.referencesYU, Xi. et al. (2017). The Ga1- Camp signaling pathway controls conidiation, development and secondary metabolism in the taxol- producing fungus Pestalotiopsis microspora. Microbiological Research. 203: 2939.es_CO
    dc.relation.referencesZampieri, E; Balestrini, R. Kohler, A. Abbà, S; Martin, F; Y Bonfante, P. (2011). The Perigord black truffle responds to cold temperature with an extensive reprogramming of its transcriptional activity. Fungal Genetics and Biology. 48: 585–591.es_CO
    dc.relation.referencesZaragoza, O.; Rodriguez, C.; y Gancedo, C. (2000). Isolation of the MIG1 gene from Candida albicans and effects of its disruption on catabolite repression. J. Bacteriol. 182: 320–6.es_CO
    dc.relation.referencesZhang, J.W., Zhang, Y.M., Zhong, Y.H., Qu, Y.B., Wang, T.H., (2012). Ras GTPases modulate morphogenesis, sporulation and cellulase gene expression in the cellulolytic fungus Trichoderma reesei. PLoS One. 7 (11): 48786.es_CO
    dc.relation.referencesCepeda-García C, Domínguez-Santos R, García-Rico R, García-Estrada C, Cajiao A, et al., (2014). Direct involvement of the CreA transcription factor in penicillin biosynthesis and expression of the pcbAB gene in Penicillium chrysogenum. Appl Microbiol Biotechnol. 98:7113-7124.es_CO
    dc.relation.referencesZhang, S. et al., (2015). Expression of feruloyl esterase A from Aspergillus terreus and its application in biomass degradation. Protein Expression and Purification. 115:153-157.es_CO
    dc.rights.accessrightshttp://purl.org/coar/access_right/c_abf2es_CO
    dc.type.coarversionhttp://purl.org/coar/resource_type/c_2df8fbb1es_CO
    Aparece en las colecciones: Maestría en Biología Molecular y Biotecnología

    Ficheros en este ítem:
    Fichero Descripción Tamaño Formato  
    Hernández_2021_TG.pdfHernández_2021_TG3,89 MBAdobe PDFVisualizar/Abrir


    Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.