• Repositorio Institucional Universidad de Pamplona
  • Tesis de maestría y doctorado
  • Facultad de Ciencias Básicas
  • Maestría en Química
  • Por favor, use este identificador para citar o enlazar este ítem: http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/2744
    Registro completo de metadatos
    Campo DC Valor Lengua/Idioma
    dc.contributor.authorFlórez Barajas, Francisco Javier.-
    dc.date.accessioned2022-09-21T00:37:12Z-
    dc.date.available2019-09-17-
    dc.date.available2022-09-21T00:37:12Z-
    dc.date.issued2019-
    dc.identifier.citationFlórez Barajas, F. J. (2019). Detección colorimétrica de Plomo y Níquel en aguas utilizando nanopartículas de oro sintetizadas con Quitosán [Trabajo de Grado Maestría, Universidad de Pamplona]. Repositorio Hulago Universidad de Pamplona. http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/2744es_CO
    dc.identifier.urihttp://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/2744-
    dc.descriptionEn el presente trabajo se desarrolló un nanobiosensor que fue utilizado en la detección de plomo y níquel en soluciones acuosas de sales preparadas en el laboratorio, inicialmente se sintetizaron las nanopartículas de oro en fase acuosa usando el método coloidal el cual hace parte de los métodos bottom-up, usando como reactivo metálico el ácido tetracloroáurico trihidratado (HAuCl4•3H2O) y como agente reductor se utilizó el quitosán nanopartículas fueron funcionalizadas con ésta misma biomolécula. La formación de nanopartículas metálicas fue confirmada mediante la técnica de dispersión dinámica de luz (DLS) y microscopía electrónica de barrido (SEM) la primera permitió analizar el tamaño de las nanopartículas sintetizadas; a su vez la segunda técnica se empleó para el estudio de los demás aspectos morfológicos de las mismas. La caracterización de las nanopartículas se realizó por medio de absorción UV- visible y para comprobar la función del nanosensor frente a soluciones acuosas de sales de plomo y níquel se usaron técnicas colorimétricas, donde la variación del color inicial de la solución del nanosensor indicó la detección del metal por parte de éste, así como un cambio generado en el espectro de las AuNPs.es_CO
    dc.description.abstractIn the present work a nanobiosensor was developed to be used in the detection of lead and nickel in aqueous solutions of laboratory prepared salts initially the gold nanoparticles were synthesized in aqueous phase using the colloidal method which is part of the bottom-up methods, using tetrachloroauric acid trihydrate as the metallic reagent (HAuCl4 • 3H2O) and chitosan was used as reducing agent, these nanoparticles were functionalized with this same biomolecule. The formation of metallic nanoparticles was confirmed by the Dynamic Light Dispersion technique (DLS) and Scanning Electron Microscopy (SEM) the first one allowed to analyse the size of the synthesized nanoparticles; Simultaneously, the second technique was used to study the other morphological aspects of the itself. The characterization of the nanoparticles was carried out by means of UV-visible absorption and to check the function of the nanosensor against aqueous solutions of lead and nickel salts, colorimetric techniques were used, where the initial color variation of the nanosensor solution indicated the detection of metal by itself, as well as a change generated in the AuNPs spectrum.es_CO
    dc.format.extent46es_CO
    dc.format.mimetypeapplication/pdfes_CO
    dc.language.isoeses_CO
    dc.publisherUniversidad de Pamplona – Facultad de Ciencias Básicas.es_CO
    dc.subjectEl autor no proporciona la información sobre este ítem.es_CO
    dc.titleDetección colorimétrica de Plomo y Níquel en aguas utilizando nanopartículas de oro sintetizadas con Quitosán.es_CO
    dc.typehttp://purl.org/coar/resource_type/c_bdcces_CO
    dc.date.accepted2019-06-17-
    dc.relation.referencesNRIAGU J.O. and PACÍAN J. M. Quantitative assessment of worldwide contamination of air, water, and soils by trace metals. nature, 333, (1988),134-139.es_CO
    dc.relation.referencesUnited States Environmental Protection Agency. EPA 816-F-09-004. May 2009. http://www.epa.gov/ogwdw/consumer/pdf/mcl.pdfes_CO
    dc.relation.referencesEPA G. NORDBER. Metales, propiedades químicas y toxicidad. En: J. FINKLE y col. Enciclopedia de salud y seguridad en el trabajo. Chantal Dufresne, BA 1998,es_CO
    dc.relation.referencesPOOLE C.P., y OWENS F.J. Introducción a la Nanotecnología. Barcelona: Editorial Reverté, (2007).es_CO
    dc.relation.referencesKHAN N., RYUA K.Y., CHOIA J.Y., NHOA, E.Y., HABTEA G and CHOIB H. Determination of toxic heavy metals and speciation of arsenic in seaweeds from South Korea (2014), Food Chemistry, 169(01):464-470.es_CO
    dc.relation.referencesSALERNO M., LANDONI P and VERGANTI R. Designing foresight studies for Nanoscience and Nanotechnology (NST) future developments. Technol Forecast Soc Change. (2008), 75: 1202-1223.es_CO
    dc.relation.referencesTHATAI Sh.,KHURANA P., BOKEN J., PRASAD S. and KUMAR D. Nanoparticles and core–shell nanocomposite based new generation water remediation materials and analytical techniques: A review. Microchemical Journal, (2014), 116:62–76.es_CO
    dc.relation.referencesFELDHEIM D. and FOSS C.A Jr Metal Nanoparticles Synthesis, Characterization and applications 1ª edición 2002, Nueva York: Marcel Dekker .es_CO
    dc.relation.referencesGRIBBIN J. and GRIBBIN M., RICHARD FEYNMAN: A life in science 1ª ed. (1997), Nueva York.es_CO
    dc.relation.referencesALI MANSOORI G. Principles of nanotechnology Molecular-based study of condensed matter in small systems 1ª Ed 2004 Nueva York Springer.es_CO
    dc.relation.referencesTANIGUCHI N. “On the Basic Concept of Nanotechnology”, Actas de la ICPE (International Conference on Production Eng.) Tokyo, (1974), 18-23.es_CO
    dc.relation.referencesSLISTAN-GRIJALVA A., HERRERA-URBINA R., RIVAS-SILVA J.F., ÁVALOS-BORJA M., CASTILLÓN-BATTAZA F.F. and OSADA-AMARILLAS A.. Sinthesis of silver nanoparticles in a polyvinylpyrrolidone (PVP) paste, and their optical properties in a film in ethylene glicol. Materials Research Bullettin. 43, (2008), 90-96.es_CO
    dc.relation.referencesAKAMATSU K., TAKEI S., MINZUHATA M., KAJINAMI A., DEKI S., TAKEOKA S., FUJI M., HAYASHI S. and YAMAMOTO K. Preparation and characterization 43 of polymer thin films containing silver and silver sulfide nanoparticles. Thin Solid Films, 359 (2000), 55-60.es_CO
    dc.relation.referencesWANG H., QIAO X., CHEN J. and DING S. Preparation of silver nanoparticles by chemical reduction method. Colloids and Surfaces A: Physicochem. Eng. Aspects, 256, (2005), 111-115.es_CO
    dc.relation.referencesPANIGRAHI S., PRAHARAJ S., BASU S., GHOSH S. K., JANA S., PANDE S., VO-DINH T., JIANG H. and PAL T. Self-assembly of silver nanoparticles: synthesis, stabilization, optical properties and application in surface-enhanced Raman scattering. Journal of Physical Chemistry, 110, (2006), 13436-13444.es_CO
    dc.relation.referencesLUO C., ZHANG Y., ZENG X., ZENG Y. and WANG Y. The role of poly(ethylene glycol) in the formation of silver nanoparticles. Journal of Colloid and Interface Science, 288, (2005), 444-448.es_CO
    dc.relation.referencesKIM Y.G., OH S.K. and CROOKS R.M. Chemistry of Materials. 16, (2004),167-172.es_CO
    dc.relation.referencesCENEMES - Servicio de Gestión de la Investigación y transferencia de tecnología, Universidad de Alicante. Synthesis de nanopartiucles. (2008)es_CO
    dc.relation.referencesGOODHEW, Peter.J. Humphreys .John Beraland, Richard. Electron Microscopy and analysis. Taylor y Francis , Third edition, United states, (2001).es_CO
    dc.relation.referencesDONG B.H and HINESTROZA J.P. Metal Nanoparticles on Natural. Cellulose Fibers Electrostatic Assembly and in situ synthesis. ACS Appl. Mater. Interfaces. (2009), 1 (4), 797–803.es_CO
    dc.relation.referencesJAIN P.K., HUANG X., EL-SAYED I.H. and EL-SAYED M.A. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology and medicine. Acc. Chem. Res. (2008), 41 (12), 1578–1586.es_CO
    dc.relation.referencesZHENG J., and DICKSON R.M. “Individual water-soluble dendrimer-encapsulated silvernanodot fluorescence”. J. Chem Soc, 124, (2002). 13982-13983.es_CO
    dc.relation.referencesSERGEEV G. B. Nanochemistry . Amsterdam: Elsevier. (2006).es_CO
    dc.relation.referencesSONDI Y., and SALOPEK-SONDI B. Silver nanoparticles as antimicrobial agent: a case study on E. Coli as a model for Gram-negative bacteria. J of Coll and Interface Science, (2004), 275: 177-182.es_CO
    dc.relation.referencesTURKEVICH, J., STEVENSON, P.C. AND HILLIER, J. A study B.J. UV irradiation induced formation of Auof the nucleation and growth processes in the synthesis of nanoparticles at room temperature: The case of pH values.colloidal gold. Discuss Faraday Soc (2007), 11: 55-75.es_CO
    dc.relation.referencesTAI Y., TRAN N.T., TSAI Y.C., FANG J.Y., and CHANG L.W. One-step synthesis of highly biocompatible multi-shaped gold nanostructures with fruit extract. IET Nanobiotechnology, 2, (2011), 52-59.es_CO
    dc.relation.referencesSHARMA J., TAI Y. and IMAE T. Biomodulation approach for gold nanoparticles: Synthesis of anisotropic to luminescent particles. Chemistry - An Asian Journal. 5, (2010), 70-73.es_CO
    dc.relation.referencesBANERJEE P., SATAPATHY M., MUKHOPAHAY A and DAS P. Leaf extract mediated green synthesis of silver nanoparticles from widely available Indian plants: synthesis, characterization, antimicrobial property and toxicity analysis. Bioresources and Bioprocessing. (2014), 1:3.es_CO
    dc.relation.referencesPRATHNA T. C., CHANDRASEKARAN N., RAICHUR A. M. and MUKHERJEE A. Biomimetic synthesis of silver nanoparticles by Citrus limon (lemon) aqueous extract and theoretical prediction of particle size. Colloids and Surfaces B: Biointerfaces. 82, (2011) 152-159.es_CO
    dc.relation.referencesZHOU Y, WANG S.X ZHANG K, and JIANG X,Y. Angew Chem Int (2008) Ed 47 7454- 7456.es_CO
    dc.relation.referencesBASAVEGOWDA N., IDHAYADHULLA A and LEE Y.R. Phyto-synthesis of gold nanoparticles using fruit extract of Hovenia dulcis and their biological activities. J Nano Research52 (2014) 745–751.es_CO
    dc.relation.referencesKAPOOR S. Preparation characterization and surface modification of silver nanoparticles. Langmuir 14 (1998). 1021-1025.es_CO
    dc.relation.referencesSASTRY M., AHMAD A., KHAN M.I., KUMAR R Biosynthesis of metal nanoparticles using fungi and actinomycete Current science 85 (2003), 162-170.es_CO
    dc.relation.referencesSHARMA J., TAI Y and IMAE T. Biomodulation approach for gold nanoparticles: Synthesis of anisotropic to luminescent particles. Chemistry - An Asian Journal. 5, (2010), 70-73.es_CO
    dc.relation.referencesGHODAKE G., EOM C.Y., KIM S.W., and JIN E. Biogenic nano-synthesis; Towards the efficient production of the biocompatible gold nanoparticles . Bulletin of the Korean Chemical Society. 31, (2010), 2771-2775.es_CO
    dc.relation.referencesHE S., GUO Z., ZHANG Y., WANG J., and GU N. Biosynthesis of the gold nanoparticles using the bacteria Rhodopseudomas capsulita . Materials letters 61, (2007) 3984-3987.es_CO
    dc.relation.referencesPRATHNA T. C., CHANDRASEKARAN N., RAICHUR A. M and MUKHERJEE A. Biomimetic synthesis of silver nanoparticles by Citrus limon (lemon) aqueous extract and theoretical prediction of particle size. Colloids and Surfaces B: Biointerfaces. 82, (2011), 152-159.es_CO
    dc.relation.referencesBANKAR, A., JOSHI B.B., KUMAR A.R. AND ZINJARDE S. Banana peel extract mediated novel route for the synthesis of silver nanoparticles. Colloid Surf A Biogenic (2010). 368: 58-63.es_CO
    dc.relation.referencesBELMARES S., TORRES E., COPARÁN J.L., ARRIAGA J., ELIZONDO N. Síntesis y caracterización de nanopartículas de oro, plata y fierro por el método 45 defisicoquímica verde, Departamento de Inmunología, de la Facultad de Medicina, UANL, ( 2013)es_CO
    dc.relation.referencesKOVALCHUK T. , SFIHI H. , KOSTENKO L. , ZAITSEV V. , FRAISSARD J. "Preparation, structure and thermal stability of onium- and amino-functionalized silicas for the use as catalysts supports," J. Coll. Int Sci. vol. 302, June. (2006) 214–229.es_CO
    dc.relation.referencesGHOSH, P.S.; KIM, C.K.; HAN, G.; FORBES, N.S.; ROTELLO, V.M. Efficient gene delivery vectors by tuning the surface charge density of amino acid-functionalized gold nanoparticles. acs nano(2008), 2, 2213–2218.es_CO
    dc.relation.referencesWANGOO, N.; BHASIN, K.K.; MEHTA, S.K.; SURI, C.R. Synthesis and capping of water-dispersed gold nanoparticles by an amino acid: Bioconjugation and binding studies. J. Coll. int Sci.(2008), 323, 247–254es_CO
    dc.relation.referencesGAMAGE, A.; SHAHIDI, F. Use of quitosán for the removal of metal ion contaminants and proteins from water.Food Chemistry. (2007). 104(3):989-996es_CO
    dc.relation.referencesMONTERO-ÁLVAREZ. J. A. , PAREDES-BAUTISTA M. J. , RIVERA-MORALES. M. C. Facultad de Ingeniería Química, BUAP 18 Sur y Av. San Claudio, Col. Jardines de San Manuel, Puebla, Pue. (2010)es_CO
    dc.relation.referencesSUGUNAN A. , THANACHAYANONT C. , DUTTA L., HILBORN J.G. Heavy-metal ion sensors using quitosán-capped gold nanoparticles, Science and Technology of Advanced Materials 6 (2005) 335–340.es_CO
    dc.relation.referencesLIU.J.Z CAO, AND Y LU. Functional nucleic acid sensor, Chem Rew (2009) 109 p 1948-1998es_CO
    dc.relation.referencesGRANDLER J. Priciples of chemicals sensors 2° ed 2009, Nueva York, Springeres_CO
    dc.relation.referencesTHEAVENOT D.et al . Electrochemicals biosensors. Recommended definitions and classification. Pure App.Chem. (1999) 71(12) p 2333-2348.es_CO
    dc.relation.referencesIUPAC.Gold Book- biosensor 2011(citada 2015 25/09) Avariable from http// gold book – iupac .org/B00663.html.es_CO
    dc.relation.referencesKRÜGER, E. DIETRICH, H. SCHÖPPLEIN, E. RASIM, S. KÜRBEL, P. Cultivar, storage condition sand ripening effects on physical and chemical qualities of red raspberry fruit. Postharvest Biology and Technology 60, (2001), p. 31–37.es_CO
    dc.relation.referencesLA ENCINA., S. J. M.HELLÍN, J. JORDÁN, P. VILA, M.J. RUMPUNEN, K. Characterization on juice in fruits of different Chaenomeles species. Lebensm.-Wiss. u.-Technol. 37, (2004), p 301–307.es_CO
    dc.relation.referencesGUO, R. and WILSON, L.D. “Synthetically Engineered Chitosan-Based Materials and their Sorption Properties with Methylene Blue in Aqueous Solution.” J. Coll. and Int Sci, (2012), 388, 225-234.es_CO
    dc.relation.referencesAUFFAN, M.; ROSE, J.; BOTTERO, J.; LOWRY, G.; JOLIVET, J. P.; WIESNER, M. R Towards a definition of inorganic nanoparticles from an 46 environmental, healthand safety perspective. Nature Nanotechnology, 2009, 4, 634-641. DOI: 10.1038/nano.(2009).242es_CO
    dc.relation.referencesThe Royal Society and The Royal Academy of Engineering. Nanoscience and nanotechnologies. Clyvedon Press: Cardiff (2004), pp vii-viii, 5-25.es_CO
    dc.relation.referencesKIM, J.; LEE, J. Synthesis and thermally reversible assembly of DNA-Gold nanoparticle clúster conjugates. Nano Letters, (2009), 9, 4564-4569.es_CO
    dc.relation.referencesBRIGGER I, DUBERNET C, COUVREUR P (2002). “Nanoparticles in cancer therapy and diagnosis”. Adv Drug Deliv Rev 54: 631-651.es_CO
    dc.relation.referencesGUO, S; WANG, E. Synthesis and electrochemical applications of gold nanoparticles. Analytica Chimica Acta, (2007), 598, 181-192.es_CO
    dc.relation.referencesDASH M, CHIELLINI F, OTTENBRITE R, CHIELLINI E (2011). “Chitosan- A versatile semi-synthetic polymer in biomedical applications”. Progress in Polymer Science 36: 981–1014es_CO
    dc.relation.referencesMUZZARELLI R. “Chitin”. Editorial Pergamon Press. Primera edición, pag. 2 (1974).es_CO
    dc.relation.referencesTRAN, H.; TRAN, L.; BA, C.; VU, H.; NGOC, T.; PHAM, D.; NGUYEN, P. Synthesis, characterization, antibacterial and antiproliferative activities of monodisperse chitosan-based silver nanoparticles. Colloids and Surface A: Physicochemical and Engineering Aspects, (2010), 360, 32-40.es_CO
    dc.relation.referencesFAN, C.; LI, W.; ZHAO, S.; CHEN, J.; LI, X. Efficient one pot synthesis of chitosan induced gold nanoparticles by microwave irradiation. Materials Letters, (2008), 62, 3518-3520.es_CO
    dc.relation.referencesSHIH, C.; SHIEH, Y.; TWU, Y. Preparation of gold nanopowders and nanoparticles using chitosan suspensions. Carbohydrate Polymers, (2009), 78, 309-315.es_CO
    dc.relation.referencesSUN, C.; QU, R.; CHEN, H.; JI, C.; WANG, C.; SUN, Y.; WANG, B. Degradation behavior of chitosan chains in the “green” synthesis of gold nanoparticles. Carbohydrate Polymers, (2008), 343, 2595-2599es_CO
    dc.relation.referencesLONG, N.; VU, L.; KIEM, C.; DOANH, S.; NGUYET, C.; HANG, P.; THIEN, N.; QUYNH, L. Synthesis and optical properties of colloid gold nanoparticles. Journal of Physics: Conference Series, (2009), 187, 1-8es_CO
    dc.relation.referencesHUANG, H.; YANG, X. Synthesis of chitosan-stabilized gold nanoparticles in the absence/presence of tripolyphosphate. Biomacromolecules, (2004), 5, 2340-2346.es_CO
    dc.relation.referencesCAFAGGI S, RUSSO R, STEFANI R, LEARDI R, CAVIGLIOLI G, PARODI B, Y COLS. “Preparation and evaluation of nanoparticles made of chitosan or N-trimethyl chitosan and a cisplatin–alginate complex”. Journal of Controlled Release (2007), 121: 110–123es_CO
    dc.rights.accessrightshttp://purl.org/coar/access_right/c_abf2es_CO
    dc.type.coarversionhttp://purl.org/coar/resource_type/c_2df8fbb1es_CO
    Aparece en las colecciones: Maestría en Química

    Ficheros en este ítem:
    Fichero Descripción Tamaño Formato  
    Florez_2019_TG.pdfFlorez_2019_TG866,45 kBAdobe PDFVisualizar/Abrir


    Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.