Por favor, use este identificador para citar o enlazar este ítem:
http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/2744
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | Flórez Barajas, Francisco Javier. | - |
dc.date.accessioned | 2022-09-21T00:37:12Z | - |
dc.date.available | 2019-09-17 | - |
dc.date.available | 2022-09-21T00:37:12Z | - |
dc.date.issued | 2019 | - |
dc.identifier.citation | Flórez Barajas, F. J. (2019). Detección colorimétrica de Plomo y Níquel en aguas utilizando nanopartículas de oro sintetizadas con Quitosán [Trabajo de Grado Maestría, Universidad de Pamplona]. Repositorio Hulago Universidad de Pamplona. http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/2744 | es_CO |
dc.identifier.uri | http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/2744 | - |
dc.description | En el presente trabajo se desarrolló un nanobiosensor que fue utilizado en la detección de plomo y níquel en soluciones acuosas de sales preparadas en el laboratorio, inicialmente se sintetizaron las nanopartículas de oro en fase acuosa usando el método coloidal el cual hace parte de los métodos bottom-up, usando como reactivo metálico el ácido tetracloroáurico trihidratado (HAuCl4•3H2O) y como agente reductor se utilizó el quitosán nanopartículas fueron funcionalizadas con ésta misma biomolécula. La formación de nanopartículas metálicas fue confirmada mediante la técnica de dispersión dinámica de luz (DLS) y microscopía electrónica de barrido (SEM) la primera permitió analizar el tamaño de las nanopartículas sintetizadas; a su vez la segunda técnica se empleó para el estudio de los demás aspectos morfológicos de las mismas. La caracterización de las nanopartículas se realizó por medio de absorción UV- visible y para comprobar la función del nanosensor frente a soluciones acuosas de sales de plomo y níquel se usaron técnicas colorimétricas, donde la variación del color inicial de la solución del nanosensor indicó la detección del metal por parte de éste, así como un cambio generado en el espectro de las AuNPs. | es_CO |
dc.description.abstract | In the present work a nanobiosensor was developed to be used in the detection of lead and nickel in aqueous solutions of laboratory prepared salts initially the gold nanoparticles were synthesized in aqueous phase using the colloidal method which is part of the bottom-up methods, using tetrachloroauric acid trihydrate as the metallic reagent (HAuCl4 • 3H2O) and chitosan was used as reducing agent, these nanoparticles were functionalized with this same biomolecule. The formation of metallic nanoparticles was confirmed by the Dynamic Light Dispersion technique (DLS) and Scanning Electron Microscopy (SEM) the first one allowed to analyse the size of the synthesized nanoparticles; Simultaneously, the second technique was used to study the other morphological aspects of the itself. The characterization of the nanoparticles was carried out by means of UV-visible absorption and to check the function of the nanosensor against aqueous solutions of lead and nickel salts, colorimetric techniques were used, where the initial color variation of the nanosensor solution indicated the detection of metal by itself, as well as a change generated in the AuNPs spectrum. | es_CO |
dc.format.extent | 46 | es_CO |
dc.format.mimetype | application/pdf | es_CO |
dc.language.iso | es | es_CO |
dc.publisher | Universidad de Pamplona – Facultad de Ciencias Básicas. | es_CO |
dc.subject | El autor no proporciona la información sobre este ítem. | es_CO |
dc.title | Detección colorimétrica de Plomo y Níquel en aguas utilizando nanopartículas de oro sintetizadas con Quitosán. | es_CO |
dc.type | http://purl.org/coar/resource_type/c_bdcc | es_CO |
dc.date.accepted | 2019-06-17 | - |
dc.relation.references | NRIAGU J.O. and PACÍAN J. M. Quantitative assessment of worldwide contamination of air, water, and soils by trace metals. nature, 333, (1988),134-139. | es_CO |
dc.relation.references | United States Environmental Protection Agency. EPA 816-F-09-004. May 2009. http://www.epa.gov/ogwdw/consumer/pdf/mcl.pdf | es_CO |
dc.relation.references | EPA G. NORDBER. Metales, propiedades químicas y toxicidad. En: J. FINKLE y col. Enciclopedia de salud y seguridad en el trabajo. Chantal Dufresne, BA 1998, | es_CO |
dc.relation.references | POOLE C.P., y OWENS F.J. Introducción a la Nanotecnología. Barcelona: Editorial Reverté, (2007). | es_CO |
dc.relation.references | KHAN N., RYUA K.Y., CHOIA J.Y., NHOA, E.Y., HABTEA G and CHOIB H. Determination of toxic heavy metals and speciation of arsenic in seaweeds from South Korea (2014), Food Chemistry, 169(01):464-470. | es_CO |
dc.relation.references | SALERNO M., LANDONI P and VERGANTI R. Designing foresight studies for Nanoscience and Nanotechnology (NST) future developments. Technol Forecast Soc Change. (2008), 75: 1202-1223. | es_CO |
dc.relation.references | THATAI Sh.,KHURANA P., BOKEN J., PRASAD S. and KUMAR D. Nanoparticles and core–shell nanocomposite based new generation water remediation materials and analytical techniques: A review. Microchemical Journal, (2014), 116:62–76. | es_CO |
dc.relation.references | FELDHEIM D. and FOSS C.A Jr Metal Nanoparticles Synthesis, Characterization and applications 1ª edición 2002, Nueva York: Marcel Dekker . | es_CO |
dc.relation.references | GRIBBIN J. and GRIBBIN M., RICHARD FEYNMAN: A life in science 1ª ed. (1997), Nueva York. | es_CO |
dc.relation.references | ALI MANSOORI G. Principles of nanotechnology Molecular-based study of condensed matter in small systems 1ª Ed 2004 Nueva York Springer. | es_CO |
dc.relation.references | TANIGUCHI N. “On the Basic Concept of Nanotechnology”, Actas de la ICPE (International Conference on Production Eng.) Tokyo, (1974), 18-23. | es_CO |
dc.relation.references | SLISTAN-GRIJALVA A., HERRERA-URBINA R., RIVAS-SILVA J.F., ÁVALOS-BORJA M., CASTILLÓN-BATTAZA F.F. and OSADA-AMARILLAS A.. Sinthesis of silver nanoparticles in a polyvinylpyrrolidone (PVP) paste, and their optical properties in a film in ethylene glicol. Materials Research Bullettin. 43, (2008), 90-96. | es_CO |
dc.relation.references | AKAMATSU K., TAKEI S., MINZUHATA M., KAJINAMI A., DEKI S., TAKEOKA S., FUJI M., HAYASHI S. and YAMAMOTO K. Preparation and characterization 43 of polymer thin films containing silver and silver sulfide nanoparticles. Thin Solid Films, 359 (2000), 55-60. | es_CO |
dc.relation.references | WANG H., QIAO X., CHEN J. and DING S. Preparation of silver nanoparticles by chemical reduction method. Colloids and Surfaces A: Physicochem. Eng. Aspects, 256, (2005), 111-115. | es_CO |
dc.relation.references | PANIGRAHI S., PRAHARAJ S., BASU S., GHOSH S. K., JANA S., PANDE S., VO-DINH T., JIANG H. and PAL T. Self-assembly of silver nanoparticles: synthesis, stabilization, optical properties and application in surface-enhanced Raman scattering. Journal of Physical Chemistry, 110, (2006), 13436-13444. | es_CO |
dc.relation.references | LUO C., ZHANG Y., ZENG X., ZENG Y. and WANG Y. The role of poly(ethylene glycol) in the formation of silver nanoparticles. Journal of Colloid and Interface Science, 288, (2005), 444-448. | es_CO |
dc.relation.references | KIM Y.G., OH S.K. and CROOKS R.M. Chemistry of Materials. 16, (2004),167-172. | es_CO |
dc.relation.references | CENEMES - Servicio de Gestión de la Investigación y transferencia de tecnología, Universidad de Alicante. Synthesis de nanopartiucles. (2008) | es_CO |
dc.relation.references | GOODHEW, Peter.J. Humphreys .John Beraland, Richard. Electron Microscopy and analysis. Taylor y Francis , Third edition, United states, (2001). | es_CO |
dc.relation.references | DONG B.H and HINESTROZA J.P. Metal Nanoparticles on Natural. Cellulose Fibers Electrostatic Assembly and in situ synthesis. ACS Appl. Mater. Interfaces. (2009), 1 (4), 797–803. | es_CO |
dc.relation.references | JAIN P.K., HUANG X., EL-SAYED I.H. and EL-SAYED M.A. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology and medicine. Acc. Chem. Res. (2008), 41 (12), 1578–1586. | es_CO |
dc.relation.references | ZHENG J., and DICKSON R.M. “Individual water-soluble dendrimer-encapsulated silvernanodot fluorescence”. J. Chem Soc, 124, (2002). 13982-13983. | es_CO |
dc.relation.references | SERGEEV G. B. Nanochemistry . Amsterdam: Elsevier. (2006). | es_CO |
dc.relation.references | SONDI Y., and SALOPEK-SONDI B. Silver nanoparticles as antimicrobial agent: a case study on E. Coli as a model for Gram-negative bacteria. J of Coll and Interface Science, (2004), 275: 177-182. | es_CO |
dc.relation.references | TURKEVICH, J., STEVENSON, P.C. AND HILLIER, J. A study B.J. UV irradiation induced formation of Auof the nucleation and growth processes in the synthesis of nanoparticles at room temperature: The case of pH values.colloidal gold. Discuss Faraday Soc (2007), 11: 55-75. | es_CO |
dc.relation.references | TAI Y., TRAN N.T., TSAI Y.C., FANG J.Y., and CHANG L.W. One-step synthesis of highly biocompatible multi-shaped gold nanostructures with fruit extract. IET Nanobiotechnology, 2, (2011), 52-59. | es_CO |
dc.relation.references | SHARMA J., TAI Y. and IMAE T. Biomodulation approach for gold nanoparticles: Synthesis of anisotropic to luminescent particles. Chemistry - An Asian Journal. 5, (2010), 70-73. | es_CO |
dc.relation.references | BANERJEE P., SATAPATHY M., MUKHOPAHAY A and DAS P. Leaf extract mediated green synthesis of silver nanoparticles from widely available Indian plants: synthesis, characterization, antimicrobial property and toxicity analysis. Bioresources and Bioprocessing. (2014), 1:3. | es_CO |
dc.relation.references | PRATHNA T. C., CHANDRASEKARAN N., RAICHUR A. M. and MUKHERJEE A. Biomimetic synthesis of silver nanoparticles by Citrus limon (lemon) aqueous extract and theoretical prediction of particle size. Colloids and Surfaces B: Biointerfaces. 82, (2011) 152-159. | es_CO |
dc.relation.references | ZHOU Y, WANG S.X ZHANG K, and JIANG X,Y. Angew Chem Int (2008) Ed 47 7454- 7456. | es_CO |
dc.relation.references | BASAVEGOWDA N., IDHAYADHULLA A and LEE Y.R. Phyto-synthesis of gold nanoparticles using fruit extract of Hovenia dulcis and their biological activities. J Nano Research52 (2014) 745–751. | es_CO |
dc.relation.references | KAPOOR S. Preparation characterization and surface modification of silver nanoparticles. Langmuir 14 (1998). 1021-1025. | es_CO |
dc.relation.references | SASTRY M., AHMAD A., KHAN M.I., KUMAR R Biosynthesis of metal nanoparticles using fungi and actinomycete Current science 85 (2003), 162-170. | es_CO |
dc.relation.references | SHARMA J., TAI Y and IMAE T. Biomodulation approach for gold nanoparticles: Synthesis of anisotropic to luminescent particles. Chemistry - An Asian Journal. 5, (2010), 70-73. | es_CO |
dc.relation.references | GHODAKE G., EOM C.Y., KIM S.W., and JIN E. Biogenic nano-synthesis; Towards the efficient production of the biocompatible gold nanoparticles . Bulletin of the Korean Chemical Society. 31, (2010), 2771-2775. | es_CO |
dc.relation.references | HE S., GUO Z., ZHANG Y., WANG J., and GU N. Biosynthesis of the gold nanoparticles using the bacteria Rhodopseudomas capsulita . Materials letters 61, (2007) 3984-3987. | es_CO |
dc.relation.references | PRATHNA T. C., CHANDRASEKARAN N., RAICHUR A. M and MUKHERJEE A. Biomimetic synthesis of silver nanoparticles by Citrus limon (lemon) aqueous extract and theoretical prediction of particle size. Colloids and Surfaces B: Biointerfaces. 82, (2011), 152-159. | es_CO |
dc.relation.references | BANKAR, A., JOSHI B.B., KUMAR A.R. AND ZINJARDE S. Banana peel extract mediated novel route for the synthesis of silver nanoparticles. Colloid Surf A Biogenic (2010). 368: 58-63. | es_CO |
dc.relation.references | BELMARES S., TORRES E., COPARÁN J.L., ARRIAGA J., ELIZONDO N. Síntesis y caracterización de nanopartículas de oro, plata y fierro por el método 45 defisicoquímica verde, Departamento de Inmunología, de la Facultad de Medicina, UANL, ( 2013) | es_CO |
dc.relation.references | KOVALCHUK T. , SFIHI H. , KOSTENKO L. , ZAITSEV V. , FRAISSARD J. "Preparation, structure and thermal stability of onium- and amino-functionalized silicas for the use as catalysts supports," J. Coll. Int Sci. vol. 302, June. (2006) 214–229. | es_CO |
dc.relation.references | GHOSH, P.S.; KIM, C.K.; HAN, G.; FORBES, N.S.; ROTELLO, V.M. Efficient gene delivery vectors by tuning the surface charge density of amino acid-functionalized gold nanoparticles. acs nano(2008), 2, 2213–2218. | es_CO |
dc.relation.references | WANGOO, N.; BHASIN, K.K.; MEHTA, S.K.; SURI, C.R. Synthesis and capping of water-dispersed gold nanoparticles by an amino acid: Bioconjugation and binding studies. J. Coll. int Sci.(2008), 323, 247–254 | es_CO |
dc.relation.references | GAMAGE, A.; SHAHIDI, F. Use of quitosán for the removal of metal ion contaminants and proteins from water.Food Chemistry. (2007). 104(3):989-996 | es_CO |
dc.relation.references | MONTERO-ÁLVAREZ. J. A. , PAREDES-BAUTISTA M. J. , RIVERA-MORALES. M. C. Facultad de Ingeniería Química, BUAP 18 Sur y Av. San Claudio, Col. Jardines de San Manuel, Puebla, Pue. (2010) | es_CO |
dc.relation.references | SUGUNAN A. , THANACHAYANONT C. , DUTTA L., HILBORN J.G. Heavy-metal ion sensors using quitosán-capped gold nanoparticles, Science and Technology of Advanced Materials 6 (2005) 335–340. | es_CO |
dc.relation.references | LIU.J.Z CAO, AND Y LU. Functional nucleic acid sensor, Chem Rew (2009) 109 p 1948-1998 | es_CO |
dc.relation.references | GRANDLER J. Priciples of chemicals sensors 2° ed 2009, Nueva York, Springer | es_CO |
dc.relation.references | THEAVENOT D.et al . Electrochemicals biosensors. Recommended definitions and classification. Pure App.Chem. (1999) 71(12) p 2333-2348. | es_CO |
dc.relation.references | IUPAC.Gold Book- biosensor 2011(citada 2015 25/09) Avariable from http// gold book – iupac .org/B00663.html. | es_CO |
dc.relation.references | KRÜGER, E. DIETRICH, H. SCHÖPPLEIN, E. RASIM, S. KÜRBEL, P. Cultivar, storage condition sand ripening effects on physical and chemical qualities of red raspberry fruit. Postharvest Biology and Technology 60, (2001), p. 31–37. | es_CO |
dc.relation.references | LA ENCINA., S. J. M.HELLÍN, J. JORDÁN, P. VILA, M.J. RUMPUNEN, K. Characterization on juice in fruits of different Chaenomeles species. Lebensm.-Wiss. u.-Technol. 37, (2004), p 301–307. | es_CO |
dc.relation.references | GUO, R. and WILSON, L.D. “Synthetically Engineered Chitosan-Based Materials and their Sorption Properties with Methylene Blue in Aqueous Solution.” J. Coll. and Int Sci, (2012), 388, 225-234. | es_CO |
dc.relation.references | AUFFAN, M.; ROSE, J.; BOTTERO, J.; LOWRY, G.; JOLIVET, J. P.; WIESNER, M. R Towards a definition of inorganic nanoparticles from an 46 environmental, healthand safety perspective. Nature Nanotechnology, 2009, 4, 634-641. DOI: 10.1038/nano.(2009).242 | es_CO |
dc.relation.references | The Royal Society and The Royal Academy of Engineering. Nanoscience and nanotechnologies. Clyvedon Press: Cardiff (2004), pp vii-viii, 5-25. | es_CO |
dc.relation.references | KIM, J.; LEE, J. Synthesis and thermally reversible assembly of DNA-Gold nanoparticle clúster conjugates. Nano Letters, (2009), 9, 4564-4569. | es_CO |
dc.relation.references | BRIGGER I, DUBERNET C, COUVREUR P (2002). “Nanoparticles in cancer therapy and diagnosis”. Adv Drug Deliv Rev 54: 631-651. | es_CO |
dc.relation.references | GUO, S; WANG, E. Synthesis and electrochemical applications of gold nanoparticles. Analytica Chimica Acta, (2007), 598, 181-192. | es_CO |
dc.relation.references | DASH M, CHIELLINI F, OTTENBRITE R, CHIELLINI E (2011). “Chitosan- A versatile semi-synthetic polymer in biomedical applications”. Progress in Polymer Science 36: 981–1014 | es_CO |
dc.relation.references | MUZZARELLI R. “Chitin”. Editorial Pergamon Press. Primera edición, pag. 2 (1974). | es_CO |
dc.relation.references | TRAN, H.; TRAN, L.; BA, C.; VU, H.; NGOC, T.; PHAM, D.; NGUYEN, P. Synthesis, characterization, antibacterial and antiproliferative activities of monodisperse chitosan-based silver nanoparticles. Colloids and Surface A: Physicochemical and Engineering Aspects, (2010), 360, 32-40. | es_CO |
dc.relation.references | FAN, C.; LI, W.; ZHAO, S.; CHEN, J.; LI, X. Efficient one pot synthesis of chitosan induced gold nanoparticles by microwave irradiation. Materials Letters, (2008), 62, 3518-3520. | es_CO |
dc.relation.references | SHIH, C.; SHIEH, Y.; TWU, Y. Preparation of gold nanopowders and nanoparticles using chitosan suspensions. Carbohydrate Polymers, (2009), 78, 309-315. | es_CO |
dc.relation.references | SUN, C.; QU, R.; CHEN, H.; JI, C.; WANG, C.; SUN, Y.; WANG, B. Degradation behavior of chitosan chains in the “green” synthesis of gold nanoparticles. Carbohydrate Polymers, (2008), 343, 2595-2599 | es_CO |
dc.relation.references | LONG, N.; VU, L.; KIEM, C.; DOANH, S.; NGUYET, C.; HANG, P.; THIEN, N.; QUYNH, L. Synthesis and optical properties of colloid gold nanoparticles. Journal of Physics: Conference Series, (2009), 187, 1-8 | es_CO |
dc.relation.references | HUANG, H.; YANG, X. Synthesis of chitosan-stabilized gold nanoparticles in the absence/presence of tripolyphosphate. Biomacromolecules, (2004), 5, 2340-2346. | es_CO |
dc.relation.references | CAFAGGI S, RUSSO R, STEFANI R, LEARDI R, CAVIGLIOLI G, PARODI B, Y COLS. “Preparation and evaluation of nanoparticles made of chitosan or N-trimethyl chitosan and a cisplatin–alginate complex”. Journal of Controlled Release (2007), 121: 110–123 | es_CO |
dc.rights.accessrights | http://purl.org/coar/access_right/c_abf2 | es_CO |
dc.type.coarversion | http://purl.org/coar/resource_type/c_2df8fbb1 | es_CO |
Aparece en las colecciones: | Maestría en Química |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
Florez_2019_TG.pdf | Florez_2019_TG | 866,45 kB | Adobe PDF | Visualizar/Abrir |
Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.