• Repositorio Institucional Universidad de Pamplona
  • Trabajos de pregrado y especialización
  • Facultad de Ciencias Básicas
  • Microbiología
  • Por favor, use este identificador para citar o enlazar este ítem: http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/2117
    Registro completo de metadatos
    Campo DC Valor Lengua/Idioma
    dc.contributor.authorSacristán Carrillo, Luisa Fernanda.-
    dc.date.accessioned2022-06-21T19:14:08Z-
    dc.date.available2017-09-13-
    dc.date.available2022-06-21T19:14:08Z-
    dc.date.issued2017-
    dc.identifier.citationSacristán Carrillo, L. F. (2017). Efecto del remodelador químico de cromatina 5-azacitidina sobre la expresión de genes del metabolismo secundario en el hongo antártico Pseudogymnoascus sp [Trabajo de Grado Pregrado, Universidad de Pamplona]. Repositorio Hulago Universidad de Pamplona. http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/2117es_CO
    dc.identifier.urihttp://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/2117-
    dc.descriptionLa autora no proporciona la información sobre este ítem.es_CO
    dc.description.abstractLa autora no proporciona la información sobre este ítem.es_CO
    dc.format.extent54es_CO
    dc.format.mimetypeapplication/pdfes_CO
    dc.language.isoeses_CO
    dc.publisherUniversidad de Pamplona – Facultad de Ciencias Básicas.es_CO
    dc.subjectLa autora no proporciona la información sobre este ítem.es_CO
    dc.titleEfecto del remodelador químico de cromatina 5-azacitidina sobre la expresión de genes del metabolismo secundario en el hongo antártico Pseudogymnoascus sp.es_CO
    dc.typehttp://purl.org/coar/resource_type/c_7a1fes_CO
    dc.date.accepted2017-06-13-
    dc.relation.referencesAtta-ur-Rahman (Ed.). (2016). Studies in Natural Products Chemistry International Center for Chemical and Biological Sciences (Vol. 49). Amsterdam: Elsevier Inc.es_CO
    dc.relation.referencesÁvalos, J., Díaz Sánchez, V., García Martínez, Jorge Castrillo, M., Ruger Herreros, M., & Limón, M. C. (2014). Biosynthesis and Molecular Genetics of Fungal Secondary Metabolites. Ney York: Springer. http://doi.org/10.1007/978-1-4939-1191-2es_CO
    dc.relation.referencesBaba, S., Kinoshita, H., & Nihira, T. (2012). Identification and characterization of Penicillium citrinum VeA and LaeA as global regulators for ML-236B production. Current Genetics, 58(1), 1–11. http://doi.org/10.1007/s00294-011-0359-xes_CO
    dc.relation.referencesBorkovich, K. A., & Ebbole, D. J. (2010). Filamentous Fungi (Vol. 9). Washington, DC: ASM Press. http://doi.org/10.1016/0168-1656(89)90085-0es_CO
    dc.relation.referencesBrakhage, A. A. (2013). Regulation of fungal secondary metabolism. Nature Reviews Microbiology, 11(1), 21–32. http://doi.org/10.1038/nrmicro2916es_CO
    dc.relation.referencesBrakhage, A. A., & Schroeckh, V. (2011). Fungal secondary metabolites - Strategies to activate silent gene clusters. Fungal Genetics and Biology, 48(1), 15–22. http://doi.org/10.1016/j.fgb.2010.04.004es_CO
    dc.relation.referencesCalvo, A. M., Wilson, R. A., Bok, J. W., & Keller, N. P. (2002). Relationship between Secondary Metabolism and Fungal Development, 66(3), 447–459.es_CO
    dc.relation.referencesCampbell, L. M. (1982). Fungal Secondary Metabolism Research: Past, Prensent and Future. Journal of Natural Products, 60–70.es_CO
    dc.relation.referencesChallis, G. L., & Naismith, J. H. (2012). Structural aspects of non-ribosomal peptide biosynthesis. Curr Opin Struct Biol, 14(6), 748–756. http://doi.org/10.1016/j.sbi.2004.10.005.Structurales_CO
    dc.relation.referencesChang, S., Chen, W., & Yang, J. (2009). Another formula for calculating the gene change rate in real-time RT-PCR. Molecular Biology Reports, 36(8), 2165–2168. http://doi.org/10.1007/s11033-008-9430-1es_CO
    dc.relation.referencesChávez, R., Fierro, F., García-Rico, R. O., & Vaca, I. (2015). Filamentous fungi from extreme environments as a promising source of novel bioactive secondary metabolites. Frontiers in Microbiology, 6(SEP), 1–7. http://doi.org/10.3389/fmicb.2015.00903es_CO
    dc.relation.referencesCox, R. J. (2007). Polyketides, proteins and genes in fungi: programmed nano-machines begin to reveal their secrets. Organic & Biomolecular Chemistry, 5(13), 2010. http://doi.org/10.1039/b704420hes_CO
    dc.relation.referencesCragg, G. M., & Newman, D. J. (2013). Natural products: A continuing source of novel drug leads. Biochimica et Biophysica Acta - General Subjects, 1830(6),es_CO
    dc.relation.referencesChang, S., Chen, W., & Yang, J. (2009). Another formula for calculating the gene change rate in real-time RT-PCR. Molecular Biology Reports, 36(8), 2165–2168. https://doi.org/10.1007/s11033-008-9430-1es_CO
    dc.relation.referencesDeacon, J. (2006). Fungal Biology. Journal of Chemical Information and Modeling (4a ed., Vol. 53). Oxford: Blackwell Publishing. http://doi.org/10.1017/CBO9781107415324.004es_CO
    dc.relation.references43 3670–3695. http://doi.org/10.1016/j.bbagen.2013.02.008 Chang, S., Chen, W., & Yang, J. (2009). Another formula for calculating the gene change rate in real-time RT-PCR. Molecular Biology Reports, 36(8), 2165–2168. https://doi.org/10.1007/s11033-008-9430-1 Deacon, J. (2006). Fungal Biology. Journal of Chemical Information and Modeling (4a ed., Vol. 53). Oxford: Blackwell Publishing. http://doi.org/10.1017/CBO9781107415324.004 Demain; Arnold. (1986). Regulation of secondary metabolism in fungi. Pure and applied chemistry, 58, 219–226. http://doi.org/10.1146/annurev.phyto.43.040204.140214es_CO
    dc.relation.referencesDonoghue, A. J. O., Knudsen, G. M., Beekman, C., Perry, J. A., & Johnson, A. D. (2015). Correction for O’Donoghue et al., Destructin-1 is a collagen-degrading endopeptidase secreted by Pseudogymnoascus destructans , the causative agent of white-nose syndrome. Proceedings of the National Academy of Sciences, 112(24), E3152–E3152. http://doi.org/10.1073/pnas.1509071112es_CO
    dc.relation.referencesDutta, S., Whicher, J. R., Hansen, D. A., Hale, W. A., Chemler, J. A., Congdon, G. R., … Skiniotis, G. (2014). Structure of a modular polyketide synthase. Nature, 510(7506), 512–517. http://doi.org/10.1038/nature13423es_CO
    dc.relation.referencesEsser, K. (2009). The Mycota (2a ed., Vol. 5). Berlin: Springer. http://doi.org/10.1007/978-3-540-87407-2es_CO
    dc.relation.referencesFiechter, A., & Blakebrough, N. (1979). Advances in Biochemical (Vol. ll).es_CO
    dc.relation.referencesFigueroa, L., Jiménez, C., Rodríguez, J., Areche, C., Chávez, R., Henríquez, M., … Vaca, I. (2015). 3-nitroasterric acid derivatives from an Antarctic sponge-derived Pseudogymnoascus sp. fungus. Journal of Natural Products, 78(4), 919–923. http://doi.org/10.1021/np500906kes_CO
    dc.relation.referencesGerke, J., & Braus, G. H. (2014). Manipulation of fungal development as source of novel secondary metabolites for biotechnology. Applied Microbiology and Biotechnology, 98(20), 8443–8455. http://doi.org/10.1007/s00253-014-5997-8es_CO
    dc.relation.referencesHenríquez, M., Vergara, K., Norambuena, J., Beiza, A., Maza, F., Ubilla, P., … Vaca, I. (2014). Diversity of cultivable fungi associated with Antarctic marine sponges and screening for their antimicrobial, antitumoral and antioxidant potential. World Journal of Microbiology and Biotechnology, 30(1), 65–76. http://doi.org/10.1007/s11274-013-1418-xes_CO
    dc.relation.referencesKarlovsky, P. (2008). Secondary Metabolites in Soil Ecology. In Vitro (Vol. 14). Göttingen: Springer.es_CO
    dc.relation.referencesKaushal Kishore, R. S. G. (2015). Review Paper: Data Mining of Fungal Secondary Metabolites Using Genomics and Proteomics. Journal of Data Mining in Genomics & Proteomics, 6(3). http://doi.org/10.4172/2153-0602.1000178es_CO
    dc.relation.referencesKeller, N. P., Turner, G., & Bennett, J. W. (2005). Fungal secondary metabolism - from biochemistry to genomics. Nat Rev Microbiol, 3(12), 937–947. http://doi.org/10.1038/nrmicro1286es_CO
    dc.relation.referencesKhaldi, N., Seifuddin, F. T., Turner, G., Haft, D., Nierman, W. C., Wolfe, K. H., & Fedorova, N. D. (2010). SMURF: Genomic mapping of fungal secondary metabolite clusters. Fungal Genetics and Biology, 47(9), 736–741. http://doi.org/10.1016/j.fgb.2010.06.003es_CO
    dc.relation.referencesKhan, A. A., Bacha, N., Ahmad, B., Lutfullah, G., Farooq, U., & Cox, R. J. (2014). Fungi as chemical industries and genetic engineering for the production of biologically active secondary metabolites. Asian Pacific Journal of Tropical Biomedicine, 4(11), 859–870. http://doi.org/10.12980/APJTB.4.2014APJTB-2014-0230es_CO
    dc.relation.referencesKilpatrick S.T., Krebs J. E., G. E. S. (2014). Eukaryotic Transcription Regulation. Lewin â€TM s GENES XI.es_CO
    dc.relation.referencesKlose, R. J., Sarraf, S. A., Schmiedeberg, L., McDermott, S. M., Stancheva, I., & Bird, A. P. (2005). DNA binding selectivity of MeCP2 due to a requirement for A/T sequences adjacent to methyl-CpG. Molecular Cell, 19(5), 667–678. http://doi.org/10.1016/j.molcel.2005.07.021es_CO
    dc.relation.referencesKumar Gupta, V., Mach, R., & Sreenivasaprasad, S. (2015). Fungal Biomolecules. Sources, Applications and Recent Developments (First). Chichester: Wiley Blackwell.es_CO
    dc.relation.referencesLi, L., Li, D., Luan, Y., Gu, Q., & Zhu, T. (2012). Cytotoxic metabolites from the antarctic psychrophilic fungus oidiodendron truncatum. Journal of Natural Products, 75(5), 920–927. http://doi.org/10.1021/np3000443es_CO
    dc.relation.referencesLi, Y., Sun, B., Liu, S., Jiang, L., Liu, X., Zhang, H., & Che, Y. (2008). Bioactive asterric acid derivatives from the antarctic ascomycete fungus Geomyces sp. Journal of Natural Products, 71(9), 1643–1646. http://doi.org/10.1021/np8003003es_CO
    dc.relation.referencesLorch, J. M., Lindner, D. L., Gargas, A., Muller, L. K., Minnis, A. M., & Blehert, D. S. (2013). A culture-based survey of fungi in soil from bat hibernacula in the eastern United States and its implications for detection of Geomyces destructans , the causal agent of bat white-nose syndrome. Mycologia, 105(2), 237–252. http://doi.org/10.3852/12-207es_CO
    dc.relation.referencesLuo, Z., Ren, H., Moussa, J., Rangel, D., Zhang, Y., & Bruner, S. (2017). The PacC transcription factor regulates secondary metabolite production, stress response, but has only minor effects on virulence in the insect pathogenic fungus Beauveria bassiana. Environmental Microbiology, 19, 788–802.es_CO
    dc.relation.referencesMacheleidt, J., Mattern, D. J., Fischer, J., Netzker, T., Weber, J., Schroeckh, V., … Brakhage, A. A. (2016). Regulation and Role of Fungal Secondary Metabolites.Annual Review of Genetics, 50(1), 371–392. http://doi.org/10.1146/annurev-genet-120215-035203es_CO
    dc.relation.referencesMadigan, M., Martinko, J., Bender, K., Buckley, D., & Stahl, D. (2015). Brock Biology of Microorganisms. Igarss 2014 (14a ed.). Boston: Pearson. http://doi.org/10.1007/s13398-014-0173-7.2es_CO
    dc.relation.referencesMay, G. S., & Adams, T. H. (1997). The Importance of Fungi to Man. Genome Research, 7(11), 1041–1044. http://doi.org/10.1101/gr.7.11.1041es_CO
    dc.relation.referencesMinnis, A. M., & Lindner, D. L. (2013). Phylogenetic evaluation of Geomyces and allies reveals no close relatives of Pseudogymnoascus destructans, comb. nov., inbat hibernacula of eastern North America. Fungal Biology, 117(9), 638–649. http://doi.org/10.1016/j.funbio.2013.07.001es_CO
    dc.relation.referencesNewman, D., & Cragg, G. (2012). Natural Products as Sources of New Drugs over the 30 Years. Journal of Natural Products, 75(3), 311–335. http://doi.org/10.1021/np200906s.Naturales_CO
    dc.relation.referencesPalmer, J. M., & Keller, N. P. (2010). Secondary metabolism in fungi: Does chromosomal location matter? Current Opinion in Microbiology, 13(4), 431–436. http://doi.org/10.1016/j.mib.2010.04.008es_CO
    dc.relation.referencesPeláez, F. (2006). The historical delivery of antibiotics from microbial natural products - Can history repeat? Biochemical Pharmacology, 71(7), 981–990. http://doi.org/10.1016/j.bcp.2005.10.010es_CO
    dc.relation.referencesRaudabaugh, D. B., & Miller, A. N. (2013). Nutritional Capability of and Substrate Suitability for Pseudogymnoascus destructans, the Causal Agent of Bat White-Nose Syndrome. PLoS ONE, 8(10), 1–9. http://doi.org/10.1371/journal.pone.0078300es_CO
    dc.relation.referencesReynolds, H. T., Barton, H. A., & Slot, J. C. (2016). Phylogenomic analysis supports a recent change in nitrate assimilation in the White-nose Syndrome pathogen, Pseudogymnoascus destructans. Fungal Ecology, 23, 20–29. http://doi.org/10.1016/j.funeco.2016.04.010es_CO
    dc.relation.referencesReynolds, H. T., Ingersoll, T., & Barton, H. A. (2015). MODELING THE ENVIRONMENTAL GROWTH OF PSEUDOGYMNOASCUS DESTRUCTANS AND ITS IMPACT ON THE WHITE-NOSE SYNDROME EPIDEMIC. Journal of Wildlife Diseases, 51(2), 318–331. http://doi.org/10.7589/2014-06-157es_CO
    dc.relation.referencesRuiz, B., Chávez, A., Forero, A., García-Huante, Y., Romero, A., Sánchez, M., … Langley, E. (2010). Production of microbial secondary metabolites: regulation by the carbon source. Critical reviews in microbiology, 36(2), 146–167. http://doi.org/10.3109/10408410903489576es_CO
    dc.relation.referencesRutledge, P. J., & Challis, G. L. (2015). Discovery of microbial natural products by activation of silent biosynthetic gene clusters. Nature Reviews Microbiology,13(8), 509–523. http://doi.org/10.1038/nrmicro3496es_CO
    dc.relation.referencesSbaraini, N., Guedes, R. L. M., Andreis, F. C., Junges, Â., de Morais, G. L., Vainstein, M. H., … Schrank, A. (2016). Secondary metabolite gene clusters in the entomopathogen fungus Metarhizium anisopliae: genome identification and patterns of expression in a cuticle infection model. BMC Genomics, 17(S8), 736. http://doi.org/10.1186/s12864-016-3067-6es_CO
    dc.relation.referencesSchroeder, A., Mueller, O., Stocker, S., Salowsky, R., Leiber, M., Gassmann, M., … Ragg, T. (2006). The RIN: an RNA integrity number for assigning integrity values to RNA measurements. BMC Molecular Biology, 7(1), 3. http://doi.org/10.1186/1471-2199-7-3es_CO
    dc.relation.referencesShen, B. (2003). Polyketide biosynthesis beyond the type I, II and III polyketide synthase paradigms. Current Opinion in Chemical Biology, 7(2), 285–295. http://doi.org/10.1016/S1367-5931(03)00020-6es_CO
    dc.relation.referencesSmith, S., & Tsai, S.-C. (2007). The type I fatty acid and polyketide synthases: a tale of two megasynthases. Natural Product Reports, 24(5), 1041–1072. http://doi.org/10.1038/jid.2014.371es_CO
    dc.relation.referencesStaunton, J., & Weissman, K. J. (2001). Polyketide biosynthesis: a millennium review. Natural Product Reports, 18(4), 380–416. http://doi.org/10.1039/a909079ges_CO
    dc.relation.referencesStrauss, J., & Reyes-Dominguez, Y. (2011). Regulation of secondary metabolism by chromatin structure and epigenetic codes. Fungal Genetics and Biology, 48(1), 62–69. http://doi.org/10.1016/j.fgb.2010.07.009es_CO
    dc.relation.referencesStrieker, M., Tanović, A., & Marahiel, M. A. (2010). Nonribosomal peptide synthetases: Structures and dynamics. Current Opinion in Structural Biology, 20(2), 234–240. http://doi.org/10.1016/j.sbi.2010.01.009es_CO
    dc.relation.referencesTian, Y., Li, Y. L., & Zhao, F. C. (2017). Secondary metabolites from polar organisms. Marine Drugs, 15(3). http://doi.org/10.3390/md15030028es_CO
    dc.relation.referencesVandermolen, K. M., Raja, H. A., El-Elimat, T., & Oberlies, N. H. (2013). Evaluation of culture media for the production of secondary metabolites in a natural products screening program. AMB Express, 3(71), 1–7. http://doi.org/10.1186/2191-0855-3-71es_CO
    dc.relation.referencesVentola, C. L. (2015). The antibiotic resistance crisis: part 1: causes and threats. P & T : A peer-reviewed journal for formulary management (2015), 40(4), 277–83. http://doi.org/Articlees_CO
    dc.relation.referencesVerant, M. L., Boyles, J. G., Waldrep, W., Wibbelt, G., & Blehert, D. S. (2012). Temperature-Dependent Growth of Geomyces destructans, the Fungus That Causes Bat White-Nose Syndrome. PLoS ONE, 7(9). http://doi.org/10.1371/journal.pone.0046280es_CO
    dc.relation.referencesWang, J., Wei, X., Qin, X., Tian, X., Liao, L., Li, K., … Liu, Y. (2016). Antiviral Merosesquiterpenoids Produced by the Antarctic Fungus Aspergillus ochraceopetaliformis SCSIO 05702. Journal of Natural Products, 79(1), 59–65. http://doi.org/10.1021/acs.jnatprod.5b00650es_CO
    dc.relation.referencesWilliams, R. B., Henrikson, J. C., Hoover, A. R., Lee, A. E., & Cichewicz, R. H. (2008). Epigenetic remodeling of the fungal secondary metabolome. Org Biomol Chem, 6(11), 1895–1897. http://doi.org/10.1039/b804701des_CO
    dc.relation.referencesWitzany, G. (2013). Biocommunication of fungi. Biocommunication of Fungi. http://doi.org/10.1007/978-94-007-4264-2es_CO
    dc.relation.referencesYin, W., & Keller, N. P. (2011). Transcriptional Regulatory Elements in Fungal Secondary Metabolism. The Journal of Microbiology, 49(3), 329–339. http://doi.org/10.1007/s12275-011-1009-1es_CO
    dc.relation.referencesZiemert, N., Alanjary, M., & Weber, T. (2016). The evolution of genome mining in microbes – a review. Nat. Prod. Rep., 33(8), 988–1005. http://doi.org/10.1039/C6NP00025Hes_CO
    dc.rights.accessrightshttp://purl.org/coar/access_right/c_abf2es_CO
    dc.type.coarversionhttp://purl.org/coar/resource_type/c_2df8fbb1es_CO
    Aparece en las colecciones: Microbiología

    Ficheros en este ítem:
    Fichero Descripción Tamaño Formato  
    Sacristán_2017_TG.pdfSacristán_2017_TG1,25 MBAdobe PDFVisualizar/Abrir


    Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.