• Repositorio Institucional Universidad de Pamplona
  • Tesis de maestría y doctorado
  • Facultad de Ingenierías y Arquitectura
  • Maestría en Ingeniería Industrial
  • Por favor, use este identificador para citar o enlazar este ítem: http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/1981
    Registro completo de metadatos
    Campo DC Valor Lengua/Idioma
    dc.contributor.authorGomez Suarez, Sergio Andres.-
    dc.date.accessioned2022-06-15T20:39:23Z-
    dc.date.available2018-03-18-
    dc.date.available2022-06-15T20:39:23Z-
    dc.date.issued2018-
    dc.identifier.citationGomez Suarez, S. A. (2017). Caracterización dinámico-mecánica de materiales biocompuestos reforzados con fibras de fique [Trabajo de Grado Maestría, Universidad de Pamplona]. Repositorio Hulago Universidad de Pamplona. http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/1981es_CO
    dc.identifier.urihttp://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/1981-
    dc.descriptionEn la siguiente investigación las propiedades mecánicas y dinámicas vibratorias de materiales biocompuestos reforzados con fibras de fique fueron estudiadas. Los materiales fueron fabricados utilizando la técnica de manufactura de infusión en vacío utilizando matrices termoestables y biobases y refuerzos naturales con configuraciones de las fibras en formas tejidas y aleatorias. Las propiedades mecánicas de tensión fueron obtenidas de acuerdo con la norma ASTM D3039/D3039M. Los resultados demostraron mayor rigidez y resistencia a mayor cantidad de fibra natural, así mismo, los biocompuestos de fique tejidos superaron en su comportamiento mecánico a los de configuración aleatoria. El impacto en los parámetros modales (Caracterización dinámica) debido al número de capas de la fibra natural se realizó de forma experimental según la Norma ISO 7626-2. Se identificó un incremento en la frecuencia natural y el amortiguamiento de los materiales con la incorporación de mayor cantidad de fibra. De otro lado, se realizó un estudio comparativo de las frecuencias naturales obtenidas mediante en el método experimental según la medición de la respuesta en frecuencia (FRF), un análisis analítico a partir de la teoría de Euler- Bernoulli y una simulación por elementos finitos obteniéndose porcentajes bajos de diferencia entre los dos últimos métodos mencionados, mientras que para el método experimental se reportaron errores de hasta un 25%. La interface fue evaluada mediante microscopía electrónica de barrido, en donde se evidenció una baja adhesión entre la fibra natural y la resina, y como consecuencia se vieron afectadas las propiedades mecánicas y dinámicas de los biocompuestos. Los resultados obtenidos del ensayo de tensión, análisis modal y microscopia electrónica de barrido de los materiales biocompuestos de fique se compararon contra un compuesto referente de fibra de vidrio el cual presentó mejores propiedades mecánicas, comportamiento dinámico similar y una mejor adhesión que los biocompuestos de fique.es_CO
    dc.description.abstractIn the following investigation, the mechanical and dynamic vibratory properties of bio composite materials reinforced with fique fibers were studied. The materials were fabricated trough a vacuum infusion manufacturing technique using a biobases and thermostable matrices and natural fiber reinforcements with random and weave configurations. Mechanical tensile properties were obtained according to ASTM D3039 / D3039M. The results demonstrated greater stiffness and strength to greater natural fiber amount also that the weave fique biocomposites exceed in their mechanical behavior random biocomposites. The impact on the modal parameters (Dynamic characterization) due to the natural fiber number layers was experimentally made according to ISO 7626-2. An increase in the materials natural frequency and damping with the fiber incorporation was identified. On the other hand, the deviation between three modal analysis methods (analytical, finite elements and experimental) applied to biocomposite materials was studied. obtaining low difference percentages comparing the last two mentioned methods while the experimental method reported errors until 25%. The interface between the materials was studied by scanning electron microscopy, in which a low adhesion between the natural fiber and the resin was evidenced affecting the mechanical and dynamic properties. The fique biocomposite tensile test, Modal analysis and scanning microscopic results obtained were compared against a referent fiberglass composite, which presented better mechanical properties, similar dynamic behavior and a better adhesion than the fique biocomposites.es_CO
    dc.format.extent132es_CO
    dc.format.mimetypeapplication/pdfes_CO
    dc.language.isoeses_CO
    dc.publisherUniversidad de Pamplona – Facultad de Ingenierías y Arquitectura.es_CO
    dc.subjectAnálisis Modal,es_CO
    dc.subjectBiocompuesto,es_CO
    dc.subjectEnsayo tensión,es_CO
    dc.subjectFique,es_CO
    dc.subjectMicroscopía electrónica.es_CO
    dc.titlecaracterización dinámico-mecánica de materiales biocompuestos reforzados con fibras de fique.es_CO
    dc.typehttp://purl.org/coar/resource_type/c_bdcces_CO
    dc.date.accepted2017-12-18-
    dc.relation.references[1] V. K. Thakur and M. K. Thakur, “Processing and characterization of natural cellulose fibers/thermoset polymer composites,” Carbohydr. Polym., vol. 109, pp. 102–117, 2014.es_CO
    dc.relation.references[2] J. P. Torres, L.-J. Vandi, M. Veidt, and M. T. Heitzmann, “The mechanical properties of natural fibre composite laminates: A statistical study,” Compos. Part A Appl. Sci. Manuf., vol. 98, pp. 99–104, 2017.es_CO
    dc.relation.references[3] T. Vaisanen, O. Das, and L. Tomppo, “A review on new bio-based constituents for natural fiber-polymer composites,” J. Clean. Prod., vol. 149, pp. 582–596, 2017.es_CO
    dc.relation.references[4] M. F. Muñoz, M. A. Hidalgo, and J. H. Mina, “Fibras de fique una alternativa para el reforzamento de plásticos. Influencia de la modificación superficial.,” vol. 12, no. 2, pp. 60–70, 2014.es_CO
    dc.relation.references[5] L. J. Rodríguez, W. A. Sarache, and C. E. Orrego, “Compuestos de poliéster reforzados con fibra de plátano/banano (Musa paradisiaca) modificada químicamente. Comparación con fibra de vidrio y fique (Furcraea andina),” Inf. Tecnol., vol. 25, no. 5, pp. 27–34, 2014.es_CO
    dc.relation.references[6] C. Gómez Hoyos and A. Vázquez, “Flexural properties loss of unidirectional epoxy/fique composites immersed in water and alkaline medium for construction application,” Compos. Part B Eng., vol. 43, no. 8, pp. 3120–3130, 2012.es_CO
    dc.relation.references[7] C. A. M. Valencia, J. F. Pazos-Ospina, E. E. Franco, J. L. Ealo, D. A. Collazos Burbano, and G. F. C. Garcia, “Ultrasonic determination of the elastic constants of epoxy-natural fiber composites,” Phys. Procedia, vol. 70, pp. 467– 470, 2015.es_CO
    dc.relation.references[8] D. P. Navia, A. A. Ayala, and H. S. Villada, “Effect of cassava flour gelatinization on mechanical properties of bioplastics,” Biotecnol. en el Sect. Agropecu. y Agroindustrial, vol. 13, no. 1, pp. 38–44, 2015.es_CO
    dc.relation.references[9] M. A. Hidalgo-Salazar, J. H. Mina, and P. J. Herrera-Franco, “The effect of interfacial adhesion on the creep behaviour of LDPE-Al-Fique composite materials,” Compos. Part B Eng., vol. 55, pp. 345–351, 2013.es_CO
    dc.relation.references[10] P. Gañán and I. Mondragon, “Influence of Compatibilization Treatments on the Mechanical Properties of Fique Fiber Reinforced Polypropylene Composites,” Int. J. Polym. Mater., vol. 53, no. 11, pp. 997–1013, 2004.es_CO
    dc.relation.references[11] F. Klimenda and J. Soukup, “Modal Analysis of Thin Aluminium Plate,” Procedia Eng., vol. 177, pp. 11–16, 2017.es_CO
    dc.relation.references[101] D. P. Navia, H. S. Villada, and A. A. Ayala, “Evaluación mecánica de bioplasticos semirrígidos elaborados con harina de yuca,” Biotecnol. en el Sect. Agropecu. y Agroind., vol. 2, no. 2, pp. 77–85, 2013.es_CO
    dc.relation.references[102] P. Ganan, “Effect of Fiber Treatments on Mechanical Behavior of Short Fique Fiber-reinforced Polyacetal Composites,” J. Compos. Mater., vol. 39, no. 7, pp. 633–646, 2005.es_CO
    dc.relation.references[103] F. Ramón Valencia, A. Lopez-Arraiza, J. I. Múgica, J. Aurrekoetxea, J. C. Suarez, and B. Ramón-Valencia, “Influence of seawater immersion in low energy impact behavior of a novel colombian fique fiber reinforced bio-resin laminate,” Dyna, vol. 82, no. 194, pp. 170–177, 2015.es_CO
    dc.relation.references[104] M. Sumaila, I. Amber, and M. Bawa, “Effect of Fiber Length on the Physical and Mechanical Properties of Random Oreinted, Nonwoven Short Banana (Musa,” Cellulose, vol. 2, no. 1, pp. 39–49, 2013.es_CO
    dc.relation.references[105] K. L. Pickering, M. G. A. Efendy, and T. M. Le, “A review of recent developments in natural fibre composites and their mechanical performance,” Compos. Part A Appl. Sci. Manuf., vol. 83, pp. 98–112, 2015.es_CO
    dc.relation.references[106] D. P. Navia, “Desarrollo de un Material para empaques de alimentos a partir de harina de yuca y fibras de fique.,” Universidad del Valle, Santiago de cali, Colombia, 2011.es_CO
    dc.relation.references[107] S. Han, H. Benaroya, and T. Wei, “Dynamics of transversely vibrating beams using four engineering theories,” J. Sound Vib., vol. 225, no. 5, pp. 935–988, 1999.es_CO
    dc.relation.references[108] H. Mendoza-Nava, M. Talavera-Ortega, F. de los Santos, S. Mendoza-Facio, and O. Jimenez-Arévalo, “Caracterización de materiales compuestos reforzados con fibra de carbono fabricados por el método de infusión para aplicaciones aeronáuticas,” Memorias del XX Congr. Int. Anu. la SOMIM, no. October, 2014.es_CO
    dc.relation.references[109] M. Rajesh and J. Pitchaimani, “Dynamic mechanical analysis and free vibration behavior of intra-ply woven natural fiber hybrid polymer composite,” J. Reinf. Plast. Compos., vol. 35, no. 3, pp. 228–242, 2016.es_CO
    dc.relation.references[110] N. Mendes, “Extraction of valid modal properties from measured data in structural vibrations,” University of london, 1988.es_CO
    dc.relation.references[12] B. M. West et al., “Modal analysis of metal additive manufactured parts,” Manuf. Lett., vol. 13, pp. 30–33, 2017.es_CO
    dc.relation.references[111] G. Suresh and L. S. Jayakumari, “Evaluating the mechanical properties of E Glass fiber/carbon fiber reinforced interpenetrating polymer networks,” Polim. E Tecnol., vol. 25, no. 1, pp. 49–57, 2015.es_CO
    dc.relation.references[112] C. Gómez Hoyos, V. A. Alvarez, P. G. Rojo, and A. Vázquez, “Fique fibers: Enhancement of the tensile strength of alkali treated fibers during tensile load application,” Fibers Polym., vol. 13, no. 5, pp. 632–640, 2012.es_CO
    dc.relation.references[13] R. S. Minette, S. F. SilvaNeto, L. A. Vaz, and U. A. Monteiro, “Experimental modal analysis of electrical submersible pumps,” Ocean Eng., vol. 124, pp. 168–179, 2016.es_CO
    dc.relation.references[14] P. Weis, Ľ. Kučera, P. Pecháč, and M. Močilan, “Modal Analysis of Gearbox Housing with Applied Load,” Procedia Eng., vol. 192, pp. 953–958, 2017.es_CO
    dc.relation.references[15] K. Senthil Kumar, I. Siva, P. Jeyaraj, J. T. Winowlin Jappes, S. C. Amico, and N. Rajini, “Synergy of fiber length and content on free vibration and damping behavior of natural fiber reinforced polyester composite beams,” Mater. Des., vol. 56, no. October, pp. 379–386, 2014.es_CO
    dc.relation.references[16] O. M. E. S. Khayal, “Literature review on imperfection of composite laminated plates,” J. Microsc. Ultrastruct., vol. 5, no. 3, pp. 119–122, 2017.es_CO
    dc.relation.references[17] A. K. Kaw, Mechanics of Composite Materials, Second Edition. CRC Press, 2005.es_CO
    dc.relation.references[18] G. V Mahajan, V. S. Aher, P. G. Student, and I. Sangamner, “Composite Material: A Review over Current Development and Automotive Application,” Int. J. Sci. Res. Publ., vol. 2, no. 11, pp. 2250–3153, 2012.es_CO
    dc.relation.references[19] P. S, S. KM, N. K, and S. S, “Fiber Reinforced Composites - A Review,” J. Mater. Sci. Eng., vol. 6, no. 3, 2017.es_CO
    dc.relation.references[20] X. Huang, “Fabrication and properties of carbon fibers,” Materials (Basel)., vol. 2, no. 4, pp. 2369–2403, 2009.es_CO
    dc.relation.references[21] T. J. Singh and S. Samanta, “Characterization of Kevlar Fiber and Its Composites: A Review,” Mater. Today Proc., vol. 2, no. 4–5, pp. 1381–1387, 2015.es_CO
    dc.relation.references[22] S. Ben, J.-H. Zhao, Y. Zhang, Y. Qin, and T. Rabczuk, “The interface strength and debonding for composite structures: Review and recent developments,” Compos. Struct., vol. 129, 2015.es_CO
    dc.relation.references[23] K. K. Chawla, Composite Materials, Science and enginneering, Third edit. Springer, 2012.es_CO
    dc.relation.references[24] S. R. Lady Joana, “Elaboración de un material biocompuesto a partir de la fibra de plátano,” Universidad Nacional de Colombia, 2013.es_CO
    dc.relation.references[25] K. Majeed et al., “Potential materials for food packaging from nanoclay/natural fibres filled hybrid composites,” Mater. Des., vol. 46, pp. 391–410, 2013.es_CO
    dc.relation.references[26] U. S. Bongarde and V. . . Shinde, “Review on natural fiber reinforcement polymer composites,” Int. J. Eng. Sci. Innov. Technol., vol. 3, no. 2, pp. 431– 96 436, 2014.es_CO
    dc.relation.references[27] M. A. Hidalgo, M. F. Muñoz, and K. J. Quintana, “Desempeño mecánico del compuesto polietileno-aluminio reforzado con agro fibras continuas de fique,” vol. 31, no. 2, pp. 187–194, 2011.es_CO
    dc.relation.references[28] S. Kalia, B. S. Kaith, and I. Kaur, “Pretreatments of natural fibers and their application as reinforcing material in polymer composites—A review,” Polym. Eng. Sci., vol. 49, p. 1253–1272., 2009.es_CO
    dc.relation.references[29] M. M. Kabir, H. Wang, T. Aravinthan, F. Cardona, and K.-T. Lau, “Effects of Natural Fibre Surface on Composite Properties : a Review,” Energy, Environ. Sustain., no. January, pp. 94–99, 2007.es_CO
    dc.relation.references[30] R. M. ROWELL, “1 - Natural fibres: types and properties,” in Properties and Performance of Natural-Fibre Composites, K. L. Pickering, Ed. Woodhead Publishing, 2008, pp. 3–66.es_CO
    dc.relation.references[31] M. S. Salit, “Tropical Natural Fibres and Their Properties,” in Tropical Natural Fibre Composites: Properties, Manufacture and Applications, Singapore: Springer Singapore, 2014, pp. 15–38.es_CO
    dc.relation.references[32] J. E. Peinado, L. F. Ospina, L. Rodríguez, J. Miller, C. Carvajal, and R. Negrete, Guía ambiental del subsector fiquero, vol. 2. 2006.es_CO
    dc.relation.references[33] P. Gañán and I. Mondragon, “Surface modification of fique fibers. Effect on their physico-mechanical properties,” Polym. Compos., vol. 23, no. 3, pp. 383– 394, 2002.es_CO
    dc.relation.references[34] J. Holbery and D. Houston, “Natural-fibre-reinforced polymer composites in automotive applications,” J. Miner. Met. Mater. Soc., vol. 58, no. 11, pp. 80– 86, 2006.es_CO
    dc.relation.references[35] R. D. S. G. Campilho, Natural Fiber Composites. Taylor & Francis, 2015.es_CO
    dc.relation.references[36] R. D. J. Johnson, V. A. Prabu, P. Amuthakkannan, and K. A. Prasath, “A review on biocomposites and bioresin based composites for potential industrial applications,” Rev. Adv. Mater. Sci., vol. 49, no. 1, pp. 112–121, 2017.es_CO
    dc.relation.references[37] D. dos S. Rosa and D. M. Lenz, “Biocomposites: Influence of Matrix Nature and Additives on the Properties and Biodegradation Behaviour,” in Biodegradation - Engineering and Technology, R. Chamy and F. Rosenkranz, Eds. Rijeka: InTech, 2013.es_CO
    dc.relation.references[38] S. M. Sapuan and N. Bin Yusoff, “The Relationship Between Manufacturing and Design for Manufacturing in Product Development of Natural Fibre Composites,” in Manufacturing of Natural Fibre Reinforced Polymer Composites, M. S. Salit, M. Jawaid, N. Bin Yusoff, and M. E. Hoque, Eds. Cham: Springer International Publishing, 2015, pp. 1–15.es_CO
    dc.relation.references[39] J. Summerscales and S. Grove, “7 - Manufacturing methods for natural fibre composites,” in Natural Fibre Composites, A. Hodzic and R. Shanks, Eds. Woodhead Publishing, 2014, pp. 176–215.es_CO
    dc.relation.references[40] M. Arifur Rahman, F. Parvin, M. Hasan, and M. E. Hoque, “Introduction to Manufacturing of Natural Fibre-Reinforced Polymer Composites,” in Manufacturing of Natural Fibre Reinforced Polymer Composites, M. S. Salit, M. Jawaid, N. Bin Yusoff, and M. E. Hoque, Eds. Cham: Springer International Publishing, 2015, pp. 17–43.es_CO
    dc.relation.references[41] A. K. Rana, A. Mandal, and S. Bandyopadhyay, “Short jute fiber reinforced polypropylene composites: Effect of compatibiliser, impact modifier and fiber loading,” Compos. Sci. Technol., vol. 63, no. 6, pp. 801–806, 2003.es_CO
    dc.relation.references[42] S. M. Khoshnava, R. Rostami, M. Ismail, A. R. Rahmat, and B. E. Ogunbode, “Woven hybrid Biocomposite: Mechanical properties of woven kenaf bast fibre/oil palm empty fruit bunches hybrid reinforced poly hydroxybutyrate biocomposite as non-structural building materials,” Constr. Build. Mater., vol. 154, pp. 155–166, 2017.es_CO
    dc.relation.references[43] M. Iorio, M. L. Santarelli, G. González-Gaitano, and J. González-Benito, “Surface modification and characterization of basalt fibers as potential reinforcement of concretes,” Appl. Surf. Sci., vol. 427, pp. 1248–1256, 2018.es_CO
    dc.relation.references[44] F. Corrales, F. Vilaseca, M. Llop, J. Gironès, J. A. Méndez, and P. Mutjè, “Chemical modification of jute fibers for the production of green-composites,” J. Hazard. Mater., vol. 144, no. 3, pp. 730–735, 2007.es_CO
    dc.relation.references[45] M. Li, S. Zhou, and X. Guo, “Effects of alkali-treated bamboo fibers on the morphology and mechanical properties of oil well cement,” Constr. Build. Mater., vol. 150, pp. 619–625, 2017.es_CO
    dc.relation.references[46] H. Abdellaoui, H. Bensalah, M. Raji, D. Rodrigue, R. Bouhfid, and A. el kacem Qaiss, “Laminated Epoxy Biocomposites Based on Clay and Jute Fibers,” J. Bionic Eng., vol. 14, no. 2, pp. 379–389, 2017.es_CO
    dc.relation.references[47] W. Kim and A. Argento, “11 - High strain rate testing of natural fiber composites,” in Natural Fibre Composites, A. Hodzic and R. Shanks, Eds. Woodhead Publishing, 2014, pp. 303–322.es_CO
    dc.relation.references[48] P. J. HERRERA-FRANCO and A. VALADEZ-GONZALEZ, “12 - Mechanical testing of natural-fiber composites,” in Properties and Performance of Natural Fibre Composites, K. L. Pickering, Ed. Woodhead Publishing, 2008, pp. 375– 401.es_CO
    dc.relation.references[49] H. Ghasemnejad and A. Aboutorabi, “13 - The response of natural fibre composites to impact damage: a case study,” in Natural Fibre Composites, A. Hodzic and R. Shanks, Eds. Woodhead Publishing, 2014, pp. 345–364.es_CO
    dc.relation.references[50] M. S. Islam, K. L. Pickering, and N. J. Foreman, “Influence of alkali treatment on the interfacial and physico-mechanical properties of industrial hemp fibre reinforced polylactic acid composites,” Compos. Part A Appl. Sci. Manuf., vol. 41, no. 5, pp. 596–603, 2010.es_CO
    dc.relation.references[51] N. Graupner and J. Müssig, “A comparison of the mechanical characteristics of kenaf and lyocell fibre reinforced poly(lactic acid) (PLA) and poly(3- hydroxybutyrate) (PHB) composites,” Compos. Part A Appl. Sci. Manuf., vol. 42, no. 12, pp. 2010–2019, 2011.es_CO
    dc.relation.references[52] M. Khalfallah et al., “Innovative flax tapes reinforced Acrodur biocomposites: A new alternative for automotive applications,” Mater. Des., vol. 64, pp. 116– 126, 2014.es_CO
    dc.relation.references[53] E. Rodríguez, R. Petrucci, D. Puglia, J. M. Kenny, and A. Vázquez, “Characterization of Composites Based on Natural and Glass Fibers Obtained by Vacuum Infusion,” J. Compos. Mater., vol. 39, no. 3, pp. 265–282, 2005.es_CO
    dc.relation.references[54] B. Baghaei, M. Skrifvars, and L. Berglin, “Manufacture and characterisation of thermoplastic composites made from PLA/hemp co-wrapped hybrid yarn prepregs,” Compos. Part A Appl. Sci. Manuf., vol. 50, pp. 93–101, 2013.es_CO
    dc.relation.references[55] A. K. Rana, A. Mandal, B. C. Mitra, R. Jacobson, R. Rowell, and A. N. Banerjee, “Short jute fiber-reinforced polypropylene composites: Effect of compatibilizer,” J. Appl. Polym. Sci., vol. 69, no. 2, pp. 329–338, 1998.es_CO
    dc.relation.references[56] M. Zampaloni et al., “Kenaf natural fiber reinforced polypropylene composites: A discussion on manufacturing problems and solutions,” Compos. Part A Appl. Sci. Manuf., vol. 38, no. 6, pp. 1569–1580, 2007.es_CO
    dc.relation.references[57] A. K. Bledzki, A. A. Mamun, M. Lucka-Gabor, and V. S. Gutowski, “The effects of acetylation on properties of flax fibre and its polypropylene composites,” Express Polym. Lett., vol. 2, no. 6, pp. 413–422, 2008.es_CO
    dc.relation.references[58] R. Karim, M. Fahim Rahman, M. Hasan, S. Islam, and A. Hassan, “Effect of Fiber Loading and Alkali Treatment on Physical and Mechanical Properties of Bagasse Fiber Reinforced Polypropylene Composites,” J. Polym. Mater., vol. 30, pp. 423–433, 2013.es_CO
    dc.relation.references[59] E. M. Fernandes, V. M. Correlo, J. F. Mano, and R. L. Reis, “Cork–polymer biocomposites: Mechanical, structural and thermal properties,” Mater. Des., vol. 82, no. Supplement C, pp. 282–289, 2015.es_CO
    dc.relation.references[60] N. Saba et al., “Thermal and dynamic mechanical properties of cellulose nanofibers reinforced epoxy composites,” Int. J. Biol. Macromol., vol. 102, pp. 822–828, 2017.es_CO
    dc.relation.references[61] G. Dorez, A. Taguet, L. Ferry, and J. M. Lopez-Cuesta, “Thermal and fire behavior of natural fibers/PBS biocomposites,” Polym. Degrad. Stab., vol. 98, 99 no. 1, pp. 87–95, 2013.es_CO
    dc.relation.references[62] F. Shukor, A. Hassan, M. Saiful Islam, M. Mokhtar, and M. Hasan, “Effect of ammonium polyphosphate on flame retardancy, thermal stability and mechanical properties of alkali treated kenaf fiber filled PLA biocomposites,” Mater. Des., vol. 54, pp. 425–429, 2014.es_CO
    dc.relation.references[63] A. Elkhaoulani, F. Z. Arrakhiz, K. Benmoussa, R. Bouhfid, and A. Qaiss, “Mechanical and thermal properties of polymer composite based on natural fibers: Moroccan hemp fibers/polypropylene,” Mater. Des., vol. 49, pp. 203– 208, 2013.es_CO
    dc.relation.references[64] B. F. Abu-Sharkh and H. Hamid, “Degradation study of date palm fibre/polypropylene composites in natural and artificial weathering: Mechanical and thermal analysis,” Polym. Degrad. Stab., vol. 85, pp. 967–973, 2004.es_CO
    dc.relation.references[65] A. Khalina, R. A. Talib, and I. S. M. A. Tawakkal, “The Influence of Mercerised Kenaf Fibres Reinforced Polylactic Acid Composites on Dynamic Mechanical Analysis,” in Composite Science and Technology, 2011, vol. 471, pp. 815– 820.es_CO
    dc.relation.references[66] M. A. López-Manchado and M. Arroyo, “Thermal and dynamic mechanical properties of polypropylene and short organic fiber composites,” Polymer (Guildf)., vol. 41, no. 21, pp. 7761–7767, 2000.es_CO
    dc.relation.references[67] M. John, B. Francis, S. Thomas, and K. Varughese, “Dynamical mechanical analysis of sisal/oil palm hybrid fiber‐reinforced natural rubber composites,” Polym. Compos., vol. 27, pp. 671–680, 2006.es_CO
    dc.relation.references[68] N. Saba, M. Jawaid, O. Alothman, and P. M. Tahir, “A Review on Dynamic mechanical analysis of natural fibre reinforced polymer composites,” Constr. Build. Mater., vol. 106, 2015.es_CO
    dc.relation.references[69] J. He and Z.-F. Fu, “3 - Basic vibration theory,” in Modal Analysis, J. He and Z.-F. Fu, Eds. Oxford: Butterworth-Heinemann, 2001, pp. 49–78.es_CO
    dc.relation.references[70] B. Balachandran and E. B. Magrab, Vibraciones. Paraninfo, 2006.es_CO
    dc.relation.references[71] M. Abdel Wahab, Dynamics and vibration: an introduction. John Wiley, 2008.es_CO
    dc.relation.references[72] J.-M. Berthelot, “Damping Analysis of Orthotropic Composites with Interleaved Viscoelastic Layers: Modeling,” J. Compos. Mater. - J Compos MATER, vol. 40, pp. 1889–1909, 2006.es_CO
    dc.relation.references[73] J. Pitchaimani, N. Ganesan, and C. Padmanabhan, “Vibration and acoustic response of a composite plate with inherent material damping in a thermal environment,” J. Sound Vib., vol. 320, pp. 322–338, 2009.es_CO
    dc.relation.references[74] R. Chandra, S. P. Singh, and K. Gupta, “Damping studies in fiber-reinforced composites - a review,” Compos. Struct., vol. 46, no. 1, pp. 41–51, 1999.es_CO
    dc.relation.references[75] F. Cakir and H. Uysal, “Experimental modal analysis of brick masonry arches strengthened prepreg composites,” J. Cult. Herit., vol. 16, no. 3, pp. 284–292, 2015.es_CO
    dc.relation.references[76] T. I. Thinh and T. H. Quoc, “Finite element modeling and experimental study on bending and vibration of laminated stiffened glass fiber/polyester composite plates,” Comput. Mater. Sci., vol. 49, no. 4 SUPPL., pp. S383–S389, 2010.es_CO
    dc.relation.references[77] V. C. Ioan Curtu, Mariana Domnica Stanciu, “The Modal Analysis of Plates Made of Woven Composite Materials,” Bul. AGIR nr., vol. 8204, no. 1, pp. 2– 5, 2011.es_CO
    dc.relation.references[78] G. M. Mota, P. Sollero, F. B. Batista, and E. L. Albuquerque, “Modal Analysis Technique for Anisotropic Composite,” vol. 7, no. 2, pp. 95–100, 2008.es_CO
    dc.relation.references[79] S. H. Zhang and H. L. Chen, “A study on the damping characteristics of laminated composites with integral viscoelastic layers,” Compos. Struct., vol. 74, no. 1, pp. 63–69, 2006.es_CO
    dc.relation.references[80] D. X. Lin, R. G. Ni, and R. D. Adams, “Prediction and Measurement of the Vibrational Damping Parameters of Carbon and Glass Fibre-Reinforced Plastics Plates,” J. Compos. Mater., vol. 18, no. 2, pp. 132–152, 1984.es_CO
    dc.relation.references[81] E. F. Crawley, “The Natural Modes of Graphite/Epoxy Cantilever Plates and Shells,” J. Compos. Mater., vol. 13, no. 3, pp. 195–205, 1979.es_CO
    dc.relation.references[82] É. L. Oliveira, N. M. M. Maia, A. G. Marto, R. G. A. da Silva, F. J. Afonso, and A. Suleman, “Modal characterization of composite flat plate models using piezoelectric transducers,” Mech. Syst. Signal Process., vol. 79, pp. 16–29, 2016.es_CO
    dc.relation.references[83] M. Rajesh and J. Pitchaimani, “Dynamic mechanical analysis and free vibration behavior of intra-ply woven natural fiber hybrid polymer composite,” J. Reinf. Plast. Compos., vol. 35, no. 3, pp. 228–242, 2016.es_CO
    dc.relation.references[84] D. A. Akash, N. . Thyagaraj, and L. . Sudev, “Experimental study of dynamic behaviour of hybrid jute/sisal fibre reinforced polyester composites,” Int. J. Sci. Eng. Appl., vol. 2, no. 8, pp. 170–172, 2013.es_CO
    dc.relation.references[85] M. Rajesh, K. Hemanth, R. Prabhu, S. M. C, and K. G. Binu, “Processing and Testing of Hybrid Sandwich Composites for Vibration Damping and Mechanical Properties,” vol. 6, pp. 22–27, 2016.es_CO
    dc.relation.references[86] A. Savin, I. Curtu, and M. Stanciu, “Modal Analysis of lignocelluloses based composite materials,” 40th Int. Conf. Mech. Solids, Acoust. Vib. 6th Int. Conf. “Advanced Compos. Mater. Eng., pp. 278–283, 2016.es_CO
    dc.relation.references[87] G. Genc and H. Koruk, “Identification of the Dynamic Characteristics of Luffa Fiber Reinforced Bio-Composite Plates,” Bioresources, vol. 12, pp. 5358– 5368, 2017.es_CO
    dc.relation.references[88] D. C. Darrow, P. A. Propatic, and T. H. Brayden Jr, “Elimination of mold surface porosity on composite parts,” J. Adv. Mater., vol. 27, pp. 41–46, 1995.es_CO
    dc.relation.references[89] L. Hamill, T. Centea, G. Nilakantan, and S. Nutt, “Surface Porosity in Out-of Autoclave Prepreg Processing: Causes and Reduction Strategies,” International SAMPE Technical Conference. 2014.es_CO
    dc.relation.references[90] M. L. Herring, J. I. Mardel, and B. L. Fox, “The effect of material selection and manufacturing process on the surface finish of carbon fibre composites,” J. Mater. Process. Technol., vol. 210, no. 6–7, pp. 926–940, 2010.es_CO
    dc.relation.references[91] M. L. Herring and B. L. Fox, “The effect of a rapid curing process on the surface finish of a carbon fibre epoxy composite,” Compos. Part B Eng., vol. 42, no. 5, pp. 1035–1043, 2011.es_CO
    dc.relation.references[92] L. Hamill, T. Centea, and S. Nutt, “Surface porosity during vacuum bag-only prepreg processing: Causes and mitigation strategies,” Compos. Part A Appl. Sci. Manuf., vol. 75, pp. 1–10, 2015.es_CO
    dc.relation.references[93] M. Hidalgo, M. Muñoz, and K. Quintana, “Análisis Mecánico del compuesto polietileno aluminio reforzado con fibras cortas de fique en disposición bidimensional,” Rev. Lat. Met., vol. 32, no. 1, pp. 89–95, 2012.es_CO
    dc.relation.references[94] P. Gañán and I. Mondragon, “Thermal and degradation behavior of fique fiber reinforced thermoplastic matrix composites,” J. Therm. Anal. Calorim., vol. 73, no. 3, pp. 783–795, 2003.es_CO
    dc.relation.references[95] M. A. Hidalgo-Salazar, M. F. Muñoz, and J. H. Mina, “Influence of Incorporation of Natural Fibers on the Physical, Mechanical, and Thermal Properties of Composites LDPE-Al Reinforced with Fique Fibers,” Int. J. Polym. Sci., vol. 2015, 2015.es_CO
    dc.relation.references[96] P. Gañán and I. Mondragon, “Fique fiber-reinforced polyester composites: Effects of fiber surface treatments on mechanical behavior,” J. Mater. Sci., vol. 39, pp. 3121–3128, 2004.es_CO
    dc.relation.references[97] D. P. Navia, A. A. Ayala, and H. S. Villada, “Determinación de isotermas de adsorción de agua en biocompuestos de harina termoplastica y fique,” Biotecnol. en el Sect. Agropecu. y Agroind., vol. 11, no. 1, pp. 144–154, 2013.es_CO
    dc.relation.references[98] S. D. Arjona, F. Perdomo, and R. M. De Gutiérrez, “Ecolaminados de pead fibras de fique,” Junio, vol. 3, no. No 1, pp. 43–50, 2001.es_CO
    dc.relation.references[99] D. P. Navia, A. A. Ayala, and H. S. Villada, “Biocompuestos de harina de yuca obtenidos por termo- compresión. efecto de las condiciones de proceso,” Inf. Tecnol., vol. 26, no. 5, pp. 55–62, 2015.es_CO
    dc.relation.references[100] D. P. Navia, A. A. Ayala, and H. S. Villada, “Adsorción de vapor de agua Bioplastios elaborados con Harina de dos variedades de yuca,” Inf. Tecnol., vol. 25, pp. 23–32, 2014.es_CO
    dc.rights.accessrightshttp://purl.org/coar/access_right/c_abf2es_CO
    dc.type.coarversionhttp://purl.org/coar/resource_type/c_2df8fbb1es_CO
    Aparece en las colecciones: Maestría en Ingeniería Industrial

    Ficheros en este ítem:
    Fichero Descripción Tamaño Formato  
    Gomez_2017_TG.pdfGomez_2017_TG.pdf4,67 MBAdobe PDFVisualizar/Abrir


    Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.