Por favor, use este identificador para citar o enlazar este ítem:
http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/1566
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | Tarazona Rojas, Vladimir. | - |
dc.date.accessioned | 2022-06-08T21:36:03Z | - |
dc.date.available | 2017-12-08 | - |
dc.date.available | 2022-06-08T21:36:03Z | - |
dc.date.issued | 2018 | - |
dc.identifier.citation | Tarazona Rojas, V. (2017). Efectos de dos métodos de entrenamiento (HIIT) y su relación sobre el volumen máximo de oxígeno en patinadores de la pre-selección de Santander [Trabajo de Grado Maestría, Universidad de Pamplona]. Repositorio Hulago Universidad de Pamplona. http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/1566 | es_CO |
dc.identifier.uri | http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/1566 | - |
dc.description | Con el objetivo de identificar los métodos de entrenamiento más influyentes en las capacidades físicas de los patinadores de carreras de la preselección de Santander, se realizó la aplicación de dos programas de entrenamiento (HIIT) en el test de laboratorio work test en ciclo ergometro, se utilizaron dos programas de entrenamiento que incluye: un entrenamiento de resistencia de alta intensidad utilizando el método de HIIT de intervalos cortos (HIIC) basado en ejercicios (Sprint Interval Training, basado en Work test) y el entrenamiento de resistencia de intensidad moderada HIIT de intervalos medios/largos conocido como HIAIT o AIT (high intensityaerobic interval training (HIIT) La finalidad del presente estudio es conocer el efecto de los dos tipos de entrenamiento y su relación sobre el volumen máximo de oxigeno (VO2 – max). La muestra seleccionada se extrajo de patinadores de carreras de la preselección de Santander, divididos en dos grupos experimentales (n=16: 8 en cada grupo, varones, 4 ± 3 años de edad y damas 4±2 años), más un grupo control. Los participantes fueron divididos en dos y fueron asignados al azar a una intervención de entrenamiento de ciclismo de alta intensidad de larga duración (LARGO) (6-8 esfuerzos x 5 min) o a un entrenamiento intervalado de patinaje de alta intensidad de corta duración (CORTO) (9-11 esfuerzos x 10, 20 y 40 s). Se completaron seis sesiones de entrenamiento a lo largo de 3 semanas antes de que los participantes repitieran la evaluación realizada al inicio del estudio. Ambos grupos presentaron un aumento de ~7% en el VO2max (CORTO 7,3%, ±4,6%; media, ±90% límites de confianza; LARGO 7,5%, ±1,7%). Se observó una mejora moderada en la potencia tanto del grupo de entrenamiento CORTO (10,3%, ±4,4%) como en el grupo de entrenamiento LARGO (10,7%, ±6,8%) durante los últimos ocho esprints de 20 s. Se observó una disminución pequeña a moderada en la frecuencia cardíaca, y esfuerzo percibido en ambos grupos durante el deporte de patinaje pero sólo el grupo LARGO presentó una disminución sustancial en tiempo de carrera de 5-km subsiguiente (64±59 s). Los deportistas moderadamente entrenados deberían utilizar el entrenamiento intervalado de alta intensidad de larga y corta duración para mejorar la fisiología y el rendimiento en el patinaje. Intervalos de duración superior a 5 min en el patinaje tienen mayor probabilidad de ejercer efectos beneficiosos sobre el rendimiento en las carreras de 5 km. | es_CO |
dc.description.abstract | With the objective of identifying the most influential training methods in the physical abilities of the race skaters of the Santander pre-selection, two training programs (HIIT) were applied in the laboratory test work test in ergometer cycle, Used two training programs that included: a high-intensity resistance training using the HIT-based short term (HIIC) exercise-based (Sprint Interval Training) and moderate-intensity HIIT interval training Means / longs known as HIAIT or AIT (high intensityaerobic interval training (HIIT) The purpose of the present study is to know the effect of the two types of training and their relation on the maximum volume of oxygen (VO2 - max). The selected sample was drawn from race skaters of the Santander pre-selection, divided into two experimental groups (n = 16: 8 in each group, Males, 4 ± 3 years of age and females 4 ± 2 years), plus a control group. Participants were divided into two groups and randomly assigned to a long-term high intensity training (LONG) (6-8 effort x 5 min) intervention or short-duration high intensity skating interval training (SHORT ) (9-11 efforts x 10, 20 and 40 s). Six training sessions were completed over 3 weeks before participants repeated the evaluation at baseline. Both groups presented a ~7% increase in VO2max (SHORT 7.3%, ± 4.6%, mean, ± 90% confidence limits, LONG 7.5%, ± 1.7%). A moderate improvement in the power of both the SHORT (10.3%, ± 4.4%) and the LONG training group (10.7%, ± 6.8%) during the last eight sprints Of 20 s. A small to moderate decrease in heart rate, and perceived exertion in both groups during the skating sport was observed, but only the LARGO group showed a substantial decrease in subsequent 5-km race time (64 ± 59 s). Moderately trained athletes should use long-term and short-term high intensity interval training to improve physiology and performance in skating. Intervals longer than 5 min in skating are more likely to exert beneficial effects on performance in 5 km races. | es_CO |
dc.format.extent | 97 | es_CO |
dc.format.mimetype | application/pdf | es_CO |
dc.language.iso | es | es_CO |
dc.publisher | Universidad de Pamplona – Facultad de Educación | es_CO |
dc.subject | Interval training, | es_CO |
dc.subject | HIIT largo-corto, | es_CO |
dc.subject | VO2 Máximo. | es_CO |
dc.title | Efectos de dos métodos de entrenamiento (HIIT) y su relación sobre el volumen máximo de oxígeno en patinadores de la pre-selección de Santander. | es_CO |
dc.type | http://purl.org/coar/resource_type/c_bdcc | es_CO |
dc.date.accepted | 2017-09-08 | - |
dc.relation.references | 1. Bailey, D., Pearce, M., Etxebarria, N., & Ingham, S. (2007). Correlates of performance in triathlon [abstract]. The 12th Annual Congress of the European College of Sports Science, Jyvaskyla. | es_CO |
dc.relation.references | 2. Bentley, D. J., Millet, G. P., Vleck, V. E., & McNaughton, L. R. (2002). Specific aspects of contemporary triathlon: Implications for physiological analysis and performance [Research Support, Non-U. S. Gov't Review], Sports Medicine, 32, 345- 359. doi:10.2165/00007256-200232060-00001 | es_CO |
dc.relation.references | 3. Bernard, T., Hausswirth, C, Le Meur, Y., Bignet, F., Dorel, S., & Brisswalter, J. (2009). Distribution of power output during the cycling stage of a Triathlon World Cup. Medicine and Science in Sports and Exercise, 41, 1296-1302. doi:10.1249/ MSS.0b013e318195a233 | es_CO |
dc.relation.references | 4. Billat, V. L., Demarle, A., Slawinski, J., Paiva, M., & Koralsztein, J. P. (2001). Physical and training characteristics of top-class marathon runners [Comparative Study]. Medicine and Science in Sports and Exercise, 33, 2089-2097. doi:10.1097/00005768-200112000-00018 | es_CO |
dc.relation.references | 5. Billat, V. L., Slawinski, J., Bocquet, V., Demarle, A., Lafitte, L., Chassaing, P., & Koralsztein, J. P. (2000). Intermittent runs at the velocity associated with maximal oxygen uptake enables subjects to remain at maximal oxygen uptake for a longer time than intense but submaximal runs [Research Support, Non-U. S. Gov't], European Journal of Applied Physiology, 81, 188-196. doi:10.1007/s004210050029 | es_CO |
dc.relation.references | 6. Bogdanis, G C, Nevill, M. E., Boobis, L. H., & Lakomy, H. K. (1996). Contribution of phosphocreatine and aerobic metabolism to energy supply during repeated sprint exercise. Journal of Applied Physiology, 80, 876-884. | es_CO |
dc.relation.references | 7. Burgomaster, K. A., Howarth, K. R., Phillips, S. M., Rakobow-chuk, M., Macdonald, M. J., McGee, S. L., & Gibala, M. J. (2008). Similar metabolic adaptations during exercise after low volume sprint interval and traditional endurance training in humans [Controlled Clinical Trial Research Support, Non-U. S. Gov't], Journal of Applied Physiology, 586(1), 151-160. doi:10.1113/jphysiol.2007.142109 | es_CO |
dc.relation.references | 8. Cohen, J. (1988). Statistical power analysis for the behavioural sciences. Hillsdale, NJ: Lawrence Erlbaum. | es_CO |
dc.relation.references | 9. Ebert, T. R., Martin, D. T., Stephens, B., & Withers, R. T. (2006). Power output during a professional men's road-cycling tour. International Journal of Sports Physiology and Performance, 1, 324-335. | es_CO |
dc.relation.references | 10. Etxebarria, N, Anson, J. M., Pyne, D. B., & Ferguson, R. A. (2013). Cycling attributes that enhance running performance after the cycle section in triathlon. International Journal of Sports Physiology and Performance [Epub ahead of print, Jan 23]. | es_CO |
dc.relation.references | 11. Etxebarria, N, Hunt, E. A. J., Ingham, S. A., & Ferguson, R. A. (2013). Physiological assessment of isolated running does not directly replicate running capacity after triathlon-specific cycling. Journal of Sports Sciences. doi:10.1080/02640414.2013.819520 | es_CO |
dc.relation.references | 12. Faulkner, J. A., Roberts, D. E., Elk, R L., & Conway, J. (1971). Cardiovascular responses to submaximum and maximum effort cycling and running. Journal of Applied Physiology, 30, 457-461. | es_CO |
dc.relation.references | 13. Gaitanos, G C, Williams, C, Boobis, L. H., & Brooks, S. (1993). Human muscle metabolism during intermittent maximal exercise. Journal of Applied Physiology, 75, 712-719. | es_CO |
dc.relation.references | 14. Gibala, M. J., Little, J. P., Macdonald, M. J., & Hawley, J. A. (2012). Physiological adaptations to low-volume, high-intensity interval training in health and disease [Research Support, Non-U. S. Gov't Review], The Journal of Physiology, 590 (Pt 5), 1077-1084. doi:10.1113/jphysiol.2011.224725 | es_CO |
dc.relation.references | 15. Harris, R. C, Edwards, R. H. T., Hultman, E., Nordesjo, L. O., Nylind, B., & Sahlin, K. (1976). The time course of phosphor-ylcreatine resynthesis during recovery of the quadriceps muscle in man. Pflugers Archiv: European Journal of Physiology, 367(2), 137-142. doi:10.1007/BF00585149 | es_CO |
dc.relation.references | 16. Hawley, J. A., Myburgh, K. H., Noakes, T. D., & Dennis, S. C. (1997). Training techniques to improve fatigue resistance and enhance endurance performance. Journal of Sports Sciences, 15, 325-333. doi: 10.1080/026404197367335 | es_CO |
dc.relation.references | 17. Hawley, J. A., & Noakes, T. D. (1992). Peak power output predicts maximal oxygen uptake and performance time in trained cyclists. European Journal of Applied Physiology and Occupational Physiology, 65(1), 79-83. doi:10.1007/BF014 66278 | es_CO |
dc.relation.references | 18. Heiden, T., & Burnett, A. (2003). The effect of cycling on muscle activation in the running leg of an Olympic distance triathlon [Clinical Trial], Sports Biomechanics, 2(1), 35-49. doi:10.1080/ 14763140308522806 | es_CO |
dc.relation.references | 19. Hopkins, W. G. (2000). Measures of reliability in sports medicine and science. Sports Medicine, 30(1), 1-15. doi:10.2165/ 00007256-200030010-00001 | es_CO |
dc.relation.references | 20. Hopkins, W. G., Marshall, S. W., Batterham, A. M., & Hanin, J. (2009). Progressive statistics for studies in sports medicine and exercise science [Review], Medicine and Science in Sports and Exercise, 41(1), 3-13. doi:10.1249/MSS.0b013e31818cb278 | es_CO |
dc.relation.references | 21. Hue, O., Le Galláis, D., Chollet, D., & Prefaut, C. (2000). Ventilatory threshold and maximal oxygen uptake in present triathletes [Comparative Study]. Canadian Journal of Applied Physiology, 25, 102-113. doi:10.1139/h00-007 | es_CO |
dc.relation.references | 22. Juel, C, Klarskov, C, Nielsen, J. J., Krustrup, P., Mohr, M., & Bangsbo, J. (2004). Effect of high-intensity intermittent training on lactate and H+ release from humanskeletal muscle [Research Support, Non-U. S. Gov't], American Journal of Physiology, 286, E245-251. doi:10.1152/ajpendo.00303.2003 | es_CO |
dc.relation.references | 23. Laursen, P. B. (2010). Training for intense exercise performance: high-intensity or high-volume training? [Review]. Scandinavian Journal of Medicine & Science in Sports, 20 (Suppl. 2), 1-10. doi:10.1111/j.1600-0838.2010.01184.x | es_CO |
dc.relation.references | 24. Laursen, P. B., Shing, C. M., Peake, J. M., Coombes, J. S., & Jenkins, D. G. (2005). Influence of high-intensity interval training on adaptations in well-trained cyclists. Journal of Strength and Conditioning Research Association, 19, 527-533. doi:10.1519/15964.1 | es_CO |
dc.relation.references | 25. Le Meur, Y., Hausswirth, C, Dorel, S., Bignet, F., Brisswalter, J., & Bernard, T. (2009). Influence of gender on pacing adopted by elite triathletes during a competition [Research Support, Non-U. S. Gov't], European Journal of Applied Physiology, 106, 535-545. doi:10.1007/s00421-009-1043-4 | es_CO |
dc.relation.references | 26. Lindsay, F. H., Hawley, J. A., Myburgh, K. H., Schomer, H. H., Noakes, T. D., & Dennis, S. C. (1996). Improved athletic performance in highly trained cyclists after interval training. Medicine and Science in Sports and Exercise, 28, 1427-1434. doi:10.1097/00005768-199611000-00013 | es_CO |
dc.relation.references | 27. Lucia, A., Joyos, H., & Chicharro, J. L. (2000). Physiological response to professional road cycling: Climbers vs. time trialists [Research Support, Non-U.S. Gov't], International Journal of Sports Medicine, 21, 505-512. doi:10.1055/s-2000-7420 | es_CO |
dc.relation.references | 28. Mohr, M., Krustrup, P., Nielsen, J. J., Nybo, L., Rasmussen, M. K, Juel, C, & Bangsbo, J. (2007). Effect of two different intense training regimens on skeletal muscle ion transport proteins and fatigue development [Comparative Study Research Support, Non-U. S. Gov't], American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 292, Rl 594-1602. doi:10.1152/ajpregu.00251.2006 | es_CO |
dc.relation.references | 29. Saunders, P. U., Pyne, D. B., Telford, R. D., & Hawley, J. A. (2004). Reliability and variability of running economy in elite distance runners [Clinical Trial Validation Studies], Medicine and Science in Sports and Exercise, 36, 1972-1976. doi:10.1249/ 01.MSS.0000145468.17329.9F | es_CO |
dc.relation.references | 30. Stepto, N. K, Hawley, J. A., Dennis, S. C, & Hopkins, W. G. (1999). Effects of different interval-training programs on cycling time-trial performance [Clinical Trial Randomized Controlled Trial], Medicine and Science in Sports and Exercise, 31, 736- 741. doi:10.1097/00005768-199905000-00018 | es_CO |
dc.rights.accessrights | http://purl.org/coar/access_right/c_abf2 | es_CO |
dc.type.coarversion | http://purl.org/coar/resource_type/c_2df8fbb1 | es_CO |
Aparece en las colecciones: | Maestría en Ciencias de la Actividad Física y del Deporte |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
Tarazona_2017_TG.pdf | Tarazona_2017_TG.pdf | 2,13 MB | Adobe PDF | Visualizar/Abrir |
Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.