• Repositorio Institucional Universidad de Pamplona
  • Producción Editorial Universidad de Pamplona
  • Revistas
  • Revista Colombiana de Tecnologias de Avanzada (RCTA)
  • Por favor, use este identificador para citar o enlazar este ítem: http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/10374
    Registro completo de metadatos
    Campo DC Valor Lengua/Idioma
    dc.contributor.authorChanchí Golondrino, Gabriel Elías-
    dc.contributor.authorSaba, Manuel-
    dc.contributor.authorOspina Alarcón, Manuel Alejando-
    dc.date.accessioned2025-10-14T21:15:13Z-
    dc.date.available2025-10-14T21:15:13Z-
    dc.date.issued2025-01-01-
    dc.identifier.citationG. E. Chanchí Golondrino, M. Saba, y M. A. Ospina Alarcón, «Propuesta de un método computacional para la detección de asbesto en imágenes hiperespectrales a partir de la similitud diferencial espectral», RCTA, vol. 1, n.º 45, pp. 195–203, ene. 2025. https://doi.org/10.24054/rcta.v1i45.3279es_CO
    dc.identifier.issn1692-7257-
    dc.identifier.issn2500-8625-
    dc.identifier.urihttp://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/10374-
    dc.descriptionTeniendo en cuenta que uno de los desafíos de las imágenes hiperespectrales es la identificación de métodos que permitan la detección de materiales de manera eficaz y eficiente, en este artículo se propuso un nuevo método para la detección de asbesto en imágenes hiperespectrales basado en la similitud diferencial espectral, a través del cual es posible determinar que tan cercana es la firma espectral de un pixel determinado con respecto a la firma espectral del asbesto. El método propuesto fue implementado mediante el uso de librerías del dominio del código abierto tales como: spectral, numpy, pandas y matplotlib, obteniendo que con respecto al método de correlación fue detectado un 0.813% menos pixeles de vegetación. Así mismo, se obtuvo a nivel de la eficiencia computacional que el método propuesto resultó 4.27 veces más rápido que el método de correlación. Los resultados obtenidos permiten concluir que el método propuesto presenta una adecuada eficacia y una excelente eficiencia, lo cual permite que pueda ser considerado para ser integrado en herramientas para el procesamiento y análisis de imágenes hiperespectrales en el dominio académico y empresarial.es_CO
    dc.description.abstractConsidering that one of the challenges of hyperspectral imaging is identifying methods that enable the effective and efficient detection of materials, this article proposes a new method for detecting asbestos in hyperspectral images based on spectral differential similarity. This method determines how closely the spectral signature of a given pixel matches the spectral signature of asbestos. The proposed method was implemented using open-source libraries such as spectral, numpy, pandas, and matplotlib. Compared to the correlation method, it detected 0.813% fewer vegetation pixels. In terms of computational efficiency, the proposed method was 4.27 times faster than the correlation method. The results indicate that the proposed method demonstrates adequate efficacy and excellent efficiency, making it a strong candidate for integration into tools for processing and analyzing hyperspectral images in academic and industrial domains.es_CO
    dc.format.extent9es_CO
    dc.format.mimetypeapplication/pdfes_CO
    dc.language.isoeses_CO
    dc.publisherAldo Pardo García, Revista Colombiana de Tecnologías de Avanzada, Universidad de Pamplona.es_CO
    dc.relation.ispartofseries195;203-
    dc.subjectasbestoes_CO
    dc.subjectcorrelaciónes_CO
    dc.subjectimagen hiperespectrales_CO
    dc.subjectfirma espectrales_CO
    dc.subjectsensado remotoes_CO
    dc.titlePropuesta de un método computacional para la detección de asbesto en imágenes hiperespectrales a partir de la similitud diferencial espectrales_CO
    dc.title.alternativeProposal of a method for asbestos detection in hyperspectral images based on spectral differential similarityes_CO
    dc.typehttp://purl.org/coar/resource_type/c_2df8fbb1es_CO
    dc.description.editionVol. 1 Núm. 45 (2025): Enero – Junioes_CO
    dc.relation.referencesX. Zhang, “Hyperspectral image classification based on convolutional neural network,” Appl. Comput. Eng., vol. 42, no. 1, pp. 239–242, Feb. 2024, doi: 10.54254/2755-2721/42/20230783.es_CO
    dc.relation.referencesV. K. Munipalle, U. R. Nelakuditi, M. K. C.V.S.S., and R. R. Nidamanuri, “Ultra-high-resolution hyperspectral imagery datasets for precision agriculture applications,” Data Br., vol. 55, p. 110649, Aug. 2024, doi: 10.1016/j.dib.2024.110649.es_CO
    dc.relation.referencesÉrica S. Pinto, Gustavo Pessin, and Alan K. Rêgo Segundo, “Análise de Imagens Hiperespectrais para reconhecimento de depósitos de minério de ferro utilizando aprendizado não supervisionado,” Oct. 2022. doi: 10.20906/CBA2022/3462.es_CO
    dc.relation.referencesAlanazi, N. H. A. Wahab, and B. A. S. Al-Rimy, “Hyperspectral Imaging for Remote Sensing and Agriculture: A Comparative Study of Transformer-based Models,” in 2024 IEEE 14th Symposium on Computer Applications & Industrial Electronics (ISCAIE), May 2024, pp. 129–136. doi: 10.1109/ISCAIE61308.2024.10576233.es_CO
    dc.relation.referencesY. E. García-Vera, A. Polochè-Arango, C. A. Mendivelso-Fajardo, and F. J. Gutiérrez-Bernal, “Hyperspectral Image Analysis and Machine Learning Techniques for Crop Disease Detection and Identification: A Review,” Sustainability, vol. 16, no. 14, p. 6064, Jul. 2024, doi: 10.3390/su16146064.es_CO
    dc.relation.referencesC. Vairavan, B. M. Kamble, A. G. Durgude, S. R. Ingle, and K. Pugazenthi, “Hyperspectral Imaging of Soil and Crop: A Review,” J. Exp. Agric. Int., vol. 46, no. 1, pp. 48–61, Jan. 2024, doi: 10.9734/jeai/2024/v46i12290.es_CO
    dc.relation.referencesC. Harsha Vardhan, R. S. Vaddi, J. Kadavakollu, and K. Kalpana, “Classification of Hyperspectral Remote Sensing Images Using Deep Learning,” 2024, pp. 349–358. doi: 10.1007/978-981-99-6547-2_27.es_CO
    dc.relation.referencesS. Qian, “Overview of Hyperspectral Imaging Remote Sensing from Satellites,” in Advances in Hyperspectral Image Processing Techniques, Wiley, 2022, pp. 41–66. doi: 10.1002/9781119687788.ch2.es_CO
    dc.relation.referencesM. Akewar and M. Chandak, “Hyperspectral Imaging Algorithms and Applications: A Review.” Jan. 02, 2024. doi: 10.36227/techrxiv.24743562.v2.es_CO
    dc.relation.referencesR. J. Murphy, M. J. Van Kranendonk, S. J. Kelloway, and I. E. Wainwright, “Complex patterns in fossilized stromatolites revealed by hyperspectral imaging (400–2496 nm),” Geobiology, vol. 14, no. 5, pp. 419–439, Sep. 2016, doi: 10.1111/gbi.12184.es_CO
    dc.relation.referencesN. Zaini, F. Van der Meer, and H. Van der Werff, “Determination of Carbonate Rock Chemistry Using Laboratory-Based Hyperspectral Imagery,” Remote Sens., vol. 6, no. 5, pp. 4149–4172, May 2014, doi: 10.3390/rs6054149.es_CO
    dc.relation.referencesE. A. MacLagan, E. L. Walton, C. D. K. Herd, and B. Rivard, “Hyperspectral imaging of drill core from the Steen River impact structure, Canada: Implications for hydrothermal activity and formation of suevite‐like breccias,” Meteorit. Planet. Sci., vol. 55, no. 7, pp. 1564–1580, Jul. 2020, doi: 10.1111/maps.13388.es_CO
    dc.relation.referencesD. Manolakis, E. Truslow, M. Pieper, T. Cooley, and M. Brueggeman, “Detection Algorithms in Hyperspectral Imaging Systems: An Overview of Practical Algorithms,” IEEE Signal Process. Mag., vol. 31, no. 1, pp. 24–33, Jan. 2014, doi: 10.1109/MSP.2013.2278915.es_CO
    dc.relation.referencesM. Shimoni, R. Haelterman, and C. Perneel, “Hypersectral Imaging for Military and Security Applications: Combining Myriad Processing and Sensing Techniques,” IEEE Geosci. Remote Sens. Mag., vol. 7, no. 2, pp. 101–117, Jun. 2019, doi: 10.1109/MGRS.2019.2902525.es_CO
    dc.relation.referencesX. Briottet et al., “Military applications of hyperspectral imagery,” in Defense and Security Symposium, May 2006, p. 62390B. doi: 10.1117/12.672030.es_CO
    dc.relation.referencesE. Viero, D. Gubiani, M. Basso, M. Marin, and G. Sgrazzutti, “Identification of asbestos roofing from hyperspectral images.” Mar. 09, 2024. doi: 10.5194/egusphere-egu24-15565.es_CO
    dc.relation.referencesG. Bonifazi, G. Capobianco, S. Serranti, S. Malinconico, and F. Paglietti, “ASBESTOS DETECTION IN CONSTRUCTION AND DEMOLITION WASTE ADOPTING DIFFERENT CLASSIFICATION APPROACHES BASED ON SHORT WAVE INFRARED HYPERSPECTRAL IMAGING,” Detritus, no. 20, pp. 90–99, Aug. 2022, doi: 10.31025/2611-4135/2022.15211.es_CO
    dc.relation.referencesG. Bonifazi et al., “Asbestos detection in construction and demolition waste by different classification methods applied to short-wave infrared hyperspectral images,” Spectrochim. Acta Part A Mol. Biomol. Spectrosc., vol. 307, p. 123672, Feb. 2024, doi: 10.1016/j.saa.2023.123672.es_CO
    dc.relation.referencesD. Enrique Valdelamar Martínez, M. Saba, and L. K. Torres Gil, “Assessment of asbestos-cement roof distribution and prioritized intervention approaches through hyperspectral imaging,” Heliyon, vol. 10, no. 3, p. e25612, Feb. 2024, doi: 10.1016/j.heliyon.2024.e25612.es_CO
    dc.relation.referencesD. D. Langer, T. A. Johansen, and A. J. Sorensen, “Interactive Hyperspectral Data Inspection During Field Operations,” in 2022 12th Workshop on Hyperspectral Imaging and Signal Processing: Evolution in Remote Sensing (WHISPERS), Sep. 2022, pp. 1–5. doi: 10.1109/WHISPERS56178.2022.9955108.es_CO
    dc.relation.referencesV. K. Munipalle, U. Rani Nelakuditi, and R. R. Nidamanuri, “Impact of Dimensionality Reduction Techniques on Classification of Hyperspectral Images,” in 2023 3rd International Conference on Intelligent Technologies (CONIT), Jun. 2023, pp. 1–6. doi: 10.1109/CONIT59222.2023.10205828.es_CO
    dc.relation.referencesJ. M. Haut, J. M. Franco-Valiente, M. E. Paoletti, S. Moreno-Álvarez, and A. Pardo-Diaz, “Hyperspectral Image Analysis Using Cloud-Based Support Vector Machines,” SN Comput. Sci., vol. 5, no. 6, p. 719, Jul. 2024, doi: 10.1007/s42979-024-03073-z.es_CO
    dc.relation.referencesS. Li, W. Song, L. Fang, Y. Chen, P. Ghamisi, and J. A. Benediktsson, “Deep Learning for Hyperspectral Image Classification: An Overview,” IEEE Trans. Geosci. Remote Sens., vol. 57, no. 9, pp. 6690–6709, Sep. 2019, doi: 10.1109/TGRS.2019.2907932.es_CO
    dc.relation.referencesPlaza et al., “Recent advances in techniques for hyperspectral image processing,” Remote Sens. Environ., vol. 113, pp. S110–S122, Sep. 2009, doi: 10.1016/j.rse.2007.07.028.es_CO
    dc.relation.referencesK. Saheb Ettabaa and M. Ben Salem, “Adaptive Progressive Band Selection for Dimensionality Reduction in Hyperspectral Images,” J. Indian Soc. Remote Sens., vol. 46, no. 2, pp. 157–167, Feb. 2018, doi: 10.1007/s12524-017-0691-9.es_CO
    dc.relation.referencesElmaizi, H. Nhaila, E. Sarhrouni, A. Hammouch, and C. Nacir, “A novel information gain based approach for classification and dimensionality reduction of hyperspectral images,” Procedia Comput. Sci., vol. 148, pp. 126–134, 2019, doi: 10.1016/j.procs.2019.01.016.es_CO
    dc.relation.referencesG. E. Chanchí Golondrino, M. A. Ospina Alarcón, and M. Saba, “Vegetation Identification in Hyperspectral Images Using Distance/Correlation Metrics,” Atmosphere (Basel)., vol. 14, no. 7, p. 1148, Jul. 2023, doi: 10.3390/atmos14071148.es_CO
    dc.relation.referencesZ. Chao, F. Xianchuang, W. Tong, Z. Yuanzhi, and C. Shengbo, “Detection of Ore‐Forming Elements Migrated From Rock and Soil to Vegetation Leaves Using Hyperspectral Data,” Radio Sci., vol. 58, no. 8, Aug. 2023, doi: 10.1029/2022RS007580.es_CO
    dc.relation.referencesN. OWADA, M. TOBITA, B. SINAICE, H. TORIYA, S. UTSUKI, and Y. KAWAMURA, “Development of Asbestos Containing Serpentinite Identification Method Using Hyperspectral Imaging,” Int. J. Soc. Mater. Eng. Resour., vol. 25, no. 2, pp. 189–194, Oct. 2022, doi: 10.5188/ijsmer.25.189.es_CO
    dc.relation.referencesY. Jeong, J. Yu, L. Wang, and H.-C. Kim, “Spatial Assessment of Asbestos Mine Remediation Effect Using Airborne Hyperspectral Imaging System.” May 15, 2023. doi: 10.5194/egusphere-egu23-1693.es_CO
    dc.rights.accessrightshttp://purl.org/coar/access_right/c_abf2es_CO
    dc.type.coarversionhttp://purl.org/coar/resource_type/c_2df8fbb1es_CO
    Aparece en las colecciones: Revista Colombiana de Tecnologias de Avanzada (RCTA)

    Ficheros en este ítem:
    Fichero Descripción Tamaño Formato  
    Art19_V1_N45_2025_esp.pdfArt19_V1_N45_2025_esp745,16 kBAdobe PDFVisualizar/Abrir


    Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.