Por favor, use este identificador para citar o enlazar este ítem:
http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/10294
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | Palacios Gonzalez, Ilya Geraldine. | - |
dc.date.accessioned | 2025-10-08T21:21:45Z | - |
dc.date.available | 2023 | - |
dc.date.available | 2025-10-08T21:21:45Z | - |
dc.date.issued | 2023 | - |
dc.identifier.citation | Palacios Gonzalez, I. G. (2023) Efecto de la translocación de glucosa sobre el metabolismo de STYLOPHORA PISTILLATA en la relación mutualista Cnidaria-microalga, empleando modelos estequiométricos. [Trabajo de Grado Pregrado, Universidad de Pamplona]. Repositorio Hulago Universidad de Pamplona. http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/10294 | es_CO |
dc.identifier.uri | http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/10294 | - |
dc.description | La especie de coral Stylophora pistillata es de tipo ramificado que se distribuye en el océano ÍNDICO Y PACÍFICO. Establece una relación simbiótica con dinoflagelados de la familia Symbiodiniaceae, lo que le permite sobrevivir en aguas tropicales y subtropicales oligotróficas, contribuyendo a la formación del ecosistema de arrecifes de coral, uno de los más diversos del planeta. Sin embargo, esta especie enfrenta varias amenazas, como el cambio climático, el aumento de la temperatura del agua, la contaminación por eutrofización y la pesca, lo que puede llevar a la muerte del coral y a la disminución de su población, lo que afecta el ecosistema de arrecife coralino. Para entender mejor su metabolismo y estudiar cómo afecta la disponibilidad de la fuente de carbono en procesos de alto costo energético, como el proceso de calcificación, se realizó esta investigación evaluando la entrada del fotosintato glucosa en el metabolismo del coral Stylophora pistillata. La investigación se llevó a cabo mediante un modelo basado en restricciones estequiométricas, integrando el genoma con su anotación funcional para reconstruir su red metabólica. Se determinaron dos escenarios, simbiótico y aposimbiótico. Con lo anterior el modelo se evidenció que hay diferencias en los EFMs (Flujo de modos elementales) de cada escenario, pues al bloquear la entrada de glucosa y amonio hubo un menor potencial de producción de los metabolitos precursores de biomasa, como son los aminoácidos y del calcio, estos resultados demuestran la incidencia que tiene la simbiosis mutualista en procesos como la calcificación pues al encontrarse en equilibrio la simbiosis muestra una tasa de calcificación favorable para formar finalmente la estructura esquelética en 3D que sustenta la formación de los arrecifes de coral, sin embargo, en el estado aposimbiotico la simbiosis se rompe totalmente al no poder reciclar el huésped amonio por vías como la GS/GOGAT que es precursora de aminoácidos no esenciales para la Matriz orgánica esquelética y la formación del esqueleto, se evidencia que se produce una cantidad muy baja de metabolitos de biomasa esto sucede por qué el huésped obtiene de la comida el aminoácido colina. | es_CO |
dc.description.abstract | Stylophora pistillata coral is a branching coral species distributed in the Indian and Pacific Oceans. Like other corals, it establishes a symbiotic relationship with dinoflagellates from the Symbiodiniaceae family, allowing them to survive in oligotrophic tropical and subtropical waters and contributing to the formation of coral reef ecosystems, one of the most diverse on the planet. However, this species faces several threats, such as climate change, increasing water temperature, eutrophication pollution, and fishing, which can lead to coral mortality and population decline, affecting the coral reef ecosystem. To better understand its metabolism and study how the availability of carbon sources affects energydemanding processes like calcification, this research evaluated the entry of the photosynthetic product glucose into the metabolism of Stylophora pistillata coral. The investigation was carried out using a stoichiometric constraint-based model, integrating the genome with its functional annotation that reconstructed its metabolic network, obtaining both a symbiotic and an aposymbiotic scenario. The model demonstrated differences in metabolic flux distributions between each scenario, as blocking the entry of glucose and ammonium resulted in reduced production of amino acid biomass and calcium. These results demonstrate the impact of mutualistic symbiosis on processes such as calcification, as symbiosis in equilibrium exhibits a favorable calcification rate to ultimately form the 3D skeletal structure that supports coral reef formation. However, in the aposymbiotic state, symbiosis is completely disrupted as the host cannot recycle ammonium through pathways like GS/GOGAT, which are precursors for non-essential amino acids required for the organic matrix of the skeleton and skeletal formation. It is evident that a very low amount of biomass metabolites is produced in this state, as the host obtains the amino acid choline from its diet. | es_CO |
dc.format.extent | 44 | es_CO |
dc.format.mimetype | application/pdf | es_CO |
dc.language.iso | es | es_CO |
dc.publisher | Universidad de Pamplona - Facultad de Ciencias Básicas. | es_CO |
dc.subject | Huésped, | es_CO |
dc.subject | calcificación, | es_CO |
dc.subject | modelo, | es_CO |
dc.subject | simbiótico, | es_CO |
dc.subject | aposimbiotico, | es_CO |
dc.subject | equilibrio. | es_CO |
dc.title | Efecto de la translocación de glucosa sobre el metabolismo de STYLOPHORA PISTILLATA en la relación mutualista Cnidaria-microalga, empleando modelos estequiométricos. | es_CO |
dc.type | http://purl.org/coar/resource_type/c_7a1f | es_CO |
dc.date.accepted | 2023 | - |
dc.relation.references | Bertucci, A., Tambutté, S., Supuran, C. T., Allemand, D., & Zoccola, D. (2011). A new coral carbonic anhydrase in Stylophora pistillata. Marine Biotechnology, 13, 992-1002. | es_CO |
dc.relation.references | Bhagooli, R., & Hidaka, M. (2004). Photoinhibition, bleaching susceptibility and mortality in two scleractinian corals, Platygyra ryukyuensis and Stylophora pistillata, in response to thermal and light stresses. Comparative biochemistry and physiology. Part A, Molecular & integrative physiology, 137(3), 547–555. https://doi.org/10.1016/j.cbpb.2003.11.008 | es_CO |
dc.relation.references | Burriesci, M. S., Raab, T. K., & Pringle, J. R. (2012). Evidence that glucose is the major transferred metabolite in dinoflagellate-cnidarian symbiosis. The Journal of experimental biology, 215(Pt 19), 3467–3477. | es_CO |
dc.relation.references | Byler, K. A., Carmi-Veal, M., Fine, M., & Goulet, T. L. (2013). Multiple symbiont acquisition strategies as an adaptive mechanism in the coral Stylophora pistillata. PloS one, 8(3), e59596. https://doi.org/10.1371/journal.pone.0059596 | es_CO |
dc.relation.references | Caspi, R., Billington, R., Ferrer, L., Foerster, H., Fulcher, C. A., Keseler, I. M., ... & Karp, P. D. (2020). The MetaCyc database of metabolic pathways and enzymes. Nucleic acids research, 48(D1), D445-D453. doi: 10.1093/nar/gkz1012 | es_CO |
dc.relation.references | Chen, J., Huang, Y., & Zhong, C. (2023). Minimizing enzyme mass to decompose flux distribution for identifying biologically relevant elementary flux modes. Biosystems, 104981. | es_CO |
dc.relation.references | Cohen, S., & Fine, M. (2012). Measuring gross and net calcification of a reef coral under ocean acidification conditions: methodological considerations. Biogeosciences Discussions, 9(7), 8241-8272. https://doi.org/10.5194/bgd-9-8241-2012 | es_CO |
dc.relation.references | Colley, N. J., & Trench, R. K. (1983). Selectivity in phagocytosis and persistence of symbiotic algae in the scyphistoma stage of the jellyfish Cassiopeia xamachana. Proceedings of the Royal Society of London. Series B, Biological sciences, 219(1214), 61– 82. https://doi.org/10.1098/rspb.1983.0059 | es_CO |
dc.relation.references | Cornwall, C. E., Comeau, S., Kornder, N. A., Perry, C. T., van Hooidonk, R., DeCarlo, T. M., Pratchett, M. S., Anderson, K. D., Browne, N., Carpenter, R., Diaz-Pulido, G., D'Olivo, J. P., Doo, S. S., Figueiredo, J., Fortunato, S. A. V., Kennedy, E., Lantz, C. A., McCulloch, M. T., González-Rivero, M., Schoepf, V., … Lowe, R. J. (2021). Global declines in coral reef calcium carbonate production under ocean acidification and warming. Proceedings of the National Academy of Sciences of the United States of America, 118(21), e2015265118. https://doi.org/10.1073/pnas.2015265118 | es_CO |
dc.relation.references | Cui, G., Liew, Y. J., Li, Y., Kharbatia, N., Zahran, N. I., Emwas, A. H., Eguiluz, V. M., & Aranda, M. (2019). Host-dependent nitrogen recycling as a mechanism of symbiont control in Aiptasia. PLoS genetics, 15(6), e1008189. https://doi.org/10.1371/journal.pgen.1008189 | es_CO |
dc.relation.references | Davy, S. K., Allemand, D., & Weis, V. M. (2012). Cell biology of cnidariandinoflagellate symbiosis. Microbiology and molecular biology reviews : MMBR, 76(2), 229–261. https://doi.org/10.1128/MMBR.05014-11 | es_CO |
dc.relation.references | Donner, S. D., Skirving, W. J., Little, C. M., Oppenheimer, M., & Hoegh‐Guldberg, O. V. E. (2005). Global assessment of coral bleaching and required rates of adaptation under climate change. Global Change Biology, 11(12), 2251-2265. https://doi.org/10.1111/j.1365-2486.2005.01073.x | es_CO |
dc.relation.references | Doney, S. C., Ruckelshaus, M., Duffy, J. E., Barry, J. P., Chan, F., English, C. A., ... & Polovina, J. (2012). Climate change impacts on marine ecosystems. Annual Review of Marine Science, 4, 11-37. | es_CO |
dc.relation.references | Drake, J. L., Mass, T., Haramaty, L., Zelzion, E., Bhattacharya, D., & Falkowski, P. G. (2013). Proteomic analysis of skeletal organic matrix from the stony coral Stylophora pistillata. Proceedings of the National Academy of Sciences of the United States of America, 110(10), 3788–3793. https://doi.org/10.1073/pnas.1301419110 | es_CO |
dc.relation.references | Drake, J. L., Mass, T., Stolarski, J., Von Euw, S., van de Schootbrugge, B., & Falkowski, P. G. (2020). How corals made rocks through the ages. Global change biology, 26(1), 31–53. https://doi.org/10.1111/gcb.14912 | es_CO |
dc.relation.references | Dubinsky, Z., & Jokiel, P. L. (1994). Ratio of energy and nutrient fluxes regulates symbiosis between zooxanthellae and corals. Pac Sci 48(3): 313-324. http://hdl.handle.net/10125/2241. | es_CO |
dc.relation.references | Franz, M., Lopes, C. T., Fong, D., Kucera, M., Cheung, M., Siper, M. C., ... & Bader, G. D. (2023). Cytoscape. js 2023 update: a graph theory library for visualization and analysis. Bioinformatics, 39(1), btad031. | es_CO |
dc.relation.references | Ferrier-Pagès, C., Gattuso, J. P., Dallot, S., & Jaubert, J. (2000). Effect of nutrient enrichment on growth and photosynthesis of the zooxanthellate coral Stylophora pistillata. Coral Reefs, 19, 103-113. | es_CO |
dc.relation.references | Ferrier-Pagès, C., Witting, J., Tambutté, E., & Sebens, K. P. (2003). Effect of natural zooplankton feeding on the tissue and skeletal growth of the scleractinian coral Stylophora pistillata. Coral Reefs, 22, 229-240. | es_CO |
dc.relation.references | Fitt, W. K., & Trench, R. K. (1983). Endocytosis of the symbiotic dinoflagellate Symbiodinium microadriaticum Freudenthal by endodermal cells of the scyphistomae of Cassiopeia xamachana and resistance of the algae to host digestion. Journal of cell science, 64, 195–212. https://doi.org/10.1242/jcs.64.1.195 | es_CO |
dc.relation.references | Fitt, WK, Gates, RD, Hoegh-Guldberg, O., Bythell, JC, Jatkar, A., Grottoli, AG, ... y Lesser, MP (2009). Response of two species of indo-pacific corals, porites cylindrica and stylophora pistillata, to short-term thermal stress: The host does matter in determining the tolerance of corals to bleaching. Journal of Experimental Marine Biology And Ecology 373 (2) 102-110. https://doi.org/10.1016/j.jembe.2009.03.011 | es_CO |
dc.relation.references | Fitzgerald LM, Szmant AM. Biosynthesis of 'essential' amino acids by scleractinian corals. Biochem J. 1997 Feb 15;322 ( Pt 1)(Pt 1):213-21. doi: 10.1042/bj3220213. PMID: 9078264; PMCID: PMC1218179. | es_CO |
dc.relation.references | Fransolet, D., Roberty, S., & Plumier, J. C. (2012). Establishment of endosymbiosis: the case of cnidarians and Symbiodinium. Journal of Experimental Marine Biology and Ecology, 420, 1-7. https://doi.org/10.1016/j.jembe.2012.03.015 | es_CO |
dc.relation.references | Furla, P., Galgani, I., Durand, I., & Allemand, D. (2000). Sources and mechanisms of inorganic carbon transport for coral calcification and photosynthesis. The Journal of experimental biology, 203(Pt 22), 3445–3457. https://doi.org/10.1242/jeb.203.22.3445 | es_CO |
dc.relation.references | Godinot, C., Ferrier-Pagès, C., & Grover, R. (2009). Control of phosphate uptake by zooxanthellae and host cells in the scleractinian coral Stylophora pistillata. Limnology and oceanography, 54(5), 1627-1633. doi/pdf/10.4319/lo.2009.54.5.1627 | es_CO |
dc.relation.references | Goreau, T. F. (1959). The physiology of skeleton formation in corals. 1. A method for measuring the rate of calcium deposition by corals under different conditions. The Biological Bulletin, 116(1), 59-75. | es_CO |
dc.relation.references | Grover, R., Maguer, J. F., Allemand, D., & Ferrier-Pages, C. (2003). Nitrate uptake in the scleractinian coral Stylophora pistillata. Limnology and Oceanography, 48(6), 2266- 2274. https://doi.org/10.4319/lo.2003.48.6.2266 | es_CO |
dc.relation.references | Grover, R., Maguer, J. F., Reynaud-Vaganay, S., & Ferrier-Pages, C. (2002). Uptake of ammonium by the scleractinian coral Stylophora pistillata: effect of feeding, light, and ammonium concentrations. Limnology and oceanography, 47(3), 782-790. https://doi.org/10.4319/lo.2002.47.3.0782 | es_CO |
dc.relation.references | Hall, E. R., Muller, E. M., Goulet, T., Bellworthy, J., Ritchie, K. B., & Fine, M. (2018). Eutrophication may compromise the resilience of the Red Sea coral Stylophora pistillata to global change. Marine pollution bulletin, 131, 701-711. https://doi.org/10.1016/j.marpolbul.2018.04.067 | es_CO |
dc.relation.references | Hatzimanikatis, V., Li, C., Ionita, J. A., & Broadbelt, L. J. (2004). Metabolic networks: enzyme function and metabolite structure. Current opinion in structural biology, 14(3), 300–306. https://doi.org/10.1016/j.sbi.2004.04.004 | es_CO |
dc.relation.references | Hillyer, K. E., Dias, D. A., Lutz, A., Roessner, U., & Davy, S. K. (2017). Mapping carbon fate during bleaching in a model cnidarian symbiosis: the application of 13 C metabolomics. The New phytologist, 214(4), 1551–1562. https://doi.org/10.1111/nph.14515 | es_CO |
dc.relation.references | Hoegh-Guldberg, O. (1999). Climate change, coral bleaching and the future of the world's coral reefs. Marine and freshwater research, 50(8), 839-866. https://doi.org/10.1071/MF99078 | es_CO |
dc.relation.references | Holcomb, M., Tambutté, E., Allemand, D., & Tambutté, S. (2014). Light enhanced calcification in Stylophora pistillata: effects of glucose, glycerol and oxygen. PeerJ, 2, e375. https://doi.org/10.7717/peerj.375 | es_CO |
dc.relation.references | Houlbrèque, F., Tambutté, E., Allemand, D., & Ferrier-Pagès, C. (2004). Interactions between zooplankton feeding, photosynthesis and skeletal growth in the scleractinian coral Stylophora pistillata. The Journal of experimental biology, 207(Pt 9), 1461–1469. https://doi.org/10.1242/jeb.00911 | es_CO |
dc.relation.references | Kawagiti, S. (1948). The effect of light on calcium deposition in corals. Bull Oceanogr Inst. Taiwan, 4, 65-70. | es_CO |
dc.relation.references | Krief, S., Hendy, E. J., Fine, M., Yam, R., Meibom, A., Foster, G. L., & Shemesh, A. (2010). Physiological and isotopic responses of scleractinian corals to ocean acidification. Geochimica et Cosmochimica Acta, 74(17), 4988-5001. | es_CO |
dc.relation.references | Khayatt, B. I. (2023). Bioinformatics Approach for Metabolism Pathways Curation: Carbohydrate Metabolism and TCA Cycle in the Archaeon Sulfolobus solfataricus P2. Journal of Biotechnology Research Center, 17(1), 5-16. | es_CO |
dc.relation.references | Karp, P. D., Latendresse, M., Paley, S. M., Krummenacker, M., & Ong, Q. D. (2015). Pathway Tools version 19.0 update: software for pathway/genome informatics and systems biology. Briefings in bioinformatics, 17(5), 877-890. doi: 10.1093/bib/bbv079 | es_CO |
dc.relation.references | Keseler, I. M., Mackie, A., Santos-Zavaleta, A., Billington, R., Bonavides-Martínez, C., Caspi, R., & Krummenacker, M. (2017). The EcoCyc database: reflecting new knowledge about Escherichia coli K-12. Nucleic acids research, 45(D1), D543-D550. | es_CO |
dc.relation.references | Kvitt, H., Rosenfeld, H., Zandbank, K., & Tchernov, D. (2011). Regulation of apoptotic pathways by Stylophora pistillata (Anthozoa, Pocilloporidae) to survive thermal stress and bleaching. PloS one, 6(12), e28665. https://doi.org/10.1371/journal.pone.0028665 | es_CO |
dc.relation.references | Lehnert, E. M., Mouchka, M. E., Burriesci, M. S., Gallo, N. D., Schwarz, J. A., & Pringle, J. R. (2014). Extensive differences in gene expression between symbiotic and aposymbiotic cnidarians. G3: Genes, Genomes, Genetics, 4(2), 277-295. https://doi.org/10.1534/g3.113.009084 | es_CO |
dc.relation.references | Lewis, D. H., & Smith, D. C. (1971). The autotrophic nutrition of symbiotic marine coelenterates with special reference to hermatypic corals. 1. Movement of photosynthetic 41 products between the symbionts. Proceedings of the Royal Society of London. Series B. Biological Sciences, 178(1050), 111-129. | es_CO |
dc.relation.references | Pochon, X., Montoya-Burgos, J. I., Stadelmann, B., & Pawlowski, J. (2006). Molecular phylogeny, evolutionary rates, and divergence timing of the symbiotic dinoflagellate genus Symbiodinium. Molecular phylogenetics and evolution, 38(1), 20-30. | es_CO |
dc.relation.references | Logan, D. D., LaFlamme, A. C., Weis, V. M., & Davy, S. K. (2010). Flow‐cytometric characterization of the cell‐surface glycans of symbiotic dinoflagellates (Symbiodinium spp.) 1. Journal of Phycology, 46(3), 525-533. https://doi.org/10.1111/j.1529- 8817.2010.00819.x | es_CO |
dc.relation.references | Maarleveld, T. R., Khandelwal, R. A., Olivier, B. G., Teusink, B., & Bruggeman, F. J. (2013). Basic concepts and principles of stoichiometric modeling of metabolic networks. Biotechnology journal, 8(9), 997–1008. https://doi.org/10.1002/biot.201200291 | es_CO |
dc.relation.references | Maor-Landaw, K., & Levy, O. (2016). Gene expression profiles during short-term heat stress; branching vs. massive Scleractinian corals of the Red Sea. PeerJ, 4, e1814. https://doi.org/10.7717/peerj.1814 | es_CO |
dc.relation.references | Mass, T., Einbinder, S., Brokovich, E., Shashar, N., Vago, R., Erez, J., & Dubinsky, Z. (2007). Photoacclimation of Stylophora pistillata to light extremes: metabolism and calcification. Marine Ecology Progress Series, 334, 93-102. | es_CO |
dc.relation.references | McCulloch, M. T., D'Olivo, J. P., Falter, J., Holcomb, M., & Trotter, J. A. (2017). Coral calcification in a changing World and the interactive dynamics of pH and DIC upregulation. Nature communications, 8, 15686. https://doi.org/10.1038/ncomms15686 | es_CO |
dc.relation.references | Moya, A., Tambutté, S., Bertucci, A., Tambutté, E., Lotto, S., Vullo, D., Supuran, C. T., Allemand, D., & Zoccola, D. (2008). Carbonic anhydrase in the scleractinian coral Stylophora pistillata: characterization, localization, and role in biomineralization. The Journal of biological chemistry, 283(37), 25475–25484. https://doi.org/10.1074/jbc.M804726200 | es_CO |
dc.relation.references | Muscatine L. (1965). Symbiosis of hydra and algae. 3. Extracellular products of the algae. Comparative biochemistry and physiology, 16(1), 77–92. https://doi.org/10.1016/0010-406x(65)90165-9 | es_CO |
dc.relation.references | Muscatine, L. (1990). The role of symbiotic algae in carbon and energy flux in reef corals. Coral reefs: ecosystems of the world, 25, 75-87. | es_CO |
dc.relation.references | Muscatine, L., & Cernichiari, E. (1969). ASSIMILATION OF PHOTOSYNTHETIC PRODUCTS OF ZOOXANTHELLAE BY A REEF CORAL. The Biological bulletin, 137(3), 506–523. https://doi.org/10.2307/1540172 | es_CO |
dc.relation.references | Muscatine, L., Falkowski, P. G., Porter, J. W., & Dubinsky, Z. (1984). Fate of photosynthetic fixed carbon in light-and shade-adapted colonies of the symbiotic coral 42 Stylophora pistillata. Proceedings of the Royal Society of London. Series B. Biological Sciences, 222(1227), 181-202. | es_CO |
dc.relation.references | Patil, K. R., Akesson, M., & Nielsen, J. (2004). Use of genome-scale microbial models for metabolic engineering. Current opinion in biotechnology, 15(1), 64–69. https://doi.org/10.1016/j.copbio.2003.11.003 | es_CO |
dc.relation.references | Raz-Bahat, M., Douek, J., Moiseeva, E., Peters, E. C., & Rinkevich, B. (2017). The digestive system of the stony coral Stylophora pistillata. Cell and tissue research, 368(2), 311–323. https://doi.org/10.1007/s00441-016-2555-y | es_CO |
dc.relation.references | Rinkevich, B. (1989). The contribution of photosynthetic products to coral reproduction. Marine Biology, 101, 259-263. | es_CO |
dc.relation.references | Rinkevich, B., & Loya, Y. (1979). The reproduction of the Red Sea coral Stylophora pistillata. 1. Gonads and planulae. Marine Ecology Progress Series, 133-144. | es_CO |
dc.relation.references | Rinkevich, B., & Loya, Y. (1984). Does light enhance calcification in hermatypic corals?. Marine Biology, 80, 1-6. https://doi.org/10.1007/BF00393120 | es_CO |
dc.relation.references | Rinkevich, B., & Loya, Y. (1983). Oriented translocation of energy in grafted reef corals. Coral Reefs, 1, 243-247. | es_CO |
dc.relation.references | Roberts, J. M., Fixter, L. M., & Davies, P. S. (2001). Ammonium metabolism in the symbiotic sea anemone Anemonia viridis. Hydrobiologia, 461, 25-35.https://doi.org/10.1023/A:1012752828587. | es_CO |
dc.relation.references | Rodriguez-Lanetty, M., Wood-Charlson, E., Hollingsworth, L., Krupp, D. A., & Weis, V. M. (2006). Dynamics of infection and localization of dinoflagellate endosymbionts in larvae of the coral Fungia scutaria during the onset of symbiosis. Mar. Biol, 149, 713-719. | es_CO |
dc.relation.references | Ruppert E., & Barnes, R. (1996). Zoología de los invertebrados. 6ta edición.McGrawHill Interamericana, México. 1114 pp. (traducción de la versión en inglés de 1994). | es_CO |
dc.relation.references | Schuster, S., & Hilgetag, C. (1994). On elementary flux modes in biochemical reaction systems at steady state. Journal of Biological Systems, 2(2), 165-182. | es_CO |
dc.relation.references | Shefy, D., & Rinkevich, B. (2021). Stylophora pistillata—A model colonial species in basic and applied studies. Handbook of Marine Model Organisms in Experimental Biology, 195-216. | es_CO |
dc.relation.references | Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003 Nov;13(11):2498-504. doi: 10.1101/gr.1239303. PMID: 14597658; PMCID: PMC403769. | es_CO |
dc.relation.references | Stambler, N. (1999). Coral reefs and eutrophication (No. IAEA-TECDOC--1094). | es_CO |
dc.relation.references | Tremblay, P., Grover, R., Maguer, J. F., Hoogenboom, M., & Ferrier-Pagès, C. (2014). Carbon translocation from symbiont to host depends on irradiance and food availability in the tropical coral Stylophora pistillata. Coral Reefs, 33, 1-13. | es_CO |
dc.relation.references | Tremblay, P., Naumann, M. S., Sikorski, S., Grover, R., & Ferrier-Pagès, C. (2012). Experimental assessment of organic carbon fluxes in the scleractinian coral Stylophora pistillata during a thermal and photo stress event. Marine Ecology Progress Series, 453, 63- 77. 10.3354/MEPS09640. | es_CO |
dc.relation.references | Takahashi, S., Whitney, S., & Badger, M. R. (2009). Symbiotic Dinoflagellates: Potential Role of Carbonic Anhydrase in Photosynthesis and Calcification. In Symbiosis (pp. 213-236). Springer, Dordrecht) | es_CO |
dc.relation.references | Thiele, S., von Kamp, A., Bekiaris, P. S., Schneider, P., & Klamt, S. (2022). CNApy: a CellNetAnalyzer GUI in Python for analyzing and designing metabolic networks. Bioinformatics, 38(5), 1467-1469. | es_CO |
dc.relation.references | Veron, J. E. N. (2002). New species described in Corals of the World (Vol. 11). Townsville: Australian Institute of Marine Science. | es_CO |
dc.relation.references | Von Euw, S., Zhang, Q., Manichev, V., Murali, N., Gross, J., Feldman, L. C., Gustafsson, T., Flach, C., Mendelsohn, R., & Falkowski, P. G. (2017). Biological control of aragonite formation in stony corals. Science (New York, N.Y.), 356(6341), 933–938. https://doi.org/10.1126/science.aam6371 | es_CO |
dc.relation.references | Wainwright, S. A. (1963). Skeletal organization in the coral, Pocillopora damicornis. Journal of Cell Science, 3(66), 169-183. https://doi.org/10.1242/jcs.s3-104.66.169 | es_CO |
dc.relation.references | Wakefiel, T. S., & Kempf, S. C. (2001). Development of host- and symbiont-specific monoclonal antibodies and confirmation of the origin of the symbiosome membrane in a cnidarian-dinoflagellate symbiosis. The Biological bulletin, 200(2), 127–143. https://doi.org/10.2307/1543306. | es_CO |
dc.relation.references | Weis, V. M., Smith, G. J., & Muscatine, L. (1989). A “CO 2 supply” mechanism in zooxanthellate cnidarians: role of carbonic anhydrase. Marine Biology, 100, 195-202. https://doi.org/10.1007/BF00391958 | es_CO |
dc.relation.references | West, J. M., & Salm, R. V. (2003). Resistance and resilience to coral bleaching: implications for coral reef conservation and management. Conservation biology, 17(4), 956-967. | es_CO |
dc.relation.references | Wilkerson, F. P., & Muscatine, L. (1984). Uptake and assimilation of dissolved inorganic nitrogen by a symbiotic sea anemone. Proceedings of the Royal society of London. Series B. Biological sciences, 221(1222), 71-86. https://doi.org/10.1098/rspb.1984.0023 | es_CO |
dc.relation.references | Wood-Charlson, E. M., & Weis, V. M. (2009). The diversity of C-type lectins in the genome of a basal metazoan, Nematostella vectensis. Developmental and comparative immunology, 33(8), 881–889. https://doi.org/10.1016/j.dci.2009.01.008 | es_CO |
dc.relation.references | Xiang, T., Lehnert, E., Jinkerson, R. E., Clowez, S., Kim, R. G., DeNofrio, J. C., … Grossman, A. R. (2020). Symbiont population control by host-symbiont metabolic interaction in Symbiodiniaceae-cnidarian associations. Nature Communications, 11(1). doi:10.1038/s41467-019-13963-z | es_CO |
dc.relation.references | Zoccola, D., Ganot, P., Bertucci, A., Caminiti-Segonds, N., Techer, N., Voolstra, C. R., Aranda, M., Tambutté, E., Allemand, D., Casey, J. R., & Tambutté, S. (2015). Bicarbonate transporters in corals point towards a key step in the evolution of cnidarian calcification. Scientific reports, 5, 9983. https://doi.org/10.1038/srep09983 | es_CO |
dc.relation.references | Zoccola, D., Tambutté, E., Sénégas-Balas, F., Michiels, J. F., Failla, J. P., Jaubert, J., & Allemand, D. (1999). Cloning of a calcium channel alpha1 subunit from the reef-building coral, Stylophora pistillata. Gene, 227(2), 157–167. https://doi.org/10.1016/s0378- 1119(98)00602-7 | es_CO |
dc.relation.references | Zomorrodi, A. R., Suthers, P. F., Ranganathan, S., & Maranas, C. D. (2012). Mathematical optimization applications in metabolic networks. Metabolic engineering, 14(6), 672–686. https://doi.org/10.1016/j.ymben.2012.09.00 | es_CO |
dc.rights.accessrights | http://purl.org/coar/access_right/c_abf2 | es_CO |
dc.type.coarversion | http://purl.org/coar/resource_type/c_2df8fbb1 | es_CO |
Aparece en las colecciones: | Biología |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
Palacios_2023_TG.pdf | 905,1 kB | Adobe PDF | Visualizar/Abrir |
Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.