Por favor, use este identificador para citar o enlazar este ítem:
http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/9659
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | Villamizar Torres, Daniel Antonio. | - |
dc.date.accessioned | 2025-06-26T21:44:34Z | - |
dc.date.available | 2022 | - |
dc.date.available | 2025-06-26T21:44:34Z | - |
dc.date.issued | 2022 | - |
dc.identifier.citation | Villamizar Torres, D. A. (2022). Diseño de un material adsorbente a partir del Cuncho de café doméstico para la remoción de Carboxin [Trabajo de Grado Pregrado, Universidad de Pamplona]. Repositorio Hulago Universidad de Pamplona. http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/9659 | es_CO |
dc.identifier.uri | http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/9659 | - |
dc.description | Con el objetivo de buscar soluciones que sean favorables con el medio ambiente a la problemática de la generación de residuos, se tomó el cuncho de café y se realizó un proceso de activación con hidróxido de sodio, ácido clorhídrico, ácido sulfúrico y peróxido de hidrógeno, realizando seguimiento gravimétrico, por ATR-FTIR y capacidad de remoción de Carboxin por UV-Vis, lo anterior permitió demostrar que la pérdida de masa después de cada tratamiento es de alrededor del 10%, con cambios en los grupos funcionales en el sólido activado diferenciables рот PCA y agrupamiento K-means. Adicionalmente, se encontró que la máxima capacidad de remoción fue de 125,310,2 mg retenidos por cada gramo de adsorbente, propiedad que no se ve afectada por el tipo la sustancia que se emplee para activar el cuncho ni por la temperatura. Se comprobó mediante el ajuste a la isoterma de Langmuir que el proceso corresponde a una fisisorción. Finalmente, se comprobé la formación de un sólido mesoporoso. | es_CO |
dc.description.abstract | In order to find solutions that are favorable to the environment to the problem of waste generation, the coffee grounds were used to perform an activation process, carried out with sodium hydroxide, hydrochloric acid, sulfuric acid and hydrogen peroxide, carrying out gravimetric monitoring, by ATR-FTIR and Carboxin removal capacity by UV-Vis, which allowed to demonstrate that the loss of mass after each treatment is around 10%, with differentiable changes in the functional groups in the activated solid. by PCA and K-means clustering. Additionally, it was found that the maximum removal capacity was 125.3 = 0.2 mg retained for each gram of adsorbent, this property is not affected by the type of substance used to activate the coffee grounds, nor by the temperature. It was verified by means of the adjustment to the langmuir isotherm that the process corresponds to a physisorption. Finally, the formation of a mesoporous solid was verified. | es_CO |
dc.format.extent | 61 | es_CO |
dc.format.mimetype | application/pdf | es_CO |
dc.language.iso | es | es_CO |
dc.publisher | Universidad de Pamplona - Facultad de Ciencias Básicas. | es_CO |
dc.subject | Cuncho de café. | es_CO |
dc.subject | Remoción. | es_CO |
dc.subject | Carboxin. | es_CO |
dc.title | Diseño de un material adsorbente a partir del Cuncho de café doméstico para la remoción de Carboxin. | es_CO |
dc.type | http://purl.org/coar/resource_type/c_7a1f | es_CO |
dc.date.accepted | 2022 | - |
dc.relation.references | Alvarado, A. E., Serrano, P. A., & Pérez, C. (2007). Caracterización de zonas sensibles a heladas en el cultivo de papa (solanum tunerosum) en Boyacá. Clencia y Agricultura, 5(2), 29-38. ISSN: 0122- 8420CO. | es_CO |
dc.relation.references | ATSDR (2016) Peróxido de Hidrógeno (hydrogen peroxide), Centers for Disease Control and Prevention. Centers For Disease Control and Prevention. Available at: https://www.atsdr.cdc.gov/es/toxfags/es_tfactsl74.html#:-text=La%20exposici%C3%B3n%20al %20pcr%C3%B3xido%20de%20hidr%C3%B3geno%20puede%20producir%20irritaci%C3%В3 n%20de, efectos%20gastrointestinales%201eves%200%20severos. (Accessed: December 1, 2022). | es_CO |
dc.relation.references | Ayawei, N., Ebelegi, A. N., & Wankasi, D. (2017). Modelling and interpretation of adsorption isotherms. Journal of chemistry, 2017. httes:/doi.org/10.1155/2017/3039817 | es_CO |
dc.relation.references | Ballesteros, L. F., Teixeira, J. A., & Mussatto, S. I. (2014), Chemical, functional, and structural properties of spent coffee grounds and coffee silverskin. Food and bioprocess technology, 7(12), 3493-3503. https://do.org/10.1007/s11947-014-1349-z. | es_CO |
dc.relation.references | Banerjee, S., &e Sharma, Y. C. (2013). Equilibrium and kinetic studies for removal of malachite green from aqucous solution by a low cost activated carbon, Journal of Industrial and Engiteering Chemistry, 19041, 1099-1105. hutns didoi ore/10,1016amee,2012.11 030. | es_CO |
dc.relation.references | Berleu, B. 5. Chock, P. B.. Yim. M. B., de Stadtman, E. R. (19901. Mangunese (I) cata yees the hica: bonato-dependent ox dation ofamino acids by hydrogen peroxide and the amino acid- | es_CO |
dc.relation.references | Bettini, S., Ottolini, M., Pagano, R., Pal, S., Licciulli, A., Valli, L., & Giancane, G. (2021). Coffee Grounds-Derived CNPs for Efficient Cr (VI) Water Remediation. Nanomaterials, 11(5), 1064. https://doi.org/10.3390/nano11051064. | es_CO |
dc.relation.references | Chang, S. S., Clair, B., Ruelle, J., Beauchêne, J., Di Renzo, F., Quignard, F., ... & Gril, J. (2009). Mesoporosity as a new parameter for understanding tension stress generation in trees. Journal of Experimental Botany, 60(11), 3023-3030. https://doi.org/10.1093/jxb/erp133. | es_CO |
dc.relation.references | Choy, K. K., Porter, J. F., & McKay, G. (2000). Langmuir isotherm models applied to the multicomponent sorption of acid dyes from effluent onto activated carbon. Journal of Chemical & Engineering Data, 45(4), 575–584. https://doi.org/10.1021/je9902894. | es_CO |
dc.relation.references | CRC Industries. (2021). Safety Data Sheet - Carl Roth. Available at: https://www.carlroth.com/medias/SDB-6846-IE-EN. (Accessed: December 12, 2022). | es_CO |
dc.relation.references | Currie, L. A. (1999). Detection and quantification limits: origins and historical overview. Analytica Chimica Acta, 391(2), 127–134. https://doi.org/10.1016/S0003-2670(99)00105-1. | es_CO |
dc.relation.references | Currie, L. (2004). Detection and quantification limits: basic concepts, international harmonization, and outstanding (“low-level”) issues. Applied Radiation and Isotopes, 61(2–3), 145–149. https://doi.org/10.1016/j.apradiso.2004.03.036. | es_CO |
dc.relation.references | De Luca, S., De Filippis, M., Bucci, R., Magrì, A. D., Magrì, A. L., & Marini, F. (2016). Characterization of the effects of different roasting conditions on coffee samples of different geographical origins. | es_CO |
dc.relation.references | by HPLC-DAD, NIR and chemometrics. Microchemical Journal, 129, 348-361. https://doi.org/10.1016/j.microc.2016.07.021. | es_CO |
dc.relation.references | de Melo Pereira, G. V., de Carvalho Neto, D. P., Júnior, A. I. M., do Prado, F. G., Pagnoncelli, M. G. B., Karp, S. G., & Soccol, C. R. (2020). Chemical composition and health properties of coffee and coffee by-products. Advances in Food and Nutrition Research, 91, 65–96. https://doi.org/10.1016/bs.afnr.2019.10.002. | es_CO |
dc.relation.references | DellaGreca, M., Iesce, M. R., Cermola, F., Rubino, M., & Isidori, M. (2004). Phototransformation of carboxin in water. Toxicity of the pesticide and its sulfoxide to aquatic organisms. Journal of Agricultural and Food Chemistry, 52(20), 6228–6232. https://doi.org/10.1021/jf049737o. | es_CO |
dc.relation.references | Farah A. Coffee as a speciality and functional beverage. In: Paquin P, editor. Functional and speciality beverage technology. 1st ed. Cambridge (UK): Woodhead Publishing in Food Science, Technology and Nutrition; 2009. https://doi.org/10.1533/9781845695569.3.370. | es_CO |
dc.relation.references | Farah, A. (2012). Coffee constituents. Coffee, 21–58. https://doi.org/10.1002/9781119949893.ch2. | es_CO |
dc.relation.references | Farah, A., & dos Santos, T. F. (2015). The coffee plant and beans: An introduction. In Coffee in Health and Disease Prevention (pp. 5–10). Academic Press. https://doi.org/10.1016/B978-0-12-409517-5.00001-2. | es_CO |
dc.relation.references | Florez, E. C., & Marulanda, L. F. (2020). Uso de residuos de café como biosorbente para la remoción de metales pesados en aguas residuales. Ingenierías USBMed, 11(1), 44–55. | es_CO |
dc.relation.references | Franca, A. S., Oliveira, L. S., Mendonça, J. C. F., & Silva, X. A. (2005). Physical and chemical attributes of defective crude and roasted coffee beans. Food Chemistry, 90(1–2), 89–94. https://doi.org/10.1016/j.foodchem.2004.03.028. | es_CO |
dc.relation.references | Fry, W. (2008). Phytophthora infestans: the plant (and R gene) destroyer. Molecular Plant Pathology, 9(3), 385–402. https://doi.org/10.1111/j.1364-3703.2007.00465.x. | es_CO |
dc.relation.references | Grünwald, N. J., & Flier, W. G. (2005). The biology of Phytophthora infestans at its center of origin. ISSN: 0066–4286. | es_CO |
dc.relation.references | Guo, X., & Wang, J. (2019). Comparison of linearization methods for modeling the Langmuir adsorption isotherm. Journal of Molecular Liquids, 296, 111850. https://doi.org/10.1016/j.molliq.2019.111850. | es_CO |
dc.relation.references | Hadche, L., Cele, Z., & Gumbi, B. (2022). Properties of porous carbon electrode material derived from biomass of coffee waste grounds for capacitive deionization. Materials Today: Proceedings, Volume 56. https://doi.org/10.1016/j.matpr.2021.11.496. | es_CO |
dc.relation.references | Henderson, J. (1995). The analysis of ancient glasses part I: Materials, properties, and early European glass. Jom, 47(11), 62–64. https://doi.org/10.1007/BF03221315. | es_CO |
dc.relation.references | Hu, Y., Zhi, M., Chen, S. et al. Efficient removal of Cr(VI) by spent coffee grounds: Molecular adsorption and reduction mechanism. Korean J. Chem. Eng. (2022). https://doi-org.unipamplona.basesdedatosezproxy.com/10.1007/s11814-021-1045-4. | es_CO |
dc.relation.references | Huang, Y., Wang, Z., Peng, Y., Xu, R., Yan, J., Xiong, C., ... & Lu, H. (2022). Carboxin can induce cardiotoxicity in zebrafish embryos. Ecotoxicology and Environmental Safety, 233, 113318. https://doi.org/10.1016/j.ecoenv.2022.113318. | es_CO |
dc.relation.references | Hustert, K., Moza, P. N., & Kettrup, A. (1999). Photochemical degradation of carboxin and oxycarboxin in the presence of humic substances and soil. Chemosphere, 38(14), 3423–3429. https://doi.org/10.1016/S0045-6535(98)00555-4. | es_CO |
dc.relation.references | Indexmundi. (2022). Green coffee production by country, Green Coffee Production by Country in 1000 60 KG BAGS - Country Rankings. Disponible en: https://www.indexmundi.com/agriculture/?commodity=green-coffee&graph=production (Accesado: November 30, 2022). | es_CO |
dc.relation.references | Islam, S., Middya, R., & Mondal, B. (2018). Bioefficacy of Fungicides against Phytophthora infestans causing late blight of potato under laboratory condition. Curr J Appl Sci Technol, 26(1), 1–5. ISSN: 2231–0843. | es_CO |
dc.relation.references | Jae-Hoon Shin, Deok-Hye Park, Woo-Jun Lee, Sang-Hyun Moon, Jin-Hyeok Choi, Ji-Hwan Kim, Jae-Sung Jang, Sung-Beom Kim, Kyung-Won Park. (2021). Coffee waste-derived one-step synthesis of a composite structure with Ge nanoparticles surrounded by amorphous carbon for Li-ion batteries. Journal of Alloys and Compounds, Volume: 889. ISSN: 0925-8388. https://doi.org/10.1016/j.jallcom.2021.161685. | es_CO |
dc.relation.references | Kinniburgh, D. G. (1986). General purpose adsorption isotherms. Environmental Science & Technology, 20(9), 895–904. https://doi.org/10.1021/es00151a008. | es_CO |
dc.relation.references | Lester, E., Hilal, N., & Henderson, J. (2004). Porosity in ancient glass from Syria (c. 800 AD) using gas adsorption and atomic force microscopy. Surface and Interface Analysis: An International Journal devoted to the development and application of techniques for the analysis of surfaces, interfaces and thin films, 36(9), 1323–1329. https://doi.org/10.1002/sia.1911. | es_CO |
dc.relation.references | Lowell, S., & Shields, J. E. (1991). Adsorption isotherms. In Powder Surface Area and Porosity (pp. 11–13). Springer, Dordrecht. | es_CO |
dc.relation.references | Mohammed, I., Afgawu, C. C., Adjiei, S., Kadafur, I. B., Jamal, M. S., & Awounta, A. A. (2020). A review on polymer, gas, surfactant and nanoparticle adsorption modeling in porous media. Oil & Gas Science and Technology—Revue d’IFP Energies nouvelles, 75, 77. https://doi.org/10.2516/ogst/2020063. | es_CO |
dc.relation.references | Mondal, B., Pauria, N. K., & Khatua, D. C. (2015). Rapid laboratory evaluation of fungicides against Phytophthora infestans causing late blight of potato. Journal of Scientific Research & Reports, 4(2), 168–173. https://doi.org/10.9734/JSRR/2015/13107. | es_CO |
dc.relation.references | National Center for Biotechnology Information. (2022). PubChem Compound Summary for CID 539946. | es_CO |
dc.relation.references | Nieva, A. D., Buenañe, R. J. Q., Guinto, D. R., & Leaño, J. C. F. (2019). Biosorption of Copper (II) from Simulated Wastewater Using Spent Coffee Grounds: A Column Study. International Journal of Environmental Science and Development, 10(9), 261–265. https://doi.org/10.18178/ijesd.2019.10.9.1184. | es_CO |
dc.relation.references | Oestreich-Janzen, S. (2010). Chemistry of coffee. Comprehensive Natural Products II, 3, 1085–1117. https://doi.org/10.1016/B978-008045382-8.00708-5. | es_CO |
dc.relation.references | Osmari, T. A., Gallon, R., Schwaab, M., Barbosa-Coutinho, E., Severo Jr, J. B., & Pinto, J. C. (2013). | es_CO |
dc.relation.references | Statistical analysis of linear and non-linear regression for the estimation of adsorption isotherm parameters. Adsorption Science & Technology, 31(5), 433-458. https://doi.org/10.1260/0263-6174.31.5.433. | es_CO |
dc.relation.references | Osorio Pérez, V., Pabón Usaquén, J. P., Gallego Agudelo, C. P., & Echeverri-Giraldo, L. F. (2021). Efecto de las temperaturas y tiempos de tueste en la composición química del café. Revista Cenicafé, 72(1), p 72-103. https://doi.org/10.38141/10778/72103. | es_CO |
dc.relation.references | Pelegrín Ramírez, J. S., & Suárez Galindez, J. R. (2021). Impactos ambientales de la industria química: análisis de un estudio de caso y propuesta de manejo frente a derrames ácidos y/o básicos–Tópicos de Gestión Ambiental: Enlazando ciencia, sociedad y educación. Universidad Santiago de Cali. | es_CO |
dc.relation.references | Pessiki, P. J., & Dismukes, G. C. (1994). Structural and functional models of the dimanganese catalase enzymes. 3. Kinetics and mechanism of hydrogen peroxide dismutation. Journal of the American Chemical Society, 116(3), 898-903. https://doi.org/10.1021/ja00028a009. | es_CO |
dc.relation.references | Producción Mundial de Papa Por País (2021) AtlasBig. Available at: https://www.atlasbig.com/es/paises-por-produccion-de-papa (Accessed: November 30, 2022). | es_CO |
dc.relation.references | Producción Mundial de Papa Por País (2021). AtlasBig. Available at: https://www.atlasbig.com/es- | es_CO |
dc.relation.references | Puertas-Mejía, M. A., Villegas-Guzmán, P., & Alberto Rojano, B. (2013). Borra de café colombiano (Coffea arabica) como potente potencial de sustancias con capacidad antirradicales libres in vitro. Revista Cubana de Plantas Medicinales, 18(3), 469-478. es/paises-por-produccion-de-papa (Accessed: November 30, 2022). ISSN: 1028-4796. | es_CO |
dc.relation.references | Quino, I., Ramos, O., & Guisbert, E. (2007). Determinación del límite de detección instrumental (LDI) y límite de cuantificación instrumental (LCI) en elementos traza de agua subterránea. Revista Boliviana de química, 24(1), 53-57. ISSN 0250-5460. | es_CO |
dc.relation.references | Rodríguez-Pérez, L. (2010). Ecofisiología del cultivo de la papa (Solanum tuberosum L.). Revista Colombiana de Ciencias Hortícolas, volumen 4(1), páginas 97–108. https://doi.org/10.17584/rcch.2010v4i1.1229. | es_CO |
dc.relation.references | Safarik, L., Horska, K., & Safarikova, M. (2011). Magnetically modified spent grain for dye removal. Journal of Cereal Science, 53(1), 78–80. https://doi.org/10.1016/j.jcs.2010.09.010. | es_CO |
dc.relation.references | Shahbandeh, M. (2022). Global Coffee Production, 2020/21, Statista. Available at: https://www.statista.com/statistics/263311/worldwide-production-of-coffee/ (Accessed: November 30, 2022). | es_CO |
dc.relation.references | Sharma, H., 2020, A Detail Chemistry of Coffee and Its Analysis, in D. T. Castanheira (ed.), Coffee – Production and Research, IntechOpen, London. | es_CO |
dc.relation.references | Sing, K. S., & Williams, R. T. (2004). Physisorption hysteresis loops and the characterization of nanoporous materials. Adsorption Science & Technology, 22(1), 773–782. https://doi.org/10.1260/0263617053499032. | es_CO |
dc.relation.references | SIOC (2019) Sioc. Ministerio de Agricultura. Available at: https://sioc.minagricultura.gov.co/ (Accessed: November 30, 2022). | es_CO |
dc.relation.references | Toci AT, Farah A. Volatile compounds as potential defective coffee beans’ markers. Food Chem 2008;108:1133–41. https://doi.org/10.1016/j.foodchem.2007.11.064. | es_CO |
dc.relation.references | Trugo, L. C. Coffee Analysis. In: Encyclopedia of Food Science and Nutrition, 2nd edition, Caballero, B., Trugo, L. C., Finglas, P. M., eds. Oxford, UK: Oxford Academic Press; 2003, Vol. 2, p. 498. | es_CO |
dc.relation.references | Tubert, I., & Talanquer, V. (1997). Sobre adsorción. Educación química, 8(4), 186–190. https://doi.org/10.22201/fq.18708404e.1997.4.66595. | es_CO |
dc.relation.references | Uçar, A., Al-Hamdani, A. H. A., Alak, G., Atsamanalp, M., Topal, A., Arslan, H., ... & Şensurat, T. (2012). Effects of carboxin on superoxide dismutase enzyme activity in rainbow trout (Oncorhynchus mykiss). BİBDAD, Biyolojik Bilimleri Araştırma Dergisi, volume 5(2), pages 83–85. https://doi.org/10.1016/j.ecoenv.2022.113318. | es_CO |
dc.relation.references | Vajda, S., Valko, P., & Turanyi, T. (1985). Principal component analysis of kinetic models. International Journal of Chemical Kinetics, volume 17(1), pages 55–81. https://doi.org/10.1002/kin.550170107. | es_CO |
dc.relation.references | Veiga, T. R. L. A., Lima, J. T., Dessimoni, A. L. D. A., Pego, M. F. F., Soares, J. R., & Trugilho, P. F. (2017). Different plant biomass characterizations for biochar production. Cerne, 23, 529–536. https://doi.org/10.1590/01047760201723042373. | es_CO |
dc.relation.references | Wei, D., Wu, X., Ji, M., Xu, J., Dong, F., Liu, X., & Zheng, Y. (2019). Carboxin and its major metabolites residues in potatoes: A dietary intake and chronic intake risk assessment. Food chemistry, volume 275, pages 169–175. https://doi.org/10.1016/j.foodchem.2018.09.087. | es_CO |
dc.relation.references | Wei-Lung, C., Chih-Ta, W., Kai-Yu, H., Ya-Chieh, C., & Chi-Min, S. (2012). Investigation of indium ions removal from aqueous solutions using spent coffee grounds. International Journal of Physical Sciences, 7(16), 2445–2454. DOI: 10.5897/IJPS12.192. | es_CO |
dc.relation.references | Yang, H., Yan, R., Chen, H., Lee, D. H., & Zheng, C. (2007). Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel, 86(12–13), 1781–1788. https://doi.org/10.1016/j.fuel.2006.12.013. | es_CO |
dc.rights.accessrights | http://purl.org/coar/access_right/c_abf2 | es_CO |
dc.type.coarversion | http://purl.org/coar/resource_type/c_2df8fbb1 | es_CO |
Aparece en las colecciones: | Química |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
Villamizar_2022_TG.pdf | Villamizar_2022_TG | 14,25 MB | Adobe PDF | Visualizar/Abrir |
Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.