• Repositorio Institucional Universidad de Pamplona
  • Trabajos de pregrado y especialización
  • Facultad de Ciencias Básicas
  • Química
  • Por favor, use este identificador para citar o enlazar este ítem: http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/9656
    Registro completo de metadatos
    Campo DC Valor Lengua/Idioma
    dc.contributor.authorRamírez Moreno, Wilson Fabián.-
    dc.date.accessioned2025-06-26T17:36:13Z-
    dc.date.available2022-
    dc.date.available2025-06-26T17:36:13Z-
    dc.date.issued2022-
    dc.identifier.citationRamírez Moreno, W. F. (2022). Evaluación de la captura de gases Hidrofluorocarbonados R-32, R-125, R-134a en liquidos Ionicos Fluorados mediante metodos computacionales [Trabajo de Grado Pregrado, Universidad de Pamplona]. Repositorio Hulago Universidad de Pamplona. http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/9656es_CO
    dc.identifier.urihttp://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/9656-
    dc.descriptionLos gases hidrofluorocarbonados (HFCs) son principalmente emitidos por los aires acondicionados, y otras actividades antropogénicas¹. Contribuyen al efecto invernadero (F-GEI), debido a su alto potencial de calentamiento (Global Warming Potential). El diseño de alternativas requiere del reciclaje de los compuestos de bajo a moderado GWP de las mezclas de refrigerantes actuales representando un desafío para la industria de la refrigeración. Sin embargo, no existe una tecnología desarrollada y estandarizada disponible para recuperarlos, y una vez que el ciclo de vida del equipo de refrigeración ha terminado, la mayoría de los gases son incinerados². El impacto ambiental de los HFCs requiere el desarrollo de tecnologías verdes para mitigarlos. Los LIFs surgen como un absorbente alternativo debido a sus propiedades únicas y excepcionales³. Los gases HFCs, difluorometano (R-32), pentafluoroetano (R-125) y el 1,1,1,2-tetrafluoroetano (R-134a) han sido capturados con los LIFs [C₂C₁Im][NTf₂], [C₂C₁Py][NTf₂], [C₂C₁Im][BETI], [C₂C₁Py][BETI], a base del catión imidazolio y piridinio⁴. En este trabajo se realiza una optimización de las geometrías mediante la teoría funcional de la Densidad (Densidad Funcional Teoría) en el nivel de teoría B3LYP/6-311++G(d, p) de Gaussian 09. Para los gases HFCs (R-32, R-125 y R-134a) con los LIFs (LIFs reportados en literatura como [C₂C₁Im][NTf₂], [C₂C₁Py][NTf₂], [C₂C₁Im][BETI], [C₂C₁Py][BETI] y [P₂₂₂₂][BETI]) y con los LIFs [P₂₂₂₂][NTf₂] como propuesta para la captura de HFCs. Por tanto, la optimización geométrica del catión, anión, catión-anión gas HFCs y del complejo LIFs-gas se realiza mediante un análisis mecano-cuántico que permite evaluar las interacciones de los enlaces H de cada gas HFCs con los LIFs. Finalmente, se calcula y compara las energías de enlace de estos sistemas moleculares, llegando a la conclusión que los mejores LIFs que podrían capturar los HFCs R-32, R-125 y R-134a en función de sus energías de enlace con el [C₂C₁Im][NTf₂], [C₂C₁Py][BETI], y [C₂C₁Py][BETI], respectivamente, calculadas haciendo uso del BSSE mediante DFT en el nivel de teoría B3LYP/6-311++G**(d, p) de Gaussian 09. Mediante el análisis vibratorio de los complejos [C₂C₁Im][NTf₂], [C₂C₁Py][NTf₂], [P₂₂₂₂][NTf₂], [C₂C₁Im][BETI], [C₂C₁Py][BETI], [P₂₂₂₂][BETI] con los HFCs R-32, R-125 y R-134a, se obtienen los espectros simulados de la captura de los gases por los LIFs.es_CO
    dc.description.abstractHydrofluorocarbon gases (HFCs) are mainly emitted by air conditioners, and other anthropogenic activities¹. They contribute to the greenhouse effect (F-GHG), due to their high Global Warming Potential (GWP). The design of alternatives requires the recycling of low to moderate GWP compounds from current refrigerant mixtures representing a challenge for the refrigeration industry. However, there is no developed and standardized technology available to recover them, and once the life cycle of the refrigeration equipment is over, most of the gases are incinerated². The environmental impact of fluorinated gases (F-gases) requires the development of green technologies to mitigate them. Fluorinated ionic liquids (LIFs) emerged as an alternative absorbent due to their unique and exceptional properties³. The gases HFCs, difluoromethane (R-32), pentafluoroethane (R-125) and 1,1,1,2-tetrafluoroethane (R-134a) have been captured with fluorinated ionic liquids (FILs) [C₂C₁Im][NTf₂], [C₂C₁Py][NTf₂], [C₂C₁Im][BETI], [C₂C₁Py][BETI], based on the imidazolium and pyridine cation⁵ ⁶. In this work, an optimization of the geometries is carried out by Density Funtional Theory (DFT) at the level of theory B3LYP/6-311++G*(d, p) of Gaussian 09 and Gaussian view. for HFCs gases (R-32, R-125 and R-134a) with fluorinated ionic liquids (FILs) reported in literature such as [C₂C₁Im] [NTf₂], [C₂C₁Py] [NTf₂], [C₂C₁Im] [BETI] y [C₂C₁Py] [BETI]. In addition, FILs [P₂₂₂₂][BETI] and [P₂₂₂₂][NTf₂] are proposed as potential solvents for the capture of HFCs. Therefore, the geometric optimization of the cation, anion, cation-anion gas HFCs and the LIFs-gas complex is carried out by means of a mechano-quantum analysis that allows to evaluate the interactions of the H bonds of each HFCs gas with the LIFs based on the imidazolium, pyridine and phosphonium cations. Finally, the binding energies of these molecular systems are calculated and compared, concluding that the best ionic liquids that could capture the hydrofluorocarbon gases R-32, R-125 and R-134a depending on their bond energies are [C₂C₁Im][NTf₂], [C₂C₁Py][BETI], and [C₂C₁Py][BETI], respectively, calculated using the BSSE by DFT at the theory level B3LYP/6-311++G*(d, p) gaussian 09. By vibratory analysis of the complexes [C₂C₁Im][NTf₂], [C₂C₁Py][NTf₂], [P₂₂₂₂][NTf₂], [C₂C₁Im][BETI], [C₂C₁Py][BETI], [P₂₂₂₂][BETI] with the hydrofluorocarbon gases R-32, R-125 and R-134a, the simulated spectra of the capture of the gases by the FILs are obtained.es_CO
    dc.format.extent129es_CO
    dc.format.mimetypeapplication/pdfes_CO
    dc.language.isoeses_CO
    dc.publisherUniversidad de Pamplona – Facultad de Ciencias Básicas.es_CO
    dc.subjectQuímica computacional.es_CO
    dc.subjectGases hidrofluorocarbonados.es_CO
    dc.subjectLíquidos iónicos fluorados.es_CO
    dc.subjectDFT.es_CO
    dc.titleEvaluación de la captura de gases Hidrofluorocarbonados R-32, R-125, R-134a en liquidos Ionicos Fluorados mediante metodos computacionales.es_CO
    dc.typehttp://purl.org/coar/resource_type/c_7a1fes_CO
    dc.date.accepted2022-
    dc.relation.referencesSosa, J. E.; Ribeiro, R. P. P. L.; Castro, P. J.; Mota, J. P. B.; Araújo, J. M. M.; Pereiro, A. B. Absorption of Fluorinated Greenhouse Gases Using Fluorinated Ionic Liquids. Ind. Eng. Chem. Res. 2019, 58 (45), 20769–20778. https://doi.org/10.1021/acs.iecr.9b04648.es_CO
    dc.relation.references. Jovell, D.; Pou, J. O.; Gonzalez-Olmos, R. Life Cycle Assessment of the Separation and Recycling of Fluorinated Gases Using Ionic Liquids in a Circular Economy Framework. 2022. https://doi.org/10.1021/acssuschemeng.1c04723.es_CO
    dc.relation.referencesHospital-Benito, D.; Gomes, M. C.; Sosa, J. E.; Pereiro, A. B.; Palomar, J. Process Evaluation of Fluorinated Ionic Liquids as F - Gas Absorbents. 2020. https://doi.org/10.1021/acs.est.0c05035.es_CO
    dc.relation.referencesSosa, J. E.; Malheiro, C.; Ribeiro, R. P. P. L.; Castro, P. J.; Piñeiro, M. M.; Araújo, J. M. M.; Plantier, F.; Mota, J. P. B.; Pereiro, A. B. Adsorption of Fluorinated Greenhouse Gases on Activated Carbons: Evaluation of Their Potential for Gas Separation. J. Chem. Technol. Biotechnol. 2020, 95 (7), 1892–1905. https://doi.org/10.1002/jctb.6371.es_CO
    dc.relation.referencesLepre, L. F.; Andre, D.; Denis-Quanquin, S.; Gautier, A. H.; Pádua, A. A. H.; Gomes, M. Ionic Liquids Can Enable the Recycling of Fluorinated Greenhouse Gases. J. Phys. Chem. B 2022. https://doi.org/10.1021/acs.jpcb.9b04644.es_CO
    dc.relation.referencesSosa, J. E.; Redondo, A. E.; Avila, J. G.; Rodriguez, A. M.; Gomes, M. C.; Palomar, J.; Pereiro, A. B.; Araújo, J. M. M. Fluorinated Ionic Liquids as F-Gas Absorbents: COSMO-RS and Molecular Dynamics Evaluation. J. Chem. Technol. Biotechnol. 2022. https://doi.org/10.1002/jctb.7205.es_CO
    dc.relation.referencesSovacool, B. K.; Griffiths, S.; Kim, J.; Bazilian, M. Climate Change and Industrial F-Gases: A Critical and Systematic Review of Developments in Socio-technical Systems and Policy Options for Reducing Synthetic Greenhouse Gas Emissions. Renew. Sustain. Energy Rev. 2021, 141 (January), 110759. https://doi.org/10.1016/j.rser.2021.110759.es_CO
    dc.relation.referencesWMO. WMO GREENHOUSE GAS BULLETIN: The State of Greenhouse Gases in the Atmosphere Based on Global Observations through 2020; SUIZA, 2021.es_CO
    dc.relation.referencesComisión Europea. Fluorinated Greenhouse Gases. https://ec.europa.eu/clima/eu-action/fluorinated-greenhouse-gases_es (accessed Mar 23, 2022).es_CO
    dc.relation.referencesEuropean Commission. Legislation to Control F-gases. https://ec.europa.eu/clima/eu-action/fluorinated-greenhouse-gases/eu-legislation-control-f-gases_en (accessed Mar 24, 2022).es_CO
    dc.relation.referencesNOAA. Global Monitoring Laboratory - Carbon Cycle Greenhouse Gases. https://gml.noaa.gov/ccgg/trends/mlo.html (accessed Mar 8, 2022).es_CO
    dc.relation.referencesThomas, E.; Vijayalakshmi, K. P.; George, B. K. Kinetic Stability of Imidazolium Cations and Ionic Liquids: A Frontier Molecular Orbital Approach. J. Mol. Liq. 2019, 276, 721–727. https://doi.org/10.1016/j.molliq.2018.12.034.es_CO
    dc.relation.referencesMuthunatesan, S.; Ragavendran, V. A Study of Vibrational Spectra and Investigations of Charge Transfer and Chemical Properties of 2-Chloro Benzimidazole Based on DFT Computations. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2015, 138, 148–154. https://doi.org/10.1016/j.saa.2014.06.029.es_CO
    dc.relation.referencesHardacre, C.; Holbrey, J. D.; McMath, S. E. J.; Wilkes, J. S.; Carper, W. R. Vibrational Spectroscopy of Imidazolium-Based Ionic Liquids: Raman and Infrared Spectra of 1-Alkyl-3-Methylimidazolium Salts. J. Chem. Phys. 2003, 118, 273–278.es_CO
    dc.relation.referencesPaschoal, V. H.; Faria, L. F. O.; Ribeiro, M. C. C. Vibrational Spectroscopy of Ionic Liquids. 2016. https://doi.org/10.1021/acs.chemrev.6b00461.es_CO
    dc.relation.references) Rey, I.; Johansson, P.; Lindgren, J.; Lasse, U. C. Spectroscopic and Theoretical Study of (CF₃SO₂)₂N⁻ (TFSI⁻) and (CF₃SO₂)₂NH (HTFSI). 1998, 5639 (98), 3429–3258.es_CO
    dc.relation.references) Hersstedt, M.; Smirnov, M.; Johansson, P.; Chami, M.; Grondin, J.; Servant, L. Spectroscopic Characterization of the Conformational States of the Trifluoromethanesulfonyl) Imide Anion (TFSI⁻). 2005, An. Appl, 762–770. https://doi.org/10.1002/pss.1347.es_CO
    dc.relation.referencesJeffrey, G. A. An Introduction to Hydrogen Bonding. 1997, 120 (2), 975613.es_CO
    dc.relation.referencesSashina, E. S.; Kashirskii, D. A.; Artamonova, T. V.; Myznikov, L. V. 1-ALKYL-3-METHYLPYRIDINIUM HALIDE STRUCTURAL FEATURES STUDIED BY VIBRATIONAL SPECTROSCOPY METHODS. 2015, 47 (3), 38–43. https://doi.org/10.1007/s10692-015-9660-7.es_CO
    dc.relation.referencesWarner, I. M.; Regimi, B. P.; El-zahab, B.; Hayes, D. J. DETECTION AND MOLECULAR WEIGHT DETERMINATION OF ORGANIC VAPORS. 2013, 20130303402A1, 2103.es_CO
    dc.relation.referencesDharaskar, S. A.; Wasewar, K. L.; Varma, M. N.; Shende, D. Z.; Kumar, K.; Kyoo, C. Synthesis , Characterization , and Application of Novel Trinexyl Tetradecyl Desulfurization of Liquid Fuel. Fuel Process. Technol. 2014, 123, 1–10. https://doi.org/10.1016/j.fuproc.2014.02.001.es_CO
    dc.relation.referencesMaría De Los Ángeles, V.; Ricardo, C.; Juan Manuel, G.; Omayra, E.-A. Estudio De Disoluciones Acuosas Poliméricas Para La Absorción de Dióxido de Carbono. Ing. Investig. y Tecnol. 2018, 11 (número 4), 1–9.es_CO
    dc.relation.references) Anslyn, Eric V.; Dougherty, D. A. Modern Physical Organic Chemistry; Murdzek, J., Ed.; Taylor & Francis: Sausalito, California, 2005.es_CO
    dc.relation.referencesAnslyn, Eric V.; Dougherty, D. A. Modern Physical Organic Chemistry; Murdzek, J., Ed.; Taylor & Francis: Sausalito, California, 2005.es_CO
    dc.relation.referencesNRDC. Paris Climate Agreement: Everything You Need to Know. https://www.nrdc.org/stories/paris-climate-agreement-everything-you-need-know#sec-whatis (accessed Jun 2, 2022).es_CO
    dc.relation.referencesVillarán, M. C.; Chávarri, M.; Dietrich, T. PARA UNA BIOECONOMÍA CIRCULAR. 2017, 251–272.es_CO
    dc.relation.referencesDonner, M.; Verniquet, A.; Broeze, J.; Kayser, K.; De Vries, H. Critical Success and Risk Factors for Circular Business Models Valorising Agricultural Waste and By-Products. Resour. Conserv. Recycl. 2021, 165, 105236. https://doi.org/10.1016/j.resconrec.2020.105236.es_CO
    dc.relation.referencesMahjoub, B.; Domschreit, E. ScienceDirect Chances and Challenges of an Organic Waste – Based Bioeconomy. Curr. Opin. Green Sustain. Chem. 2020, 25, 100388. https://doi.org/10.1016/j.cogsc.2020.100388.es_CO
    dc.relation.referencesLv, B.; Wu, K.; Zhou, Z.; Jing, G. International Journal of Greenhouse Gas Control How Did the Corrosion Inhibitor Work in Amino-Functionalized Ionic Liquids for CO 2 Capture : Quantum Chemical Calculation and Experimental. Int. J. Greenh. Gas Control 2019, 91 (July), 102846. https://doi.org/10.1016/j.ijggc.2019.102846.es_CO
    dc.relation.referencesVallero, D. A. Air Pollution. Biogeochemistry; 2019. https://doi.org/10.1016/b978-0-12-814934-8.00008-9.es_CO
    dc.relation.referencesPantoja, M. A. ESTUDIO TEÓRICO DE LAS INTERACCIONES ENTRE LÍQUIDOS IÓNICOS Y COMPUESTOS FENÓLICOS, Universidad Veracruzana, 2018.es_CO
    dc.relation.referencesReina, M. M.; González, E. A.; Muñoz, Y. M. Estudio Del Equilibrio Líquido-Líquido de Benceno + (Hexano, Heptano y Ciclohexeno) Con El Líquido Iónico 1-Etil-5 K. Rev. Colomb. química 2012, 41 (1), 89–107.es_CO
    dc.relation.referencesMartínez-Reina, M.; Amado-Gonzalez, E.; Muñoz-Muñoz, Y. M. Study of Liquid-Liquid Equilibria of Toluene + (Hexane, Heptane, or Cyclohexene) with 1-Ethyl-3-Methylimidazolium Ethylsulfate at 308.15K. chemical Soc. Japan 2012, 1144 (10), 1138–1144.es_CO
    dc.relation.referencesAmado-González, E.; González-Gutierrez, L. I.; Gómez-Jaramillo, W. Mean Activity Coefficients of NaCl in the Mixture of 2-Hydroxyethylammonium Butyrate + H2O at 298.15 K. J. Chem. Eng. Data 2017, 62 (8), 2384–2391. https://doi.org/10.1021/acs.jced.7b00278.es_CO
    dc.relation.referencesAmado-Gonzalez, E.; Esteso, M. A.; Gómez-Jaramillo, W. Mean Activity Coefficients for NaCl in the Mixtures Containing Ionic Liquids [Emim][MeSO3] + H2O and [Emim][EtSO4] + H2O at 298.15 K. J. Chem. Eng. Data 2017, 62 (2), 752–761. https://doi.org/10.1021/acs.jced.6b00820.es_CO
    dc.relation.referencesBlanco, L. H.; Gonzalez, E. A. Conductance of Asymmetric Iodides of Butyl-Triethyl-Ammonium in Toluene-Acetonitrile Mixtures at 25°C. Phys. Chem. Liq. 1995, 30 (4), 213–226. https://doi.org/10.1080/00319109508036068.es_CO
    dc.relation.referencesMartinez-Reina, M.; Amado-Gonzalez, E. REFRACTIVE INDICES, DENSITIES AND EXCESS PROPERTIES OF BINARY MIXTURES OF ETHANOL WITH HEXANE, HEPTANE, OCTANE AND WATER at (293.15, 298.15, 303.15, and 308.15) K. Bitsua 2010, 8.es_CO
    dc.relation.referencesNASA. Carbon Dioxide: Vital Signs of the Planet https://climate.nasa.gov/vital-signs/carbon-dioxide/ (accessed Jun 1, 2022).es_CO
    dc.relation.referencesGordon, D. M. Reducing methane is the best solution to limit global warming https://www.weforum.org/agenda/2022/05/methane-solutions-climate-future/ (accessed Jun 1, 2022).es_CO
    dc.relation.referencesU. S. Department of Energy. Nitrogen Oxides (NOx) Emissions https://www.netl.doe.gov/research/Coal/energy-systems/gasification/gasifipedia/nitrogen-oxides (accessed Jun 1, 2022).es_CO
    dc.relation.referencesEPA. What is Ozone? https://www.epa.gov/ozone-pollution-and-your-patients-health/what-ozone (accessed Jun 1, 2022).es_CO
    dc.relation.referencesElectronic fluorocarbons. Trifluoromethane (CHF₃); 2021.es_CO
    dc.relation.referencesEdmond, C. Emissions of the powerful greenhouse gas SF6 are rising rapidly https://www.weforum.org/agenda/2019/10/greenhouse-gas-emissions-climate-change-sf6/ (accessed Jun 2, 2022).es_CO
    dc.relation.referencesUniversity of Waterloo. Global warming caused by chlorofluorocarbons, not carbon dioxide, new study says https://phys.org/news/2013-05-global-warming-chlorofluorocarbons-carbon-dioxide.html (accessed Jun 2, 2022).es_CO
    dc.relation.referencesKhalil, M. A. K.; Rasmussen, R. A.; Culbertson, J. A.; Prins, J. M.; Grimsrud, E. P.; Shearer, M. J. Atmospheric Perfluorocarbons. Environ. Sci. Technol. 2003, 37 (19), 4358–4361. https://doi.org/10.1021/es030327a.es_CO
    dc.relation.referencesThe science of air. Perfluorocarbons (PFCs): What do you need to know? https://thescienceofair.com/perfluorocarbons/ (accessed Jun 2, 2022).es_CO
    dc.relation.referencesPrather, M. J.; Hsu, J. NF3, the Greenhouse Gas Missing from Kyoto. Geophys. Res. Lett. 2008, 35 (12). https://doi.org/10.1029/2008GL034542.es_CO
    dc.relation.referencesMontzka, S. A.; Reimann, S.; Engel, A.; Krueger, K.; O'Doherty, S.; Sturges, W. T.; Blake, D.; Dorf, M.; Fraser, P.; Froidevaux, L.; Jucks, K.; Kreher, K.; Kurylo, M. J.; Mellouki, A.; Miller, J.; Nielsen, O.-J.; Orkin, V. L.; Prinn, R. G.; Rhew, R.; Santee, M. L.; Verdonik, D. Ozone-Depleting Substances (ODSs) and Related Chemicals. Chapter 1 in Scientific Assess–Ment of Ozone Depletion: 2010, Global Ozone Research and Monitoring Project—Report No. 52, 516 Pp., World Meteorological Organization, Geneva, Switzerland., 2011.es_CO
    dc.relation.referencesComision Europea. Gases fluorados de efecto invernadero https://ec.europa.eu/clima/eu-action/fluorinated-greenhouse-gases_es (accessed Mar 24, 2022).es_CO
    dc.relation.referencesEPA. Protecting Our Climate by Reducing Use of HFCs https://www.epa.gov/climate-hfcs-reduction (accessed Mar 23, 2022).es_CO
    dc.relation.referencesOMM. Boletín de La OMM Sobre Los Gases de Efecto Invernadero. Vigil. la Atmósfera Glob. 2021, 17 (Faj 1) 1–10.es_CO
    dc.relation.referencesStephen, R. Nitrogen Trifluoride Now Required in GHG Protocol Greenhouse Gas Emissions Inventories https://www.wri.org/insights/nitrogen-trifluoride-now-required-ghg-protocol-greenhouse-gas-emissions-inventories (accessed Jun 2, 2022).es_CO
    dc.relation.referencesBeckhen, K.; Graaf, D. D.; de Elsner, D. C.; Hofmann, C.; Krüger, D. F.; Martens, K.; Plehn, D. W.; Sartorius, D. R. Avoiding Fluorinated Greenhouse Gases: Prospects for Phasing Out. GAIA 2022, 31 (2), 103–111. https://doi.org/10.14512/gaia.31.2.7.es_CO
    dc.relation.referencesHöglund-Isaksson, L.; Purohit, P.; Mitigating Non-CO₂ Greenhouse Gases: Nitrous Oxide, Methane, and Fluorinated Gases. In Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press, 2022; pp 138–147.es_CO
    dc.relation.referencesUNEP. Hydrofluorocarbons. Overview. 2022. https://www.unep.org/hydrofluorocarbons/ (accessed Jun 2, 2022).es_CO
    dc.relation.referencesIPCC. Informe Del Grupo Intergubernamental De Expertos Sobre El Cambio Climático; 2014.es_CO
    dc.relation.referencesEPA. Fluorinated Greenhouse Gas Emissions and Supplies Reported to the GHGRP https://www.epa.gov/ghgreporting/fluorinated-greenhouse-gas-emissions-and-supplies-reported-ghgrp (accessed Mar 23, 2022).es_CO
    dc.relation.referencesForster, P. M. D. F.; Joshi, M. The Role of Halocarbons in the Climate Change of the Troposphere and Stratosphere. Clim. Change 2005, 71 (1–2), 249–266. https://doi.org/10.1007/s10584-005-5955-7.es_CO
    dc.relation.referencesGernaat, D. E. H. J.; Calvin, K.; Lucas, P. L.; Luderer, G.; Otto, S. A. C.; Rao, S.; Streffer, J.; van Vuuren, D. P. Understanding the Contribution of Non-Carbon Dioxide Gases in Deep Mitigation Scenarios. Glob. Environ. Chang. 2015, 33, 142–153. https://doi.org/10.1016/j.gloenvcha.2015.04.010.es_CO
    dc.relation.referencesCode of Federal Regulationl. Global Warming Potentials; 2022.es_CO
    dc.relation.referencesSimmonds, P. G.; Rigby, M.; McCulloch, A.; Vollmer, M. K.; Henne, S.; Mühle, J.; O'Doherty, S.; Manning, A. J.; Krummel, P. B.; Fraser, P. J.; Young, D.; Weiss, R. F.; Salameh, P. K.; Harth, C. M.; Reimann, S.; Trudinger, C. M.; Steele, L. P.; Wang, R. H. J.; Ivy, D. J.; Prinn, R. G.; Mitrevski, B.; Etheridge, D. M. Recent Increases in the Atmospheric Growth Rate and Emissions of HFC-23 (CHF₃) and the Link to HCFC-22 (CHClF₂) Production. Atmos. Chem. Phys. 2018, 18 (6), 4153–4169. https://doi.org/10.5194/acp-18-4153-2018.es_CO
    dc.relation.referencesMcCulloch, A. Fluorocarbons in the Global Environment: A Review of the Important Interactions with Atmospheric Chemistry and Physics. J. Fluor. Chem. 2003, 123 (1), 21–29. https://doi.org/10.1016/S0022-1139(03)00105-2.es_CO
    dc.relation.referencesde Richter, R. K.; Ming, T.; Caillol, S.; Liu, W. Fighting Global Warming by GHG Removal: Destroying CFCs and HCFCs in Solar-Wind Power Plant Hybrids Producing Renewable Energy with No-Intermittency. Int. J. Greenh. Gas Control 2016, 49, 449–472. https://doi.org/10.1016/j.ijggc.2016.02.027.es_CO
    dc.relation.referencesRoss J. Salawitch; Bennett, B. F.; Hope, A. P.; Tribett, W. R.; Canty, T. P. Earth’s Climate System; 2005. https://doi.org/10.1007/978-3-319-46939-3.es_CO
    dc.relation.referencesIPCC. Climate Change 2022: Impacts, Adaptation and Vulnerability; 2022; Vol. 1.es_CO
    dc.relation.referencesNoAA. Halocarbons and other Atmospheric Trace Species https://gml.noaa.gov/hats/about/hfc.html (accessed Mar 23, 2022).es_CO
    dc.relation.referencesWorld Meteorological Organization Global Ozone Research and Monitoring Project. Scientific Assessment of Ozone Depletion: 2010; 2010.es_CO
    dc.relation.referencesWilkinson, A. J. K.; Braggins, R.; Steinbach, I.; Smith, J. Costs of Switching to Low Global Warming Potential Inhalers. An Economic and Carbon Footprint Analysis of NHS Prescription Data in England. BMJ Open 2019, 9 (10), 1–8. https://doi.org/10.1136/bmjopen-2018-028763.es_CO
    dc.relation.referencesThomas, E.; Vijayalakshmi, K. P.; George, B. K. Electronic Structure and Topological Analysis of Ionic Liquids; Elsevier Inc., 2021. https://doi.org/10.1016/b978-0-12-820820-7.00002-4.es_CO
    dc.relation.referencesFlorianne, D.; Borja, C. Liquids - Methods of Synthesis and Applications. MedAdv.org 2015, No. 1405–5597.es_CO
    dc.relation.referencesHu, J.; Chen, L.; Shi, M.; Zhang, C. A Quantum Chemistry Study for 1-Ethyl-3-Methylimidazolium Ionic Liquids with Aromatic Heterocyclic Anions against Carbon Dioxide Absorption. Fluid Phase Equilib. 2018, 459, 208–218. https://doi.org/10.1016/j.fluid.2017.12.005.es_CO
    dc.relation.referencesMorais, C.; Bonifácio, R. P.; Domingues, F.; Ribeiro, A. E. Effect of Hydrogen Bonding on the Carbon Dioxide Solubility in Ionic Liquids. J. Phys. Chem. B 2019, 123 (6), 1437–1446. https://doi.org/10.1021/acs.jpcb.8b10100.es_CO
    dc.relation.referencesTsuzuki, S.; Tokuda, H.; Mikami, M. Theoretical Analysis of the Hydrogen Bond of Imidazolium C2-H with Anions. Phys. Chem. Chem. Phys. 2007, 9 (34), 4780–4784. https://doi.org/10.1039/b704719k.es_CO
    dc.relation.referencesTerazc, L.; Oh, T. Asymmetric Diels–Alder Reactions in Ionic Liquids. Tetrahedron Lett. 2003, 44 (34), 6465–6468. https://doi.org/10.1016/S0040-4039(03)01509-9.es_CO
    dc.relation.referencesHollóczki, O.; Kelemen, Z.; Könczöl, L.; Szieberth, D.; Nyulászi, L.; Stark, A.; Kirchner, B. Significant Cation Effects in Carbon Dioxide–Ionic Liquid Systems. ChemPhysChem 2013, 14 (2), 315–320. https://doi.org/10.1002/cphc.201200970.es_CO
    dc.relation.referencesThomas, E.; Vijayalakshmi, K. P.; George, B. K. Electronic Structure and Topological Analysis of Ionic Liquids; Elsevier Inc., 2021. https://doi.org/10.1016/b978-0-12-820820-7.00002-4.es_CO
    dc.relation.referencesPereiro, A. B.; Araújo, J. M. M.; Martinho, S.; Alves, F.; Nunes, S.; Matias, A.; Duarte, C. M. M.; Rebelo, L. P. N.; Marrucho, I. M. Fluorinated Ionic Liquids: Properties and Applications. ACS Sustain. Chem. Eng. 2013, 1 (4), 427–439. https://doi.org/10.1021/sc300163n.es_CO
    dc.relation.referencesGonzalez-miquel, M.; Beddu, J.; Palomar, J.; Rodriguez, F. Solubility and Diffusivity of CO2 in [ Hxmim ][ NTf 2 ], [ Omim ][ NTf 2 ], and to 20 Bar at 298.15 K. Chem. Eng. Data 2014, 59, 212–217.es_CO
    dc.relation.referencesMuldoon, M. J.; Aki, S. N. V. K.; Anderson, J. L.; Dixon, J. K.; Brennecke, J. F. Improving Carbon Dioxide Solubility in Ionic Liquids. J. Phys. Chem. B 2007, 111 (30), 9001–9009. https://doi.org/10.1021/jp071897f.es_CO
    dc.relation.referencesCorvo, M. C.; Sardinha, J.; Casimiro, T.; Aguiar-Ricardo, A.; Esperança, J.; Einloft, S.; Lopes, J. N. C.; Szydlowski, J.; Rebelo, L. P. N. Understanding Solute–Solvent Interactions in Fluorinated Ionic Liquids. ChemSusChem 2015, 8 (11), 1935–1944. https://doi.org/10.1002/cssc.201500104.es_CO
    dc.relation.referencesPantoja Hernandez, M. A. ESTUDIO TEÓRICO DE LAS INTERACCIONES ENTRE LÍQUIDOS IÓNICOS Y COMPUESTOS FENÓLICOS, Universidad Veracruzana, 2018.es_CO
    dc.relation.referencesFerreira, M. L.; Vieira, N. S. M.; Castro, P. J.; Vega, L. F.; Araújo, J. M. M.; Pereiro, A. B. Understanding the Phase and Solvation Behavior of Fluorinated Ionic Liquids. J. Mol. Liq. 2022, 359, 119285. https://doi.org/10.1016/j.molliq.2022.119285.es_CO
    dc.relation.referencesPereiro, A. B.; Araújo, J. M. M.; Vieira, F. S.; Marrucho, I. M.; Piñeiro, M.; Rebelo, L. P. N. Aggregation Behavior and Total Miscibility of Fluorinated Ionic Liquids in Water. Langmuir 2015, 31 (4), 1283–1295. https://doi.org/10.1021/la503961h.es_CO
    dc.relation.referencesFerreira, M. L.; Pastoriza-Gallego, M. J.; Araújo, J. M. M.; Canongia Lopes, J. N.; Rebelo, L. P. N.; Piñeiro, M.; Shimizu, K.; Pereiro, A. B. Influence of Nanosegregation on the Phase Behavior of Fluorinated Ionic Liquids. J. Phys. Chem. 2017, 121 (9), 5415–5427. https://doi.org/10.1021/acs.jpcc.7b00516.es_CO
    dc.relation.referencesPereiro, A. B.; Pastoriza-Gallego, M. J.; Shimizu, K.; Marrucho, I. M.; Lopes, J. N. C.; Piñeiro, M. M.; Rebelo, L. P. N. On the Formation of a Third, Nanostructured Domain in Ionic Liquids. J. Phys. Chem. B 2013, 117 (37), 10826–10833. https://doi.org/10.1021/jp402300c.es_CO
    dc.relation.referencesVieira, N. S. M.; Bastos, J. C.; Rebelo, L. P. N.; Matias, A.; Araújo, J. M. M.; Pereiro, A. B. Human Cytotoxicity and Octanol/Water Partition Coefficients of Fluorinated Ionic Liquids. Chemosphere 2019, 216, 576–586. https://doi.org/10.1016/j.chemosphere.2018.10.159.es_CO
    dc.relation.referencesZakrzewska, M. E.; Nunes, A. V. M.; Jovell, D. G.; S. B.; Pereiro, A. B. Insight into the Solubility of R134a in Fluorinated Ionic Liquids Designed for Refrigerant Solvents. 2020. https://doi.org/10.1016/j.cej.2020.125469.es_CO
    dc.relation.referencesYang, Y.; Lei, Z.; Yu, G. Unraveling Weak Interactions between Fluorinated Gases and Ionic Liquids. Chem. Eng. Sci. 2021, 246, 117004. https://doi.org/10.1016/j.ces.2021.117004.es_CO
    dc.relation.referencesPrykhodko, Y.; Martin, A.; Galán Sánchez, L. M.; Sanchis, M. J.; Postigo, M. A. Imidazolium-Based Protic Fluorinated Ionic Liquids: Structure–Properties Relationships. Chem. Eng. J. 2021, 426, 130868. https://doi.org/10.1016/j.cej.2021.130868.es_CO
    dc.relation.referencesJensen, F. Introduction to Computational Chemistry Second Edition. John Wiley Sons, ltd 2014, 2 (January 1989).es_CO
    dc.relation.referencesYoung, D. C.; Young, D. C. CHEMISTRY COMPUTATIONAL CHEMISTRY A Practical Guide for Applying Techniques to Real-World Problems; 2001; Vol. 9.es_CO
    dc.relation.referencesCampa Guevara, D. L. ESTUDIO TEÓRICO DE LAS INTERACCIONES INTERMOLECULARES ENTRE LÍQUIDOS IÓNICOS DERIVADOS DE IMIDAZOLIO Y PIRIDINIO Y COMPUESTOS AROMÁTICOS POLICÍCLICOS. Universidad Veracruzana, 2016.es_CO
    dc.relation.referencesCantudo Agudo, R. SIMULACIÓN MOLECULAR Y SU POTENCIAL APLICACIÓN EN EL ÁMBITO DE LA INGENIERÍA QUÍMICA. Universidad de Cantabria, 2018.es_CO
    dc.relation.referencesPople, J. Calculos Teoricos de Estructura Electronica Molecular Con El Programa GAUSSIAN. 2015, 1–34.es_CO
    dc.relation.referencesHohenberg, P. Inhomogeneous Electron Gas. physical 2001, 40 (4), 391–402. https://doi.org/10.1007/BF01198136.es_CO
    dc.relation.referencesShakerzadeh, E. Chapter 4 - Theoretical Investigations of Interactions between Boron Nitride Nanotubes and Drugs; Elsevier Inc., 2016. https://doi.org/10.1016/B978-0-323-38945-7.00004-3.es_CO
    dc.relation.referencesGaray Ruiz, D. Estudio Computacional de Las Interacciones de Moléculas de Interés Astrobiológico: Isómeros de CH5NO2. Universidad de Valladolid, 2017.es_CO
    dc.relation.referencesKrishnan, R.; Binkley, J. S.; Seeger, R.; Pople, J. A. Self-Consistent Molecular Orbital Methods. XX. A Basis Set for Correlated Wave Functions. J. Chem. Phys. 1980, 72 (1), 650–654. https://doi.org/10.1063/1.438955.es_CO
    dc.relation.referencesHofacker, G. L. Peter Politzer Und Donald G. Truhlar: Chemical Applications of Atomic and Molecular Electrostatic Potentials, Plenum Press, New York Und London 1981. 472 Seiten, Preis: $ 55.- Berichte der Bunsengesellschaft für Phys. Chemie 1982, 86 (9), 872–873. https://doi.org/10.1002/bbpc.19820860925.es_CO
    dc.relation.referencesVega, L. F.; Angélica, M.; Buelvas, R.; Hincapié, L. P.; Pérez-gamboa, A. Propiedades Estructurales , Espectroscópicas y Ópticas de Delo de Sistema D-E-A Por Métodos Computacionales Structural , Spectroscopic and Optical Properties of 4 - ( 6 - ( Dimethylamino ) Computation Methods. https://doi.org/https://dx.doi.org/10.15665/rp.vi161i.1548.es_CO
    dc.relation.referencesIniesta Chavez, V. E. Estudio Computacional de Las Interacciones No-Covalentes de Purinas, Benemerita universidad autonoma de puebla, 2020. Vol. 2507.es_CO
    dc.relation.referencesTinoco Jr., I.; Sauer, K.; Wang, J. C.; Puglisi, J. Physical Chemistry Principles and Applications in Biological Sciences; 2002.es_CO
    dc.relation.referencesFrisch, M. J.; G. W., T.; H. B., S.; G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ort, and D. J. F. Gaussian Inc. Gaussian Inc. Wallingford, CT 2016.es_CO
    dc.relation.referencesGAUSSIAN. MODELADO MOLECULAR 1; 2018; pp 1–12.es_CO
    dc.relation.referencesFrisch, A.; Hratchian, H. P.; Dennington II, R. D.; Keith, T. A.; Millam, J.; Nielson, A. B.; Holder, A.; Hiscocks, J. Gaussian View 5; Gaussian: Wallingford, USA, 2009.es_CO
    dc.relation.referencesOrozco-Alzate, M. What Is Computational Chemistry? https://www.global.com/dictionary/computational-chemistry/ (accessed June 6, 2022).es_CO
    dc.relation.referencesUmebayashi, Y.; Fujimori, T.; Suzuki, K.; Matsumoto, M.; Fujii, K.; Kanno, H.; Ishiguro, S. I. Evidence of Conformational Equilibrium of 1-Ethyl-3-Methylimidazolium Cation in Ionic Liquids: A Raman Spectroscopic and Quantum Chemical Calculations. J. Phys. Chem. B 2006, 110 (20), 8976–8980. https://doi.org/10.1021/jp053743n.es_CO
    dc.relation.referencesHolbrey, J. D.; Reichert, W. M.; Nieuwenhuyzen, M.; Johnson, S. K.; Seddon, K. R.; Rogers, R. D. Structure and Thermophysical Properties of 1-Butyl-3-Methylimidazolium Bis(Trifluoromethylsulfonyl)Imide: A Crystalline Ionic Liquid. Chem. Commun. 2003, 28 (1), 1636–1637. https://doi.org/10.1039/B302504D.es_CO
    dc.relation.referencesZhu, X.; Cui, P.; Zhang, D.; Liu, C. Theoretical Study for Pyridinium-Based Ionic Liquid 1-Ethylpyridinium Trifluoroacetate: Synthesis Mechanism, Electronic Structure, and Catalytic Reactivity. J. Phys. Chem. A 2011, 115 (29), 8255–8263. https://doi.org/10.1021/jp201246j.es_CO
    dc.relation.referencesAzizi-toupkanloo, H. An Interesting Theoretical Insight into CO 2 Capture of Phosphonium-Based Ionic Liquids with Aprotic Heterocyclic Anions. 2020, 1095–1111.es_CO
    dc.relation.referencesCosta Gomes, M.; Padua, A. Interactions of Carbon Dioxide with Liquid Fluorocarbons. 2003, 14020–14024.es_CO
    dc.relation.referencesZahn, S.; Macfarlane, D. R.; Izgorodina, E. I. Assessment of Kohn-Sham Density Functional Theory and Møller-Plesset Perturbation Theory for Ionic Liquids. Phys. Chem. Chem. Phys. 2013, 15 (32), 13664–13675. https://doi.org/10.1039/c3cp51682b.es_CO
    dc.rights.accessrightshttp://purl.org/coar/access_right/c_abf2es_CO
    dc.type.coarversionhttp://purl.org/coar/resource_type/c_2df8fbb1es_CO
    Aparece en las colecciones: Química

    Ficheros en este ítem:
    Fichero Descripción Tamaño Formato  
    Ramírez_2022_TG.pdfRamírez_2022_TG33,32 MBAdobe PDFVisualizar/Abrir


    Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.