Por favor, use este identificador para citar o enlazar este ítem:
http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/9656
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | Ramírez Moreno, Wilson Fabián. | - |
dc.date.accessioned | 2025-06-26T17:36:13Z | - |
dc.date.available | 2022 | - |
dc.date.available | 2025-06-26T17:36:13Z | - |
dc.date.issued | 2022 | - |
dc.identifier.citation | Ramírez Moreno, W. F. (2022). Evaluación de la captura de gases Hidrofluorocarbonados R-32, R-125, R-134a en liquidos Ionicos Fluorados mediante metodos computacionales [Trabajo de Grado Pregrado, Universidad de Pamplona]. Repositorio Hulago Universidad de Pamplona. http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/9656 | es_CO |
dc.identifier.uri | http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/9656 | - |
dc.description | Los gases hidrofluorocarbonados (HFCs) son principalmente emitidos por los aires acondicionados, y otras actividades antropogénicas¹. Contribuyen al efecto invernadero (F-GEI), debido a su alto potencial de calentamiento (Global Warming Potential). El diseño de alternativas requiere del reciclaje de los compuestos de bajo a moderado GWP de las mezclas de refrigerantes actuales representando un desafío para la industria de la refrigeración. Sin embargo, no existe una tecnología desarrollada y estandarizada disponible para recuperarlos, y una vez que el ciclo de vida del equipo de refrigeración ha terminado, la mayoría de los gases son incinerados². El impacto ambiental de los HFCs requiere el desarrollo de tecnologías verdes para mitigarlos. Los LIFs surgen como un absorbente alternativo debido a sus propiedades únicas y excepcionales³. Los gases HFCs, difluorometano (R-32), pentafluoroetano (R-125) y el 1,1,1,2-tetrafluoroetano (R-134a) han sido capturados con los LIFs [C₂C₁Im][NTf₂], [C₂C₁Py][NTf₂], [C₂C₁Im][BETI], [C₂C₁Py][BETI], a base del catión imidazolio y piridinio⁴. En este trabajo se realiza una optimización de las geometrías mediante la teoría funcional de la Densidad (Densidad Funcional Teoría) en el nivel de teoría B3LYP/6-311++G(d, p) de Gaussian 09. Para los gases HFCs (R-32, R-125 y R-134a) con los LIFs (LIFs reportados en literatura como [C₂C₁Im][NTf₂], [C₂C₁Py][NTf₂], [C₂C₁Im][BETI], [C₂C₁Py][BETI] y [P₂₂₂₂][BETI]) y con los LIFs [P₂₂₂₂][NTf₂] como propuesta para la captura de HFCs. Por tanto, la optimización geométrica del catión, anión, catión-anión gas HFCs y del complejo LIFs-gas se realiza mediante un análisis mecano-cuántico que permite evaluar las interacciones de los enlaces H de cada gas HFCs con los LIFs. Finalmente, se calcula y compara las energías de enlace de estos sistemas moleculares, llegando a la conclusión que los mejores LIFs que podrían capturar los HFCs R-32, R-125 y R-134a en función de sus energías de enlace con el [C₂C₁Im][NTf₂], [C₂C₁Py][BETI], y [C₂C₁Py][BETI], respectivamente, calculadas haciendo uso del BSSE mediante DFT en el nivel de teoría B3LYP/6-311++G**(d, p) de Gaussian 09. Mediante el análisis vibratorio de los complejos [C₂C₁Im][NTf₂], [C₂C₁Py][NTf₂], [P₂₂₂₂][NTf₂], [C₂C₁Im][BETI], [C₂C₁Py][BETI], [P₂₂₂₂][BETI] con los HFCs R-32, R-125 y R-134a, se obtienen los espectros simulados de la captura de los gases por los LIFs. | es_CO |
dc.description.abstract | Hydrofluorocarbon gases (HFCs) are mainly emitted by air conditioners, and other anthropogenic activities¹. They contribute to the greenhouse effect (F-GHG), due to their high Global Warming Potential (GWP). The design of alternatives requires the recycling of low to moderate GWP compounds from current refrigerant mixtures representing a challenge for the refrigeration industry. However, there is no developed and standardized technology available to recover them, and once the life cycle of the refrigeration equipment is over, most of the gases are incinerated². The environmental impact of fluorinated gases (F-gases) requires the development of green technologies to mitigate them. Fluorinated ionic liquids (LIFs) emerged as an alternative absorbent due to their unique and exceptional properties³. The gases HFCs, difluoromethane (R-32), pentafluoroethane (R-125) and 1,1,1,2-tetrafluoroethane (R-134a) have been captured with fluorinated ionic liquids (FILs) [C₂C₁Im][NTf₂], [C₂C₁Py][NTf₂], [C₂C₁Im][BETI], [C₂C₁Py][BETI], based on the imidazolium and pyridine cation⁵ ⁶. In this work, an optimization of the geometries is carried out by Density Funtional Theory (DFT) at the level of theory B3LYP/6-311++G*(d, p) of Gaussian 09 and Gaussian view. for HFCs gases (R-32, R-125 and R-134a) with fluorinated ionic liquids (FILs) reported in literature such as [C₂C₁Im] [NTf₂], [C₂C₁Py] [NTf₂], [C₂C₁Im] [BETI] y [C₂C₁Py] [BETI]. In addition, FILs [P₂₂₂₂][BETI] and [P₂₂₂₂][NTf₂] are proposed as potential solvents for the capture of HFCs. Therefore, the geometric optimization of the cation, anion, cation-anion gas HFCs and the LIFs-gas complex is carried out by means of a mechano-quantum analysis that allows to evaluate the interactions of the H bonds of each HFCs gas with the LIFs based on the imidazolium, pyridine and phosphonium cations. Finally, the binding energies of these molecular systems are calculated and compared, concluding that the best ionic liquids that could capture the hydrofluorocarbon gases R-32, R-125 and R-134a depending on their bond energies are [C₂C₁Im][NTf₂], [C₂C₁Py][BETI], and [C₂C₁Py][BETI], respectively, calculated using the BSSE by DFT at the theory level B3LYP/6-311++G*(d, p) gaussian 09. By vibratory analysis of the complexes [C₂C₁Im][NTf₂], [C₂C₁Py][NTf₂], [P₂₂₂₂][NTf₂], [C₂C₁Im][BETI], [C₂C₁Py][BETI], [P₂₂₂₂][BETI] with the hydrofluorocarbon gases R-32, R-125 and R-134a, the simulated spectra of the capture of the gases by the FILs are obtained. | es_CO |
dc.format.extent | 129 | es_CO |
dc.format.mimetype | application/pdf | es_CO |
dc.language.iso | es | es_CO |
dc.publisher | Universidad de Pamplona – Facultad de Ciencias Básicas. | es_CO |
dc.subject | Química computacional. | es_CO |
dc.subject | Gases hidrofluorocarbonados. | es_CO |
dc.subject | Líquidos iónicos fluorados. | es_CO |
dc.subject | DFT. | es_CO |
dc.title | Evaluación de la captura de gases Hidrofluorocarbonados R-32, R-125, R-134a en liquidos Ionicos Fluorados mediante metodos computacionales. | es_CO |
dc.type | http://purl.org/coar/resource_type/c_7a1f | es_CO |
dc.date.accepted | 2022 | - |
dc.relation.references | Sosa, J. E.; Ribeiro, R. P. P. L.; Castro, P. J.; Mota, J. P. B.; Araújo, J. M. M.; Pereiro, A. B. Absorption of Fluorinated Greenhouse Gases Using Fluorinated Ionic Liquids. Ind. Eng. Chem. Res. 2019, 58 (45), 20769–20778. https://doi.org/10.1021/acs.iecr.9b04648. | es_CO |
dc.relation.references | . Jovell, D.; Pou, J. O.; Gonzalez-Olmos, R. Life Cycle Assessment of the Separation and Recycling of Fluorinated Gases Using Ionic Liquids in a Circular Economy Framework. 2022. https://doi.org/10.1021/acssuschemeng.1c04723. | es_CO |
dc.relation.references | Hospital-Benito, D.; Gomes, M. C.; Sosa, J. E.; Pereiro, A. B.; Palomar, J. Process Evaluation of Fluorinated Ionic Liquids as F - Gas Absorbents. 2020. https://doi.org/10.1021/acs.est.0c05035. | es_CO |
dc.relation.references | Sosa, J. E.; Malheiro, C.; Ribeiro, R. P. P. L.; Castro, P. J.; Piñeiro, M. M.; Araújo, J. M. M.; Plantier, F.; Mota, J. P. B.; Pereiro, A. B. Adsorption of Fluorinated Greenhouse Gases on Activated Carbons: Evaluation of Their Potential for Gas Separation. J. Chem. Technol. Biotechnol. 2020, 95 (7), 1892–1905. https://doi.org/10.1002/jctb.6371. | es_CO |
dc.relation.references | Lepre, L. F.; Andre, D.; Denis-Quanquin, S.; Gautier, A. H.; Pádua, A. A. H.; Gomes, M. Ionic Liquids Can Enable the Recycling of Fluorinated Greenhouse Gases. J. Phys. Chem. B 2022. https://doi.org/10.1021/acs.jpcb.9b04644. | es_CO |
dc.relation.references | Sosa, J. E.; Redondo, A. E.; Avila, J. G.; Rodriguez, A. M.; Gomes, M. C.; Palomar, J.; Pereiro, A. B.; Araújo, J. M. M. Fluorinated Ionic Liquids as F-Gas Absorbents: COSMO-RS and Molecular Dynamics Evaluation. J. Chem. Technol. Biotechnol. 2022. https://doi.org/10.1002/jctb.7205. | es_CO |
dc.relation.references | Sovacool, B. K.; Griffiths, S.; Kim, J.; Bazilian, M. Climate Change and Industrial F-Gases: A Critical and Systematic Review of Developments in Socio-technical Systems and Policy Options for Reducing Synthetic Greenhouse Gas Emissions. Renew. Sustain. Energy Rev. 2021, 141 (January), 110759. https://doi.org/10.1016/j.rser.2021.110759. | es_CO |
dc.relation.references | WMO. WMO GREENHOUSE GAS BULLETIN: The State of Greenhouse Gases in the Atmosphere Based on Global Observations through 2020; SUIZA, 2021. | es_CO |
dc.relation.references | Comisión Europea. Fluorinated Greenhouse Gases. https://ec.europa.eu/clima/eu-action/fluorinated-greenhouse-gases_es (accessed Mar 23, 2022). | es_CO |
dc.relation.references | European Commission. Legislation to Control F-gases. https://ec.europa.eu/clima/eu-action/fluorinated-greenhouse-gases/eu-legislation-control-f-gases_en (accessed Mar 24, 2022). | es_CO |
dc.relation.references | NOAA. Global Monitoring Laboratory - Carbon Cycle Greenhouse Gases. https://gml.noaa.gov/ccgg/trends/mlo.html (accessed Mar 8, 2022). | es_CO |
dc.relation.references | Thomas, E.; Vijayalakshmi, K. P.; George, B. K. Kinetic Stability of Imidazolium Cations and Ionic Liquids: A Frontier Molecular Orbital Approach. J. Mol. Liq. 2019, 276, 721–727. https://doi.org/10.1016/j.molliq.2018.12.034. | es_CO |
dc.relation.references | Muthunatesan, S.; Ragavendran, V. A Study of Vibrational Spectra and Investigations of Charge Transfer and Chemical Properties of 2-Chloro Benzimidazole Based on DFT Computations. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2015, 138, 148–154. https://doi.org/10.1016/j.saa.2014.06.029. | es_CO |
dc.relation.references | Hardacre, C.; Holbrey, J. D.; McMath, S. E. J.; Wilkes, J. S.; Carper, W. R. Vibrational Spectroscopy of Imidazolium-Based Ionic Liquids: Raman and Infrared Spectra of 1-Alkyl-3-Methylimidazolium Salts. J. Chem. Phys. 2003, 118, 273–278. | es_CO |
dc.relation.references | Paschoal, V. H.; Faria, L. F. O.; Ribeiro, M. C. C. Vibrational Spectroscopy of Ionic Liquids. 2016. https://doi.org/10.1021/acs.chemrev.6b00461. | es_CO |
dc.relation.references | ) Rey, I.; Johansson, P.; Lindgren, J.; Lasse, U. C. Spectroscopic and Theoretical Study of (CF₃SO₂)₂N⁻ (TFSI⁻) and (CF₃SO₂)₂NH (HTFSI). 1998, 5639 (98), 3429–3258. | es_CO |
dc.relation.references | ) Hersstedt, M.; Smirnov, M.; Johansson, P.; Chami, M.; Grondin, J.; Servant, L. Spectroscopic Characterization of the Conformational States of the Trifluoromethanesulfonyl) Imide Anion (TFSI⁻). 2005, An. Appl, 762–770. https://doi.org/10.1002/pss.1347. | es_CO |
dc.relation.references | Jeffrey, G. A. An Introduction to Hydrogen Bonding. 1997, 120 (2), 975613. | es_CO |
dc.relation.references | Sashina, E. S.; Kashirskii, D. A.; Artamonova, T. V.; Myznikov, L. V. 1-ALKYL-3-METHYLPYRIDINIUM HALIDE STRUCTURAL FEATURES STUDIED BY VIBRATIONAL SPECTROSCOPY METHODS. 2015, 47 (3), 38–43. https://doi.org/10.1007/s10692-015-9660-7. | es_CO |
dc.relation.references | Warner, I. M.; Regimi, B. P.; El-zahab, B.; Hayes, D. J. DETECTION AND MOLECULAR WEIGHT DETERMINATION OF ORGANIC VAPORS. 2013, 20130303402A1, 2103. | es_CO |
dc.relation.references | Dharaskar, S. A.; Wasewar, K. L.; Varma, M. N.; Shende, D. Z.; Kumar, K.; Kyoo, C. Synthesis , Characterization , and Application of Novel Trinexyl Tetradecyl Desulfurization of Liquid Fuel. Fuel Process. Technol. 2014, 123, 1–10. https://doi.org/10.1016/j.fuproc.2014.02.001. | es_CO |
dc.relation.references | María De Los Ángeles, V.; Ricardo, C.; Juan Manuel, G.; Omayra, E.-A. Estudio De Disoluciones Acuosas Poliméricas Para La Absorción de Dióxido de Carbono. Ing. Investig. y Tecnol. 2018, 11 (número 4), 1–9. | es_CO |
dc.relation.references | ) Anslyn, Eric V.; Dougherty, D. A. Modern Physical Organic Chemistry; Murdzek, J., Ed.; Taylor & Francis: Sausalito, California, 2005. | es_CO |
dc.relation.references | Anslyn, Eric V.; Dougherty, D. A. Modern Physical Organic Chemistry; Murdzek, J., Ed.; Taylor & Francis: Sausalito, California, 2005. | es_CO |
dc.relation.references | NRDC. Paris Climate Agreement: Everything You Need to Know. https://www.nrdc.org/stories/paris-climate-agreement-everything-you-need-know#sec-whatis (accessed Jun 2, 2022). | es_CO |
dc.relation.references | Villarán, M. C.; Chávarri, M.; Dietrich, T. PARA UNA BIOECONOMÍA CIRCULAR. 2017, 251–272. | es_CO |
dc.relation.references | Donner, M.; Verniquet, A.; Broeze, J.; Kayser, K.; De Vries, H. Critical Success and Risk Factors for Circular Business Models Valorising Agricultural Waste and By-Products. Resour. Conserv. Recycl. 2021, 165, 105236. https://doi.org/10.1016/j.resconrec.2020.105236. | es_CO |
dc.relation.references | Mahjoub, B.; Domschreit, E. ScienceDirect Chances and Challenges of an Organic Waste – Based Bioeconomy. Curr. Opin. Green Sustain. Chem. 2020, 25, 100388. https://doi.org/10.1016/j.cogsc.2020.100388. | es_CO |
dc.relation.references | Lv, B.; Wu, K.; Zhou, Z.; Jing, G. International Journal of Greenhouse Gas Control How Did the Corrosion Inhibitor Work in Amino-Functionalized Ionic Liquids for CO 2 Capture : Quantum Chemical Calculation and Experimental. Int. J. Greenh. Gas Control 2019, 91 (July), 102846. https://doi.org/10.1016/j.ijggc.2019.102846. | es_CO |
dc.relation.references | Vallero, D. A. Air Pollution. Biogeochemistry; 2019. https://doi.org/10.1016/b978-0-12-814934-8.00008-9. | es_CO |
dc.relation.references | Pantoja, M. A. ESTUDIO TEÓRICO DE LAS INTERACCIONES ENTRE LÍQUIDOS IÓNICOS Y COMPUESTOS FENÓLICOS, Universidad Veracruzana, 2018. | es_CO |
dc.relation.references | Reina, M. M.; González, E. A.; Muñoz, Y. M. Estudio Del Equilibrio Líquido-Líquido de Benceno + (Hexano, Heptano y Ciclohexeno) Con El Líquido Iónico 1-Etil-5 K. Rev. Colomb. química 2012, 41 (1), 89–107. | es_CO |
dc.relation.references | Martínez-Reina, M.; Amado-Gonzalez, E.; Muñoz-Muñoz, Y. M. Study of Liquid-Liquid Equilibria of Toluene + (Hexane, Heptane, or Cyclohexene) with 1-Ethyl-3-Methylimidazolium Ethylsulfate at 308.15K. chemical Soc. Japan 2012, 1144 (10), 1138–1144. | es_CO |
dc.relation.references | Amado-González, E.; González-Gutierrez, L. I.; Gómez-Jaramillo, W. Mean Activity Coefficients of NaCl in the Mixture of 2-Hydroxyethylammonium Butyrate + H2O at 298.15 K. J. Chem. Eng. Data 2017, 62 (8), 2384–2391. https://doi.org/10.1021/acs.jced.7b00278. | es_CO |
dc.relation.references | Amado-Gonzalez, E.; Esteso, M. A.; Gómez-Jaramillo, W. Mean Activity Coefficients for NaCl in the Mixtures Containing Ionic Liquids [Emim][MeSO3] + H2O and [Emim][EtSO4] + H2O at 298.15 K. J. Chem. Eng. Data 2017, 62 (2), 752–761. https://doi.org/10.1021/acs.jced.6b00820. | es_CO |
dc.relation.references | Blanco, L. H.; Gonzalez, E. A. Conductance of Asymmetric Iodides of Butyl-Triethyl-Ammonium in Toluene-Acetonitrile Mixtures at 25°C. Phys. Chem. Liq. 1995, 30 (4), 213–226. https://doi.org/10.1080/00319109508036068. | es_CO |
dc.relation.references | Martinez-Reina, M.; Amado-Gonzalez, E. REFRACTIVE INDICES, DENSITIES AND EXCESS PROPERTIES OF BINARY MIXTURES OF ETHANOL WITH HEXANE, HEPTANE, OCTANE AND WATER at (293.15, 298.15, 303.15, and 308.15) K. Bitsua 2010, 8. | es_CO |
dc.relation.references | NASA. Carbon Dioxide: Vital Signs of the Planet https://climate.nasa.gov/vital-signs/carbon-dioxide/ (accessed Jun 1, 2022). | es_CO |
dc.relation.references | Gordon, D. M. Reducing methane is the best solution to limit global warming https://www.weforum.org/agenda/2022/05/methane-solutions-climate-future/ (accessed Jun 1, 2022). | es_CO |
dc.relation.references | U. S. Department of Energy. Nitrogen Oxides (NOx) Emissions https://www.netl.doe.gov/research/Coal/energy-systems/gasification/gasifipedia/nitrogen-oxides (accessed Jun 1, 2022). | es_CO |
dc.relation.references | EPA. What is Ozone? https://www.epa.gov/ozone-pollution-and-your-patients-health/what-ozone (accessed Jun 1, 2022). | es_CO |
dc.relation.references | Electronic fluorocarbons. Trifluoromethane (CHF₃); 2021. | es_CO |
dc.relation.references | Edmond, C. Emissions of the powerful greenhouse gas SF6 are rising rapidly https://www.weforum.org/agenda/2019/10/greenhouse-gas-emissions-climate-change-sf6/ (accessed Jun 2, 2022). | es_CO |
dc.relation.references | University of Waterloo. Global warming caused by chlorofluorocarbons, not carbon dioxide, new study says https://phys.org/news/2013-05-global-warming-chlorofluorocarbons-carbon-dioxide.html (accessed Jun 2, 2022). | es_CO |
dc.relation.references | Khalil, M. A. K.; Rasmussen, R. A.; Culbertson, J. A.; Prins, J. M.; Grimsrud, E. P.; Shearer, M. J. Atmospheric Perfluorocarbons. Environ. Sci. Technol. 2003, 37 (19), 4358–4361. https://doi.org/10.1021/es030327a. | es_CO |
dc.relation.references | The science of air. Perfluorocarbons (PFCs): What do you need to know? https://thescienceofair.com/perfluorocarbons/ (accessed Jun 2, 2022). | es_CO |
dc.relation.references | Prather, M. J.; Hsu, J. NF3, the Greenhouse Gas Missing from Kyoto. Geophys. Res. Lett. 2008, 35 (12). https://doi.org/10.1029/2008GL034542. | es_CO |
dc.relation.references | Montzka, S. A.; Reimann, S.; Engel, A.; Krueger, K.; O'Doherty, S.; Sturges, W. T.; Blake, D.; Dorf, M.; Fraser, P.; Froidevaux, L.; Jucks, K.; Kreher, K.; Kurylo, M. J.; Mellouki, A.; Miller, J.; Nielsen, O.-J.; Orkin, V. L.; Prinn, R. G.; Rhew, R.; Santee, M. L.; Verdonik, D. Ozone-Depleting Substances (ODSs) and Related Chemicals. Chapter 1 in Scientific Assess–Ment of Ozone Depletion: 2010, Global Ozone Research and Monitoring Project—Report No. 52, 516 Pp., World Meteorological Organization, Geneva, Switzerland., 2011. | es_CO |
dc.relation.references | Comision Europea. Gases fluorados de efecto invernadero https://ec.europa.eu/clima/eu-action/fluorinated-greenhouse-gases_es (accessed Mar 24, 2022). | es_CO |
dc.relation.references | EPA. Protecting Our Climate by Reducing Use of HFCs https://www.epa.gov/climate-hfcs-reduction (accessed Mar 23, 2022). | es_CO |
dc.relation.references | OMM. Boletín de La OMM Sobre Los Gases de Efecto Invernadero. Vigil. la Atmósfera Glob. 2021, 17 (Faj 1) 1–10. | es_CO |
dc.relation.references | Stephen, R. Nitrogen Trifluoride Now Required in GHG Protocol Greenhouse Gas Emissions Inventories https://www.wri.org/insights/nitrogen-trifluoride-now-required-ghg-protocol-greenhouse-gas-emissions-inventories (accessed Jun 2, 2022). | es_CO |
dc.relation.references | Beckhen, K.; Graaf, D. D.; de Elsner, D. C.; Hofmann, C.; Krüger, D. F.; Martens, K.; Plehn, D. W.; Sartorius, D. R. Avoiding Fluorinated Greenhouse Gases: Prospects for Phasing Out. GAIA 2022, 31 (2), 103–111. https://doi.org/10.14512/gaia.31.2.7. | es_CO |
dc.relation.references | Höglund-Isaksson, L.; Purohit, P.; Mitigating Non-CO₂ Greenhouse Gases: Nitrous Oxide, Methane, and Fluorinated Gases. In Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press, 2022; pp 138–147. | es_CO |
dc.relation.references | UNEP. Hydrofluorocarbons. Overview. 2022. https://www.unep.org/hydrofluorocarbons/ (accessed Jun 2, 2022). | es_CO |
dc.relation.references | IPCC. Informe Del Grupo Intergubernamental De Expertos Sobre El Cambio Climático; 2014. | es_CO |
dc.relation.references | EPA. Fluorinated Greenhouse Gas Emissions and Supplies Reported to the GHGRP https://www.epa.gov/ghgreporting/fluorinated-greenhouse-gas-emissions-and-supplies-reported-ghgrp (accessed Mar 23, 2022). | es_CO |
dc.relation.references | Forster, P. M. D. F.; Joshi, M. The Role of Halocarbons in the Climate Change of the Troposphere and Stratosphere. Clim. Change 2005, 71 (1–2), 249–266. https://doi.org/10.1007/s10584-005-5955-7. | es_CO |
dc.relation.references | Gernaat, D. E. H. J.; Calvin, K.; Lucas, P. L.; Luderer, G.; Otto, S. A. C.; Rao, S.; Streffer, J.; van Vuuren, D. P. Understanding the Contribution of Non-Carbon Dioxide Gases in Deep Mitigation Scenarios. Glob. Environ. Chang. 2015, 33, 142–153. https://doi.org/10.1016/j.gloenvcha.2015.04.010. | es_CO |
dc.relation.references | Code of Federal Regulationl. Global Warming Potentials; 2022. | es_CO |
dc.relation.references | Simmonds, P. G.; Rigby, M.; McCulloch, A.; Vollmer, M. K.; Henne, S.; Mühle, J.; O'Doherty, S.; Manning, A. J.; Krummel, P. B.; Fraser, P. J.; Young, D.; Weiss, R. F.; Salameh, P. K.; Harth, C. M.; Reimann, S.; Trudinger, C. M.; Steele, L. P.; Wang, R. H. J.; Ivy, D. J.; Prinn, R. G.; Mitrevski, B.; Etheridge, D. M. Recent Increases in the Atmospheric Growth Rate and Emissions of HFC-23 (CHF₃) and the Link to HCFC-22 (CHClF₂) Production. Atmos. Chem. Phys. 2018, 18 (6), 4153–4169. https://doi.org/10.5194/acp-18-4153-2018. | es_CO |
dc.relation.references | McCulloch, A. Fluorocarbons in the Global Environment: A Review of the Important Interactions with Atmospheric Chemistry and Physics. J. Fluor. Chem. 2003, 123 (1), 21–29. https://doi.org/10.1016/S0022-1139(03)00105-2. | es_CO |
dc.relation.references | de Richter, R. K.; Ming, T.; Caillol, S.; Liu, W. Fighting Global Warming by GHG Removal: Destroying CFCs and HCFCs in Solar-Wind Power Plant Hybrids Producing Renewable Energy with No-Intermittency. Int. J. Greenh. Gas Control 2016, 49, 449–472. https://doi.org/10.1016/j.ijggc.2016.02.027. | es_CO |
dc.relation.references | Ross J. Salawitch; Bennett, B. F.; Hope, A. P.; Tribett, W. R.; Canty, T. P. Earth’s Climate System; 2005. https://doi.org/10.1007/978-3-319-46939-3. | es_CO |
dc.relation.references | IPCC. Climate Change 2022: Impacts, Adaptation and Vulnerability; 2022; Vol. 1. | es_CO |
dc.relation.references | NoAA. Halocarbons and other Atmospheric Trace Species https://gml.noaa.gov/hats/about/hfc.html (accessed Mar 23, 2022). | es_CO |
dc.relation.references | World Meteorological Organization Global Ozone Research and Monitoring Project. Scientific Assessment of Ozone Depletion: 2010; 2010. | es_CO |
dc.relation.references | Wilkinson, A. J. K.; Braggins, R.; Steinbach, I.; Smith, J. Costs of Switching to Low Global Warming Potential Inhalers. An Economic and Carbon Footprint Analysis of NHS Prescription Data in England. BMJ Open 2019, 9 (10), 1–8. https://doi.org/10.1136/bmjopen-2018-028763. | es_CO |
dc.relation.references | Thomas, E.; Vijayalakshmi, K. P.; George, B. K. Electronic Structure and Topological Analysis of Ionic Liquids; Elsevier Inc., 2021. https://doi.org/10.1016/b978-0-12-820820-7.00002-4. | es_CO |
dc.relation.references | Florianne, D.; Borja, C. Liquids - Methods of Synthesis and Applications. MedAdv.org 2015, No. 1405–5597. | es_CO |
dc.relation.references | Hu, J.; Chen, L.; Shi, M.; Zhang, C. A Quantum Chemistry Study for 1-Ethyl-3-Methylimidazolium Ionic Liquids with Aromatic Heterocyclic Anions against Carbon Dioxide Absorption. Fluid Phase Equilib. 2018, 459, 208–218. https://doi.org/10.1016/j.fluid.2017.12.005. | es_CO |
dc.relation.references | Morais, C.; Bonifácio, R. P.; Domingues, F.; Ribeiro, A. E. Effect of Hydrogen Bonding on the Carbon Dioxide Solubility in Ionic Liquids. J. Phys. Chem. B 2019, 123 (6), 1437–1446. https://doi.org/10.1021/acs.jpcb.8b10100. | es_CO |
dc.relation.references | Tsuzuki, S.; Tokuda, H.; Mikami, M. Theoretical Analysis of the Hydrogen Bond of Imidazolium C2-H with Anions. Phys. Chem. Chem. Phys. 2007, 9 (34), 4780–4784. https://doi.org/10.1039/b704719k. | es_CO |
dc.relation.references | Terazc, L.; Oh, T. Asymmetric Diels–Alder Reactions in Ionic Liquids. Tetrahedron Lett. 2003, 44 (34), 6465–6468. https://doi.org/10.1016/S0040-4039(03)01509-9. | es_CO |
dc.relation.references | Hollóczki, O.; Kelemen, Z.; Könczöl, L.; Szieberth, D.; Nyulászi, L.; Stark, A.; Kirchner, B. Significant Cation Effects in Carbon Dioxide–Ionic Liquid Systems. ChemPhysChem 2013, 14 (2), 315–320. https://doi.org/10.1002/cphc.201200970. | es_CO |
dc.relation.references | Thomas, E.; Vijayalakshmi, K. P.; George, B. K. Electronic Structure and Topological Analysis of Ionic Liquids; Elsevier Inc., 2021. https://doi.org/10.1016/b978-0-12-820820-7.00002-4. | es_CO |
dc.relation.references | Pereiro, A. B.; Araújo, J. M. M.; Martinho, S.; Alves, F.; Nunes, S.; Matias, A.; Duarte, C. M. M.; Rebelo, L. P. N.; Marrucho, I. M. Fluorinated Ionic Liquids: Properties and Applications. ACS Sustain. Chem. Eng. 2013, 1 (4), 427–439. https://doi.org/10.1021/sc300163n. | es_CO |
dc.relation.references | Gonzalez-miquel, M.; Beddu, J.; Palomar, J.; Rodriguez, F. Solubility and Diffusivity of CO2 in [ Hxmim ][ NTf 2 ], [ Omim ][ NTf 2 ], and to 20 Bar at 298.15 K. Chem. Eng. Data 2014, 59, 212–217. | es_CO |
dc.relation.references | Muldoon, M. J.; Aki, S. N. V. K.; Anderson, J. L.; Dixon, J. K.; Brennecke, J. F. Improving Carbon Dioxide Solubility in Ionic Liquids. J. Phys. Chem. B 2007, 111 (30), 9001–9009. https://doi.org/10.1021/jp071897f. | es_CO |
dc.relation.references | Corvo, M. C.; Sardinha, J.; Casimiro, T.; Aguiar-Ricardo, A.; Esperança, J.; Einloft, S.; Lopes, J. N. C.; Szydlowski, J.; Rebelo, L. P. N. Understanding Solute–Solvent Interactions in Fluorinated Ionic Liquids. ChemSusChem 2015, 8 (11), 1935–1944. https://doi.org/10.1002/cssc.201500104. | es_CO |
dc.relation.references | Pantoja Hernandez, M. A. ESTUDIO TEÓRICO DE LAS INTERACCIONES ENTRE LÍQUIDOS IÓNICOS Y COMPUESTOS FENÓLICOS, Universidad Veracruzana, 2018. | es_CO |
dc.relation.references | Ferreira, M. L.; Vieira, N. S. M.; Castro, P. J.; Vega, L. F.; Araújo, J. M. M.; Pereiro, A. B. Understanding the Phase and Solvation Behavior of Fluorinated Ionic Liquids. J. Mol. Liq. 2022, 359, 119285. https://doi.org/10.1016/j.molliq.2022.119285. | es_CO |
dc.relation.references | Pereiro, A. B.; Araújo, J. M. M.; Vieira, F. S.; Marrucho, I. M.; Piñeiro, M.; Rebelo, L. P. N. Aggregation Behavior and Total Miscibility of Fluorinated Ionic Liquids in Water. Langmuir 2015, 31 (4), 1283–1295. https://doi.org/10.1021/la503961h. | es_CO |
dc.relation.references | Ferreira, M. L.; Pastoriza-Gallego, M. J.; Araújo, J. M. M.; Canongia Lopes, J. N.; Rebelo, L. P. N.; Piñeiro, M.; Shimizu, K.; Pereiro, A. B. Influence of Nanosegregation on the Phase Behavior of Fluorinated Ionic Liquids. J. Phys. Chem. 2017, 121 (9), 5415–5427. https://doi.org/10.1021/acs.jpcc.7b00516. | es_CO |
dc.relation.references | Pereiro, A. B.; Pastoriza-Gallego, M. J.; Shimizu, K.; Marrucho, I. M.; Lopes, J. N. C.; Piñeiro, M. M.; Rebelo, L. P. N. On the Formation of a Third, Nanostructured Domain in Ionic Liquids. J. Phys. Chem. B 2013, 117 (37), 10826–10833. https://doi.org/10.1021/jp402300c. | es_CO |
dc.relation.references | Vieira, N. S. M.; Bastos, J. C.; Rebelo, L. P. N.; Matias, A.; Araújo, J. M. M.; Pereiro, A. B. Human Cytotoxicity and Octanol/Water Partition Coefficients of Fluorinated Ionic Liquids. Chemosphere 2019, 216, 576–586. https://doi.org/10.1016/j.chemosphere.2018.10.159. | es_CO |
dc.relation.references | Zakrzewska, M. E.; Nunes, A. V. M.; Jovell, D. G.; S. B.; Pereiro, A. B. Insight into the Solubility of R134a in Fluorinated Ionic Liquids Designed for Refrigerant Solvents. 2020. https://doi.org/10.1016/j.cej.2020.125469. | es_CO |
dc.relation.references | Yang, Y.; Lei, Z.; Yu, G. Unraveling Weak Interactions between Fluorinated Gases and Ionic Liquids. Chem. Eng. Sci. 2021, 246, 117004. https://doi.org/10.1016/j.ces.2021.117004. | es_CO |
dc.relation.references | Prykhodko, Y.; Martin, A.; Galán Sánchez, L. M.; Sanchis, M. J.; Postigo, M. A. Imidazolium-Based Protic Fluorinated Ionic Liquids: Structure–Properties Relationships. Chem. Eng. J. 2021, 426, 130868. https://doi.org/10.1016/j.cej.2021.130868. | es_CO |
dc.relation.references | Jensen, F. Introduction to Computational Chemistry Second Edition. John Wiley Sons, ltd 2014, 2 (January 1989). | es_CO |
dc.relation.references | Young, D. C.; Young, D. C. CHEMISTRY COMPUTATIONAL CHEMISTRY A Practical Guide for Applying Techniques to Real-World Problems; 2001; Vol. 9. | es_CO |
dc.relation.references | Campa Guevara, D. L. ESTUDIO TEÓRICO DE LAS INTERACCIONES INTERMOLECULARES ENTRE LÍQUIDOS IÓNICOS DERIVADOS DE IMIDAZOLIO Y PIRIDINIO Y COMPUESTOS AROMÁTICOS POLICÍCLICOS. Universidad Veracruzana, 2016. | es_CO |
dc.relation.references | Cantudo Agudo, R. SIMULACIÓN MOLECULAR Y SU POTENCIAL APLICACIÓN EN EL ÁMBITO DE LA INGENIERÍA QUÍMICA. Universidad de Cantabria, 2018. | es_CO |
dc.relation.references | Pople, J. Calculos Teoricos de Estructura Electronica Molecular Con El Programa GAUSSIAN. 2015, 1–34. | es_CO |
dc.relation.references | Hohenberg, P. Inhomogeneous Electron Gas. physical 2001, 40 (4), 391–402. https://doi.org/10.1007/BF01198136. | es_CO |
dc.relation.references | Shakerzadeh, E. Chapter 4 - Theoretical Investigations of Interactions between Boron Nitride Nanotubes and Drugs; Elsevier Inc., 2016. https://doi.org/10.1016/B978-0-323-38945-7.00004-3. | es_CO |
dc.relation.references | Garay Ruiz, D. Estudio Computacional de Las Interacciones de Moléculas de Interés Astrobiológico: Isómeros de CH5NO2. Universidad de Valladolid, 2017. | es_CO |
dc.relation.references | Krishnan, R.; Binkley, J. S.; Seeger, R.; Pople, J. A. Self-Consistent Molecular Orbital Methods. XX. A Basis Set for Correlated Wave Functions. J. Chem. Phys. 1980, 72 (1), 650–654. https://doi.org/10.1063/1.438955. | es_CO |
dc.relation.references | Hofacker, G. L. Peter Politzer Und Donald G. Truhlar: Chemical Applications of Atomic and Molecular Electrostatic Potentials, Plenum Press, New York Und London 1981. 472 Seiten, Preis: $ 55.- Berichte der Bunsengesellschaft für Phys. Chemie 1982, 86 (9), 872–873. https://doi.org/10.1002/bbpc.19820860925. | es_CO |
dc.relation.references | Vega, L. F.; Angélica, M.; Buelvas, R.; Hincapié, L. P.; Pérez-gamboa, A. Propiedades Estructurales , Espectroscópicas y Ópticas de Delo de Sistema D-E-A Por Métodos Computacionales Structural , Spectroscopic and Optical Properties of 4 - ( 6 - ( Dimethylamino ) Computation Methods. https://doi.org/https://dx.doi.org/10.15665/rp.vi161i.1548. | es_CO |
dc.relation.references | Iniesta Chavez, V. E. Estudio Computacional de Las Interacciones No-Covalentes de Purinas, Benemerita universidad autonoma de puebla, 2020. Vol. 2507. | es_CO |
dc.relation.references | Tinoco Jr., I.; Sauer, K.; Wang, J. C.; Puglisi, J. Physical Chemistry Principles and Applications in Biological Sciences; 2002. | es_CO |
dc.relation.references | Frisch, M. J.; G. W., T.; H. B., S.; G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ort, and D. J. F. Gaussian Inc. Gaussian Inc. Wallingford, CT 2016. | es_CO |
dc.relation.references | GAUSSIAN. MODELADO MOLECULAR 1; 2018; pp 1–12. | es_CO |
dc.relation.references | Frisch, A.; Hratchian, H. P.; Dennington II, R. D.; Keith, T. A.; Millam, J.; Nielson, A. B.; Holder, A.; Hiscocks, J. Gaussian View 5; Gaussian: Wallingford, USA, 2009. | es_CO |
dc.relation.references | Orozco-Alzate, M. What Is Computational Chemistry? https://www.global.com/dictionary/computational-chemistry/ (accessed June 6, 2022). | es_CO |
dc.relation.references | Umebayashi, Y.; Fujimori, T.; Suzuki, K.; Matsumoto, M.; Fujii, K.; Kanno, H.; Ishiguro, S. I. Evidence of Conformational Equilibrium of 1-Ethyl-3-Methylimidazolium Cation in Ionic Liquids: A Raman Spectroscopic and Quantum Chemical Calculations. J. Phys. Chem. B 2006, 110 (20), 8976–8980. https://doi.org/10.1021/jp053743n. | es_CO |
dc.relation.references | Holbrey, J. D.; Reichert, W. M.; Nieuwenhuyzen, M.; Johnson, S. K.; Seddon, K. R.; Rogers, R. D. Structure and Thermophysical Properties of 1-Butyl-3-Methylimidazolium Bis(Trifluoromethylsulfonyl)Imide: A Crystalline Ionic Liquid. Chem. Commun. 2003, 28 (1), 1636–1637. https://doi.org/10.1039/B302504D. | es_CO |
dc.relation.references | Zhu, X.; Cui, P.; Zhang, D.; Liu, C. Theoretical Study for Pyridinium-Based Ionic Liquid 1-Ethylpyridinium Trifluoroacetate: Synthesis Mechanism, Electronic Structure, and Catalytic Reactivity. J. Phys. Chem. A 2011, 115 (29), 8255–8263. https://doi.org/10.1021/jp201246j. | es_CO |
dc.relation.references | Azizi-toupkanloo, H. An Interesting Theoretical Insight into CO 2 Capture of Phosphonium-Based Ionic Liquids with Aprotic Heterocyclic Anions. 2020, 1095–1111. | es_CO |
dc.relation.references | Costa Gomes, M.; Padua, A. Interactions of Carbon Dioxide with Liquid Fluorocarbons. 2003, 14020–14024. | es_CO |
dc.relation.references | Zahn, S.; Macfarlane, D. R.; Izgorodina, E. I. Assessment of Kohn-Sham Density Functional Theory and Møller-Plesset Perturbation Theory for Ionic Liquids. Phys. Chem. Chem. Phys. 2013, 15 (32), 13664–13675. https://doi.org/10.1039/c3cp51682b. | es_CO |
dc.rights.accessrights | http://purl.org/coar/access_right/c_abf2 | es_CO |
dc.type.coarversion | http://purl.org/coar/resource_type/c_2df8fbb1 | es_CO |
Aparece en las colecciones: | Química |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
Ramírez_2022_TG.pdf | Ramírez_2022_TG | 33,32 MB | Adobe PDF | Visualizar/Abrir |
Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.