• Repositorio Institucional Universidad de Pamplona
  • Trabajos de pregrado y especialización
  • Facultad de Ciencias Básicas
  • Física
  • Por favor, use este identificador para citar o enlazar este ítem: http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/9632
    Registro completo de metadatos
    Campo DC Valor Lengua/Idioma
    dc.contributor.authorTapia Payares, Luis Fernando.-
    dc.date.accessioned2025-06-24T15:54:50Z-
    dc.date.available2022-
    dc.date.available2025-06-24T15:54:50Z-
    dc.date.issued2022-
    dc.identifier.citationTapia Payares, L. F. (2022). Plasmones de superficie localizados en sistemas metálicos Nanoestructurados [Trabajo de Grado Pregrado, Universidad de Pamplona]. Repositorio Hulago Universidad de Pamplona. http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/9632es_CO
    dc.identifier.urihttp://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/9632-
    dc.descriptionLos sistemas met´alicos nano estructurados de Au y Ag p oseen propiedades plasm´onicas ´unicas y de inter´es en pro cesos de detecci´on molecular p or la t´ecnica de esp ectroscopia Raman. En particular, en el presente traba jo se estudi´o sistemas de fim met´alico de Ag y Au sobre arreglos ordenados de nano esferas p olim´ericas. Para el estudio se realizaron simulaciones p or el m´eto do de elementos fiitos utilizando el software COMSOL Multiphysics para evidenciar el confiamiento y la distribuci´on espacial del camp o el´ectrico en la sup erfiie nano estructurada; as´ı mismo, identifiar mo dos plasm´onicos resonantes en el rango esp ectral de 400-1000 nm y compararlos con medidas exp erimentales de reflctividad ´optica. Una vez validada la simulaci´on se realizaron diversos estudios, los cuales consisten en analizar el comp ortamiento de la respuesta plasm´onica de estos sistemas p or medio de la reflctividad ´optica y para esto se pro cedi´o a variar par´ametros f´ısicos como, p or ejemplo: la p olarizaci´on de la luz incidente, el ´angulo de incidencia de la luz, ´angulo de rotaci´on de la muestra y las dimensiones de la muestra. En el traba jo tambi´en se presenta la comparaci´on de estos sistemas nano estructurados, con p el´ıculas de Ag y Au. Finalmente, con estos resultados se busca p oner en evidencia la conveniencia de usar un substrato u otro, a trav´es de la caracterizaci´on de la ingenier´ıa de plasmones en sistemas AgFON y AuFON (Film Over Nanosphere).es_CO
    dc.description.abstractThe nanostructured metal systems of Au and Ag have unique plasma prop erties of interest in molecular detection pro cesses by the Raman sp ectroscopy technique. In particular, the present work studied Ag and Au metal fim systems on ordered arrays of p olymer nanospheres . For the study simulations were made by the fiite element metho d using the COMSOL Multiphysics software to demonstrate the confiement and spatial distribution of the electric fild on the nanostructured surface; likewise, identify resonant plasma mo des in the 400-1000 nm sp ectral range and compare them with exp erimental measurements of optical reflctivity. Once the simulation was validated, several studies were carried out, which consist of analyzing the b ehavior of the plasm´onica resp onse of these systems through optical reflctivity and for this we proceeded to vary physical parameters such as, for example: p olarization of incident light, angle of incidence of light, angle of rotation of the sample and sample dimensions. The pap er also presents the comparison of these nanostructured systems, with Ag and Au fims. Finally, these results seek to demonstrate the s uitability of using one substrate or another, through the characterization of plasmon engineering in AgFON and AuFON (Film Over Nanosphere) systems.es_CO
    dc.format.extent55es_CO
    dc.format.mimetypeapplication/pdfes_CO
    dc.language.isoeses_CO
    dc.publisherUniversidad de Pamplona – Facultad de Ciencias Básicas.es_CO
    dc.subjectPlasmonica.es_CO
    dc.subjectPlasmon.es_CO
    dc.subjectResonancia de plasmones de superficie localizados.es_CO
    dc.subjectNanoesferas.es_CO
    dc.titlePlasmones de superficie localizados en sistemas metálicos Nanoestructurados.es_CO
    dc.typehttp://purl.org/coar/resource_type/c_7a1fes_CO
    dc.date.accepted2022-
    dc.relation.referencesLe Ru, E., Etchegoin, P. Principles of Surface-Enhanced Raman Spectroscopy: and related plasmonic effcts. Elsevier, 2008.es_CO
    dc.relation.referencesMontero, J. M. O. Copa de licurgo: cuando ciencia y arte se dan la mano para hacer historia. MoleQla: revista de Ciencias de la Universidad Pablo de Olavide,(11), p´ags. 15–2, 2013.es_CO
    dc.relation.referencesGuerra Hern´andez, L. A. Antenas ´opticas en la nano y microescala. Tesis Doctoral, Universidad Nacional de Cuyo, 2019.es_CO
    dc.relation.referencesGreeneltch, N. G., Blaber, M. G., Henry, A.-I., Schatz, G. C., Van Duyne, R. P. Immobilized nanorod assemblies: fabrication and understanding of large area surfaceenhanced Raman spectroscopy substrates. Analytical chemistry, 85 (4), 2297– 2303, 2013.es_CO
    dc.relation.referencesAtwater, H. A. The promise of plasmonics. Scientifi American, 296 (4), 56–63, 2007.es_CO
    dc.relation.referencesMaier, S. A., et al. Plasmonics: fundamentals and applications, tomo 1. Springer, 2007.es_CO
    dc.relation.referencesZhang, X., Van Duyne, R. P. Optimized silver fim over nanosphere surfaces for the biowarfare agent detection based on surface-enhanced Raman spectroscopy. MRS Online Proceedings Library (OPL), 876, 2005.es_CO
    dc.relation.referencesYang, X., Zhou, S., Wang, D., He, J., Zhou, J., Li, X., et al. Light trapping enhancement in a thin fim with 2d conformal periodic hexagonal arrays. Nanoscale research letters, 10 (1), 1–9, 2015.es_CO
    dc.relation.referencesLe´on Monta˜nez, Y. H., et al. Plasmones superfiiales en estructuras multicapa de metales nobles. Tesis de Pregrado, Universidad Distrital Francisco Jos´e De Caldas, 2017.es_CO
    dc.relation.referencesAscolani Yael, J. Nanoestructuras plasm´onicas para SERS. Estudio de las propiedades fundamentales y su aplicaci´on para la detecci´on de glifosato. Tesis de Maestr´ıa, Universidad Nacional de Cuyo, 2012.es_CO
    dc.relation.referencesOrtiz, C. Estudio y optimizaci´on de la respuesta termoplasm´onica de nanoestructuras h´ıbridas. Tesis de Maestr´ıa, Universidad de Cantabria, 2020.es_CO
    dc.relation.referencesHerre˜no Fierro, C. A., et al. Magnetoplasm´onica de estructuras multicapa Au Co Au. Tesis Doctoral, Uniandes, 2016.es_CO
    dc.relation.referencesGarc´ıa Leis, A. Espectroscopia Raman intensifiada por superfiie de biomol´eculas a trav´es de nanopart´ıculas plasm´onicas ultrasensibles. Tesis Doctoral, Instituto de Estructura de la Materia Consejo Superior De Investigaciones Cient´ıfias, 2015.es_CO
    dc.relation.referencesKreibig, U., Vollmer, M. Optical properties of metal clusters, tomo 25. Springer Science & Business Media, 2013.es_CO
    dc.relation.referencesDiaconescu, B., Pohl, K., Vattuone, L., Savio, L., Hofmann, P. Low-energy acoustic plasmons at metal surfaces. Nature, 448 (7149), 57–59, 2007.es_CO
    dc.relation.referencesSep´ulveda, B., Angelom´e, P. C., Lechuga, L. M., Liz-Marz´an, L. M. LSPR-based nanobiosensors. Nano Today, 4 (3), 244–251, 2009.es_CO
    dc.relation.referencesKnoll, W. Interfaces and thin fims as seen by bound electromagnetic waves. Annual review of physical chemistry, 49 (1), 569–638, 1998.es_CO
    dc.relation.referencesFuentes, L. A. T. Acoplamiento de Plasmones de Superfiie Entre Capas de Grafeno Distribuidas Cuasiperiodicamente. Tesis Doctoral, Ben´emerita universidad aut´onoma de Puebla, 2016.es_CO
    dc.relation.referencesCruz, D. A., Rodr´ıguez, M. C., L´opez, J. M., Herrera, V. M., Orive, A. G., Creus, A. H. Nanopart´ıculas met´alicas y plasmones de superfiie: una relaci´on profunda. Avances en Ciencias e Ingenier´ıa, 3 (2), 67–78, 2012.es_CO
    dc.relation.referencesS´anchez, Y. M. E. Automatizaci´on de un sistema de resonancia de plasmones de superfiie para medici´on de ´ındice de refracci´on. Tesis Doctoral, CENTRO DE INVESTIGACIONES EN OPTICA, 2013.es_CO
    dc.relation.referencesMarton, J., Jordan, B. Optical properties of aggregated metal systems: Interband transitions. Physical Review B, 15 (4), 1719, 1977.es_CO
    dc.relation.referencesKretschmann, E., Raether, H. Radiative decay of non radiative surface plasmons excited by light. Zeitschrift f¨ur Naturforschung A, 23 (12), 2135–2136, 1968.es_CO
    dc.relation.referencesC´ardenas Hern´andez, M. Estudio de las funciones de reflctancia y transmitancia en la generaci´on de plasmones superfiiales (SPR) bajo la confiuraci´on de Kretschmann, utilizando el m´etodo de matriz de transferencia (MMT). Departamento de F´ısica.es_CO
    dc.relation.referencesGarc´ıa, L. S. Efecto de redes plasm´onicas desordenadas en las propiedades ´opticas y acci´on l´aser del sistema Yb 3+RbTiOPO4. Tesis Doctoral, Universidad Aut´onoma de Madrid, 2018.es_CO
    dc.relation.referencesGarc´ıa, M. A. Surface plasmons in metallic nanoparticles: fundamentals and applications. Journal of Physics D: Applied Physics, 44 (28), 283001, 2011.es_CO
    dc.relation.referencesMolina, M. Y. A. Propiedades plasm´onicas de nanopart´ıculas de plata para aplicaciones en energ´ıa solar. Tesis Doctoral, Universidad de Guadalajara, 2016.es_CO
    dc.relation.referencesDavid Jackson, J. Classical electrodynamics third edition, 2021.es_CO
    dc.relation.referencesRojas Bejarano, C. J., et al. Resonancia de plasmones superfiiales localizados en nanopart´ıculas de oro y plata. Tesis de Pregrado, 2020.es_CO
    dc.relation.referencesDick, L. A., McFarland, A. D., Haynes, C. L., Van Duyne, R. P. Metal fim over nanosphere (MFON) electrodes for surface-enhanced Raman spectroscopy (SERS): Improvements in surface nanostructure stability and suppression of irreversible loss. The Journal of Physical Chemistry B, 106 (4), 853–860, 2002.es_CO
    dc.relation.referencesFarcau, C., Giloan, M., Vinteler, E., Astilean, S. Understanding plasmon resonances of metal-coated colloidal crystal monolayers. Applied Physics B, 106 (4), 849–856, 2012.es_CO
    dc.relation.referencesFleischmann, M., Hendra, P. J., McQuillan, A. J. Raman spectra of pyridine adsorbed at a silver electrode. Chemical physics letters, 26 (2), 163–166, 1974.es_CO
    dc.relation.referencesCreighton, J. A., Blatchford, C. G., Albrecht, M. G. Plasma resonance enhancement of Raman scattering by pyridine adsorbed on silver or gold sol particles of size comparable to the excitation wavelength. Journal of the Chemical Society, Faraday Transactions 2: Molecular and Chemical Physics, 75, 790–798, 1979.es_CO
    dc.relation.referencesZhang, X., Young, M. A., Lyandres, O., Van Duyne, R. P. Rapid detection of an anthrax biomarker by surface-enhanced Raman spectroscopy. Journal of the American Chemical Society, 127 (12), 4484–4489, 2005.es_CO
    dc.relation.referencesHuang, X. X., Hossain, M. K., Ozaki, Y. Development of a heat-induced surfaceenhanced Raman scattering sensing method for rapid detection of glutathione in aqueous solutions. Analytical chemistry, 81 (14), 5881–5888, 2009.es_CO
    dc.relation.referencesVitol, E., Orynbayeva, Z., Dun, N. J., Friedman, G., Gogotsi, Y. Surface-enhanced Raman spectroscopy as a tool for detecting Ca2+ mobilizing second messengers in cell extracts. Analytical chemistry, 82 (16), 6770–6774, 2010.es_CO
    dc.relation.referencesYonzon, C. R., Haynes, C. L., Zhang, X., Walsh, J. T., Van Duyne, R. P. A glucose biosensor based on surface-enhanced Raman scattering: improved partition layer, temporal stability, reversibility, and resistance to serum protein interference. Analytical Chemistry, 76 (1), 78–85, 2004.es_CO
    dc.relation.referencesStuart, D. A., Yonzon, C. R., Zhang, X., Lyandres, O., Shah, N. C., Glucksberg, M. R., et al. Glucose sensing using near-infrared surface-enhanced Raman spectroscopy: gold surfaces, 10-day stability, and improved accuracy. Analytical chemistry, 77 (13), 4013–4019, 2005.es_CO
    dc.relation.referencesLyandres, O., Shah, N. C., Yonzon, C. R., Walsh, J. T., Glucksberg, M. R., Van Duyne, R. P. Real-time glucose sensing by surface-enhanced Raman spectroscopy in bovine plasma facilitated by a mixed decanethiol/mercaptohexanol partition layer. Analytical chemistry, 77 (19), 6134–6139, 2005.es_CO
    dc.relation.referencesShah, N. C., Lyandres, O., Walsh, J. T., Glucksberg, M. R., Van Duyne, R. P. Lactate and sequential lactate- glucose sensing using surface-enhanced Raman spectroscopy. Analytical chemistry, 79 (18), 6927–6932, 2007.es_CO
    dc.relation.referencesKandulski, W. Shadow nanosphere lithography. Tesis Doctoral, Universit¨ats-und Landesbibliothek Bonn, 2007.es_CO
    dc.relation.referencesTAN JIN-YON, B. Variants of nanosphere lithography and fabrications of nonclosed-packed array of nanoparticles. ScholarBank@NUS Repository., 2006.es_CO
    dc.relation.referencesGarc´ıa, M. J. Optimizaci´on de la transferencia de monicapas lip´ıdicas en una balanza de langmuir-blodgett para el estudio de los efectos de los anest´esicos inhalatorios en la interfase alveolar. Udelar. FIC, 2016.es_CO
    dc.relation.referencesGonz´alez Guti´errez, J. J., et al. Desarrollo de biotensores enzim´aticos mediante la t´ecnica de Langmuir-Blodgett: aplicaci´on como sensores electroqu´ımicos para la detecci´on de antioxidantes. Proyecto Fin de Carrera, Universidad de Valladolid, 2012.es_CO
    dc.relation.referencesFulda, K. Langmuir fims of monodisperse 0.5 mm spherical particles with hydrophobic core and a hydrophilic shell. Adv. Mater., 6 (4), 288, 1994.es_CO
    dc.relation.referencesHaes, A. J., Haynes, C. L., McFarland, A. D., Schatz, G. C., Van Duyne, R. P., Zou, S. Plasmonic materials for surface-enhanced sensing and spectroscopy. MRS bulletin, 30 (5), 368–375, 2005.es_CO
    dc.relation.referencesKent, R. D., Vikesland, P. J. Controlled evaluation of silver nanoparticle dissolution using atomic force microscopy. Environmental science y technology, 46 (13), 6977–6984, 2012.es_CO
    dc.relation.referencesHaynes, C. L., Van Duyne, R. P. Nanosphere lithography: a versatile nanofabrication tool for studies of size-dependent nanoparticle optics, 2001.es_CO
    dc.relation.referencesMurray, W. A. Optical properties of nanoscale silver structures fabricated by nanosphere lithography. Tesis Doctoral, University of Exeter, 2005.es_CO
    dc.relation.referencesNgamaroonchote, A., Muangnapoh, T., Aroonyadet, N., Kumnorkaew, P., Laocharoensuk, R. Plasma-etched nanosphere conductivity-inverted lithography (pencil): A facile fabrication of size-tunable gold disc array on ito-coated glass. Advanced Materials Interfaces, 5 (18), 1800477, 2018.es_CO
    dc.relation.referencesColson, P., Henrist. Nanosphere lithography: a powerful method for the controlled manufacturing of nanomaterials. Journal of Nanomaterials, 2013.es_CO
    dc.relation.referencesDuval Malinsky, M., Kelly, K. L., Schatz, G. C., Van Duyne, R. P. Nanosphere lithography: effct of substrate on the localized surface plasmon resonance spectrum of silver nanoparticles. The Journal of Physical Chemistry B, 105 (12), 2343–2350, 2001.es_CO
    dc.relation.referencesWang, X., Summers, C. J., Wang, Z. L. Large-scale hexagonal-patterned growth of aligned ZnO nanorods for nano-optoelectronics and nanosensor arrays. Nano letters, 4 (3), 423–426, 2004.es_CO
    dc.relation.referencesHardy, N. What is thin fim deposition by thermal evaporation? United States of America, 2013.es_CO
    dc.relation.referencesIpohorski, M., Bozzano, P. Microscop´ıa electr´onica de barrido en la caracterizaci´on de materiales. Ciencia e investigaci´on, 63 (3), 43–53, 2013.es_CO
    dc.relation.references.Penagos, J. I. C. Caracterizaci´on de materiales a trav´es de medidas de microscop´ıa electr´onica de barrido (SEM). Elementos, 3 (3), 133–146, 2013.es_CO
    dc.relation.referencesGreeneltch, N. G., Blaber, M. G., Schatz, G. C., Van Duyne, R. P. Plasmonsampled surface-enhanced Raman excitation spectroscopy on silver immobilized nanorod assemblies and optimization for near infrared (λex= 1064 nm) studies. The Journal of Physical Chemistry C, 117 (6), 2554–2558, 2013.es_CO
    dc.relation.referencesGarc´ıa L´opez, A. Estudio de transiciones t´ermicas por espectoscopia de flores-´ cencia en estado estacionario en materiales compuestos basados en PS-BaTiO3. Tesis de Pregrado, Universidad Carlos III de Madrid., 2012.es_CO
    dc.relation.referencesGarc´ıa, A., Kikut Cruz, K. Microscop´ıa de fuerza at´omica como herramienta en la investigaci´on de asfaltos atomic force microscopy as a tool in asphalt research. Infraestructura Vial, 22 (40), 20–27, 2020.es_CO
    dc.relation.referencesArnold, M. D., Blaber, M. G., Ford, M. J. Universal scaling of local plasmons in chains of metal spheres. Optics Express, 18 (7), 7528–7542, 2010.es_CO
    dc.relation.referencesHarris, N., Arnold, M. D., Blaber, M. G., Ford, M. J. Plasmonic resonances of closely coupled gold nanosphere chains. The Journal of Physical Chemistry C, 113 (7), 2784–2791, 2009.es_CO
    dc.rights.accessrightshttp://purl.org/coar/access_right/c_abf2es_CO
    dc.type.coarversionhttp://purl.org/coar/resource_type/c_2df8fbb1es_CO
    Aparece en las colecciones: Física

    Ficheros en este ítem:
    Fichero Descripción Tamaño Formato  
    Tapia_2022_TG.pdfTapia_2022_TG7,48 MBAdobe PDFVisualizar/Abrir


    Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.