Por favor, use este identificador para citar o enlazar este ítem:
http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/9507
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | Molina Rivera, Mario Elías. | - |
dc.date.accessioned | 2025-05-15T17:20:00Z | - |
dc.date.available | 2022 | - |
dc.date.available | 2025-05-15T17:20:00Z | - |
dc.date.issued | 2022 | - |
dc.identifier.citation | Molina Rivera, M. E. (2022). Caracterización y discriminación de mieles de Abejas sin aguijón colombianas por Espectroscopia Vibracional [Trabajo de Grado Maestría, Universidad de Pamplona]. Repositorio Hulago Universidad de Pamplona. http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/9507 | es_CO |
dc.identifier.uri | http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/9507 | - |
dc.description | En este proyecto se desarrolló un modelo predictivo para discriminar muestras de mieles de abejas sin aguijón colombianas de las especies, Melipona compressipes, Melipona fuscipes, Trigona angustula, Frieseomelitta nigra, Nannotrigona sp., Plebeia sp., que se compararon con Apis mellifera (africanizada) utilizando espectroscopía infrarroja con transformada de Fourier y quimiometría. El modelo se desarrolló con el análisis de muestras de mieles de dos municipios del departamento de Norte de Santander: Bochalema y Los Patios. Con el desarrollo de este trabajo, se planteó una metodología alterna para el análisis de mieles que permitió disminuir los tiempos de análisis, reducir costos, disminuir el uso de solventes, reduciendo los residuos tóxicos y la contaminación del medio ambiente. Además, ATR-FTIR es una técnica con buena resolución y tiempo de escaneo rápido, que puede evaluar varios componentes en una sola medición. Finalmente, este trabajo permitió obtener información técnica de estas mieles y en un futuro podría contribuir al ajuste de la legislación vigente en nuestro país, en la que no se establecen parámetros específicos para la miel de estas especies. | es_CO |
dc.description.abstract | In this project, a predictive model was developed to discriminate honey samples from Colombian stingless bees of the species, Melipona compressipes, Melipona fuscipes, Trigona angustula, Frieseomelitta nigra, Nannotrigona sp., Plebeia sp., which were compared with Apis mellifera (Africanized) using Fourier transform infrared spectroscopy and chemometrics. The model was developed with the analysis of honey samples from two municipalities in the department of Norte de Santander: Bochalema and Los Patios. With the development of this work, an alternative methodology was proposed for the analysis of honey that allowed to reduce analysis times, reduce costs, reduce the use of solvents, reducing toxic waste and environmental pollution. Furthermore, ATR-FTIR is a technique with good resolution and fast scan time, that can evaluate multiple components in a single measurement. Finally, this work allowed to obtain technical information on these honeys and in the future could contribute to the adjustment of the current legislation in our country, in which specific parameters are not established for the honey of these species. | es_CO |
dc.format.extent | 97 | es_CO |
dc.format.mimetype | application/pdf | es_CO |
dc.language.iso | es | es_CO |
dc.publisher | Universidad de Pamplona – Facultad de Ciencias Básicas. | es_CO |
dc.subject | Abejas sin aguijón. | es_CO |
dc.subject | Espectroscopía infrarroja con transformada de Fourier. | es_CO |
dc.subject | Quimiometría. | es_CO |
dc.title | Caracterización y discriminación de mieles de Abejas sin aguijón colombianas por Espectroscopia Vibracional. | es_CO |
dc.type | http://purl.org/coar/resource_type/c_bdcc | es_CO |
dc.date.accepted | 2022 | - |
dc.relation.references | Abd Jalil , M., Kasmuri , A., & Haid , H. (2017). Stingless bee honey, the natural wound healer: a review. Skin Pharmacol Physiol , 30:66-75. | es_CO |
dc.relation.references | Adab. (21 de Noviembre de 2014). Regulamento Técnico de Identidade e Qualidade do Mel de Abelha social sem ferrão, gênero Melipona. (Portaria Adab Nº 207). (A. E. Bahia, Ed.) Bahia, Brasil. | es_CO |
dc.relation.references | Alimentarius, C. d. C. (2001). Codex standard for honey. | es_CO |
dc.relation.references | Anjos , O., Campos, M. G., Ruiz, P. C., & Antunes, P. (2014). Application of FTIR-ATR spectroscopy to the quantification of sugar in honey. Food Chemistry. | es_CO |
dc.relation.references | Anjos, O., Campos, M., Ruiz, P., & Antunes, P. (2015). Food Chem. | es_CO |
dc.relation.references | Aroca Gaona, I. A. (25 de Mayo de 2022). Agencia Prensa Rural. Obtenido de https://prensarural.org/spip/spip.php?article28059. | es_CO |
dc.relation.references | Arvanitoyannis, I. S., Chalhoub, C., Gotsiou, P., Lydakis-Simantiris, N., & Kefalas, P. (2005). Novel quality control methods in conjunction with chemometrics (multivariate analysis) for detecting honey authenticity. Critical reviews in food science and nutrition, 45(3), 193-203. | es_CO |
dc.relation.references | Azeredo, L. C., Azeredo, M. A., & Beser, L. D. (2000). Características físico-químicas de amostras de méis de melíponas coletadas no estado de Tocantins. Santa Catarina, Brazil. | es_CO |
dc.relation.references | Bertelli, D., Lolli, M., Papotti, G., Bortolotti, L., Serra, G., & Plessi, M. (2010). Detection of honey adulteration by sugar syrups using one-dimensional and two-dimensional high-resolution nuclear magnetic resonance. Journal of agricultural and food chemistry, 58(15), 8495-8501. | es_CO |
dc.relation.references | Blanco, Lorena. (28 de junio de 2022). Apis mellifera: características, hábitat, reproducción, alimentación. Lifeder. Recuperado de https://www.lifeder.com/apis-mellifera/. | es_CO |
dc.relation.references | Bogdanov, S. (2004). Beeswax: quality issues today. Bee world, 85(3), 46-50. | es_CO |
dc.relation.references | Vit, P. (2008). La miel precolombina de abejas sin aguijón (Meliponini) aún no tiene normas de calidad. Boletín del Centro de Investigaciones Biológicas, 42(3), 415-423. | es_CO |
dc.relation.references | Vit, P., Medina, M., & Eunice , M. (2004). Quality standards for medicinal uses of Meliponinae honey in Guatemala, Mexico and Venezuela. Bee world, 85(1), 2-5. | es_CO |
dc.relation.references | Von Der Ohe, W., Oddo, L. P., Piana, M. L., Morlot, M., & Martin, P. (2004). Harmonized methods of melissopalynology. Apidologie, 35(Suppl. 1), S18-S25. | es_CO |
dc.relation.references | Wang, Y. X., Xin, Y., Yin, J. Y., Huang, X. J., Wang, J. Q., Hu, J. L., ... & Nie, S. P. (2022). Revealing the architecture and solution properties of polysaccharide fractions from Macrolepiota albuminosa (Berk.) Pegler. Food Chemistry, 368, 130772. | es_CO |
dc.relation.references | Wiercigroch, E., Szafraniec, E., Czamara, K., Pacia, M. Z., Majzner, K., Kochan, K., . . . Malek, K. (2017). Raman and infrared spectroscopy of carbohydrates: A review. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 185, 317-335. | es_CO |
dc.relation.references | Wille, A., & Michener, C. D. (1973). The nest architecture of stingless bees with special reference to those of Costa Rica. Revista de biologia tropical, 21(supplemento 1), 1–279. | es_CO |
dc.relation.references | Yaghoobi, N., Al-Waili, N., Ghayour-Mobarhan, M., Parizadeh, S. M. R., Abasalti, Z., Yaghoobi, Z., ... & Ferns, G. A. A. (2008). Natural honey and cardiovascular risk factors; effects on blood glucose, cholesterol, triacylglycerole, CRP, and body weight compared with sucrose. TheScientificWorldJournal, 8, 463-469. | es_CO |
dc.relation.references | Yang, H., & Irudayaraj, J. (2002). Rapid determination of vitamine C by NIR, MIR and FT-Raman techniques. Journal of Pharmacy and Pharmacology, 54(9), 1247–1255. | es_CO |
dc.relation.references | Bogdanov, S. (2009). Physical properties of honey. Book of honey, Cap. 4. | es_CO |
dc.relation.references | Bogdanov, S., Ruoff, K., & Oddo, L. P. (2004). Physico-chemical methods for the characterisation of unifloral honeys: a review. Apidologie,, 35(Suppl. 1), S4-S17. | es_CO |
dc.relation.references | Bureau, S., Ruiz, D., Reich, M., Gouble, B., Bertrand, D., Audergon, J. M., & Renard, C. M. (2009). Application of ATR-FTIR for a rapid and simultaneous determination of sugars and organic acids in apricot fruit. Food Chemistry, , 115(3), 1133-1140. | es_CO |
dc.relation.references | Cai, S., & Singh, B. R. (2004). A distinct utility of the amide III infrared band for secondary structure estimation of aqueous protein solutions using partial least squares methods. Biochemistry, 43, 2541–2549. | es_CO |
dc.relation.references | Camargo, J. M., & Moure, J. S. (1983). Trichotrigona, um novo gênero de Meliponinae (Hymenoptera, Apidae). Acta Amazonica, 13(2), 421-429. | es_CO |
dc.relation.references | Cardona-Rodríguez, Y. (2015). Contribución al conocimiento de las características fisicoquímicas y térmicas de mieles de siete especies de abejas sin aguijón presentes en Norte de Santander, Colombia, aplicando análisis multivariado. Pamplona. | es_CO |
dc.relation.references | Cardona-Rodríguez, Y., Torres-Sánchez, D. A., & Hoffmann, W. (2015). Análisis térmico de mieles de Trigona (Tetragonisca) angustula de Norte de Santander, Colombia. Respuestas, 20(2), 135-144. | es_CO |
dc.relation.references | Cardona-Rodríguez, Y., Torres-Sánchez, D. A., & Hoffmann, W. (2019). Colombian stingless bee honeys characterized by multivariate analysis of physicochemical properties. Apidologie, 50(6), 881-892. | es_CO |
dc.relation.references | Cardona-Rodríguez, Y., Torres-Sánchez, D. A., & Hoffmann, W. (2020). Thermoanalytical investigations of honey produced by Trigona species using differential scanning calorimetry (DSC). Journal of Apicultural Research, 1, 1-8. | es_CO |
dc.relation.references | Cardona-Rodríguez, Y., Torres-Sánchez, D. A., Lamprecht, I., & Hoffmann, W. (2018). Differentiation of Honey from Melipona Species Using Differential Scanning Calorimetry. Food Analytical Methods, 11(4), 1056- 1067. | es_CO |
dc.relation.references | Chen, P. S. (1985). Amino acid and protein metabolism. Comprehensive Insect Physiology, Biochemistry and Pharmacology; Kerkut, GA, Gilbert, LI, Eds, 177-219. | es_CO |
dc.relation.references | Cocciardi, R. A., Ismail, A. A., & Sedman, J. (2005). Investigation of the potential utility of single-bounce attenuated total reflectance Fourier transform infrared spectroscopy in the analysis of distilled liquors and wines. Journal of agricultural and food chemistry, 53(8), 2803-2809. | es_CO |
dc.relation.references | Cuevas-Glory, L. F., Pino, J. A., & Santiago, L. S. (2007). A review of volatile analytical methods for determining the botanical origin of honey. Food Chemistry, 103(3), 1032-1043. | es_CO |
dc.relation.references | Das, C., Chakraborty, S., Acharya, K., Bera, N. K., Chattopadhyay, D., Karmakar, A., & Chattopadhyay, S. (2017). FT-MIR supported Electrical Impedance Spectroscopy based study of sugar adulterated honeys from different floral origin. Talanta, 171, 327-334. | es_CO |
dc.relation.references | de Villiers, A., Alberts, P., Tredoux, A. G., & Nieuwoudt, H. H. (2012). Analytical techniques for wine analysis: An African perspective; a review. Analytica Chimica Acta, 730, 2-23. | es_CO |
dc.relation.references | de la Mata, P., Dominguez-Vidal, A., Bosque-Sendra, J. M., Ruiz-Medina, A., Cuadros-Rodríguez, L., & Ayora-Cañada, M. J. (2012). Olive oil assessment in edible oil blends by means of ATR-FTIR and chemometrics. Food Control, 23(2), 449-455. | es_CO |
dc.relation.references | Doner, L. W. (1977). The sugars of honey: a review. Journal of the Science of Food and Agriculture, 28(5), 443-456. | es_CO |
dc.relation.references | Edelmann, A., Diewok, J., Schuster, K. C., & Lendl, B. (2001). Rapid method for the discrimination of red wine cultivars based on mid-infrared spectroscopy of phenolic wine extracts. Journal of Agricultural and Food Chemistry, 49(3), 1139-1145. | es_CO |
dc.relation.references | Etzold, E., & Lichtenberg-Kraag, B. (2008). Determination of the botanical origin of honey by Fouriertransformed infrared spectroscopy: an approach for routine analysis. European Food Research and Technology, 227(2), 579-586. | es_CO |
dc.relation.references | Fernández, K., & Agosin, E. (2007). Quantitative analysis of red wine tannins using Fourier-transform midinfrared spectrometry. Journal of Agricultural and Food Chemistry, 55(18), 7294-7300. | es_CO |
dc.relation.references | Formosa, J. P., Lia, F., Mifsud, D., & Farrugia, C. (2020). Application of ATR-FT-MIR for tracing the geographical origin of honey produced in the Maltese islands. Foods, 9(6), 710. | es_CO |
dc.relation.references | Gallardo-Velázquez, T., Osorio-Revilla, G., Zuñiga-de Loa, M., & Rivera-Espinoza, Y. (2009). Application of FTIR-HATR spectroscopy and multivariate analysis to the quantification of adulterants in Mexican honeys. Food Research International, 42(3), 313-318. | es_CO |
dc.relation.references | Gan, Z., Yang, Y., Li, J., Wen, X., Zhu, M., Jiang, Y., & Ni, Y. (2016). Using sensor and spectral analysis to classify botanical origin and determine adulteration of raw honey. Journal of Food Engineering, 178, 151-158. | es_CO |
dc.relation.references | Gok, S., Severcan, M., Goormaghtigh, E., Kandemir, I., & Severcan, F. (2015). Differentiation of Anatolian honey samples from different botanical origins by ATR-FTIR spectroscopy using multivariate analysis. Food chemistry, 170, 234-240. | es_CO |
dc.relation.references | Gómez-Ordóñez, E., & Rupérez, P. (2011). FTIR-ATR spectroscopy as a tool for polysaccharide identification in edible brown and red seaweeds. Food hydrocolloids, 25(6), 1514-1520. | es_CO |
dc.relation.references | Guler, A., Bakan, A., Nisbet, C., & Yavuz, O. (2007). Determination of important biochemical properties of honey to discriminate pure and adulterated honey with sucrose (Saccharum officinarum L.) syrup. Food chemistry, 105(3), 1119-1125. | es_CO |
dc.relation.references | Hebbar, H. U., Nandini, K. E., Lakshmi, M. C. & Subramanian, R. (2003). Microwave and infrared heat processing of honey and its quality. Food Science and Technology Research 9(1), 49-53. Icontec. (2007). NTC 1273:2007 Miel de abejas. | es_CO |
dc.relation.references | Iñón, F. A., Garrigues, J. M., Garrigues, S., Molina, A., & de la Guardia, M. (2003). Selection of calibration set samples in determination of olive oil acidity by partial least squares–attenuated total reflectance–Fourier transform infrared spectroscopy. Analytica Chimica Acta, 489(1), 59-75. | es_CO |
dc.relation.references | Jha, S. N., & Gunasekaran, S. (2010). Authentications of sweetness of mango juice using Fourier transform infrared-attenuated total reflection spectroscopy. Journal of Food Engineering, 101(3), 337–342. | es_CO |
dc.relation.references | Karabagias, I. K., Badeka, A., Kontakos, S., Karabournioti, S., & Kontominas, M. G. (2014). Characterisation and classification of Greek pine honeys according to their geographical origin based on volatiles, physicochemical parameters and chemometrics. Food chemistry, 146, 548-557. | es_CO |
dc.relation.references | Kędzierska-Matysek, M., Matwijczuk, A., Florek, M., Barłowska, J., Wolanciuk, A., Matwijczuk, A., ... & Gładyszewska, B. (2018). Application of FTIR spectroscopy for analysis of the quality of honey. In BIO Web of Conferences (Vol. 10, p. 02008). EDP Sciences. | es_CO |
dc.relation.references | Kelly, J. D., Downey, G., & Fouratier, V. (2004). Initial study of honey adulteration by sugar solutions using midinfrared (MIR) spectroscopy and chemometrics. Journal of agricultural and food chemistry, 52(1), 33-39. | es_CO |
dc.relation.references | Kelly, J. D., Petisco, C., & Downey, G. (2006). Application of Fourier transform midinfrared spectroscopy to the discrimination between Irish artisanal honey and such honey adulterated with various sugar syrups. Journal of agricultural and food chemistry, 54, 6873–80. | es_CO |
dc.relation.references | Kerr, W. E., Sakagami, S. F., Zucchi, R., Portugal-Araújo, V. D., & Camargo, J. D. (1967). Camargo, Atlas do simposio sobre a biota Amazonica, 5 (1967) 255–309. | es_CO |
dc.relation.references | Krska, R., Becalski, A., Braekevelt, E., Koerner, T., Cao, X. L., Dabeka, R., Godefroy, S., Lau, B., Moisey, J., Rawn, D. F., Scott, P. M., Wang, Z. & Forsyth, D. (2012). Challenges and trends in the determination of selected chemical contaminants and allergens in food. Anal Bioanal Chem 402(1): 139-162. | es_CO |
dc.relation.references | Kuroiwa, T., Kimura, K., Aoki, Y., Neves, M. A., Sato, S., Mukataka, S., Kanazawa, A., Ichikawa, S. (2015) Quantitative Evaluation of the Effects of Moisture Distribution on Enzyme-Induced Acylation of the Trehalose in Reduced-Moisture Organic Media. Journal of Food Research, 4 (5), 133-142. | es_CO |
dc.relation.references | Lachenmeier, D. W. (2007). Rapid quality control of spirit drinks and beer using multivariate data analysis of Fourier transform infrared spectra. Food Chemistry, 101(2), 825–832. | es_CO |
dc.relation.references | Las abejas, las reinas de nuestra biodiversidad, s.f. Recuperado 25 de mayo de 2021 de https://www.minambiente.gov.co/index.php/noticias-minambiente/4704-las-abejas-las-reinasde-nuestra-biodiversidad. | es_CO |
dc.relation.references | Li, S., Zhang, X., Shan, Y., Su, D., Ma, Q., Wen, R., & Li, J. (2017). Qualitative and quantitative detection of honey adulterated with high-fructose corn syrup and maltose syrup by using near-infrared spectroscopy. Food chemistry, 218, 231-236. | es_CO |
dc.relation.references | Madupalli, H., Pavan, B., & Tecklenburg, M. M. (2017). Carbonate substitution in the mineral component of bone: Discriminating the structural changes, simultaneously imposed by carbonate in A and B sites of apatite. Journal of solid state chemistry, 255, 27-35. | es_CO |
dc.relation.references | Manthey, J. A. (2006). Fourier transform infrared spectroscopic analysis of the polymethoxylated flavone content of orange oil residues. Journal of agricultural and food chemistry, 54, 3215-3218. | es_CO |
dc.relation.references | Martos, I., Ferreres, F., & Tomás-Barberán, F. A. (2000). Identification of flavonoid markers for the botanical origin of Eucalyptus honey. Journal of Agricultural and Food Chemistry, 48, 1498-1502. | es_CO |
dc.relation.references | Mesaik, M. A., Dastagir, N., Uddin, N., Rehman, K., & Azim, M. K. (2015). Characterization of immunomodulatory activities of honey glycoproteins and glycopeptides. Journal of agricultural and food chemistry, 63(1), 177-184. | es_CO |
dc.relation.references | Ministério da Agricultura. (2000). Instrução Normativa Nº 11, de 20 de Outubro de 2000: Aprova o regulamento técnico de identidade e qualidade do mel. Brasil. | es_CO |
dc.relation.references | Ministerio de Ambiente y Desarrollo Sostenible. (20 de Mayo de 2020). Las abejas, las reinas de nuestra biodiversidad. Recuperado el 25 de Mayo de 2021. | es_CO |
dc.relation.references | Ministerio de la Protección Social. (25 de Marzo de 2010). Resolución 1057. Sistema único de información normativa - Diario Oficial, 47.662, 5. | es_CO |
dc.relation.references | Molan, P. C. (2006). The evidence supporting the use of honey as a wound dressing. The international journal of lower extremity wounds 5(1), 40-54. | es_CO |
dc.relation.references | Mondragón, P. (2020). Principios y aplicaciones de la espectroscopia de infrarrojo en el análisis de alimentos y bebidas. Zapopan, Jalisco, México: Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco. | es_CO |
dc.relation.references | Moreira, J. L., Marcos, A. M., & e Barros, P. (2002). Analysis of Portuguese wine by Fourier transform infrared spectrometry. Ciência e Técnica Vitivinícola/Journal of Viticulture and Enology, 17, 27– 33. | es_CO |
dc.relation.references | Movasaghi, Z., Rehman, S., & ur Rehman, D. I. (2008). Fourier transform infrared (FTIR) spectroscopy of biological tissues. Applied Spectroscopy Reviews, 43(2), 134-179. | es_CO |
dc.relation.references | Sabri, N.F.M., See, H.H. (2016) eProceedings Chemistry 1, 22-26. | es_CO |
dc.relation.references | Nikonenko, N. A., Buslov, D. K., Sushko, N. I., & Zhbankov, R. G. (2005). Spectroscopic manifestation of stretching vibrations of glycosidic linkage in polysaccharides. Journal of Molecular Structure, 752(1-3), 20–24. | es_CO |
dc.relation.references | Noor, M. J., Ahmad, M., Ashraf, M. A., Zafar, M., & Sultana, S. (2015). A review of the pollen analysis of South Asian honey to identify the bee floras of the region. Palynology (ahead-ofprint): 1-12. | es_CO |
dc.relation.references | Oddo, L. P., Piro, R., Bruneau, É., Guyot-Declerck, C., Ivanov, T., Piskulová, J., ... & Ruoff, K. (2004). Main European unifloral honeys: descriptive sheets. Apidologie, 35(Suppl. 1), S38-S81. | es_CO |
dc.relation.references | Ona, T., Sonoda, T., Ito, K., Shibata, M., Ootake, Y., Ohshima, J., Yokota, S. & Yoshizawa, N. (1999) Quantative FT-Raman spectroscopy to measure wood cell dimensions. The Analyst 124:1477– 1480. | es_CO |
dc.relation.references | Ouchemoukh, S., Schweitzer, P., Bey, M. B., Djoudad-Kadji, H., & Louaileche, H. (2010). HPLC sugar profiles of Algerian honeys. Food Chemistry, 121, 561–568. | es_CO |
dc.relation.references | Panseri, S., Manzo, A., Chiesa, L. M., & Giorgi, A. (2013). Melissopalynological and volatile compounds analysis of buckwheat honey from different geographical origins and their role in botanical determination. Journal of Chemistry, 2013. | es_CO |
dc.relation.references | Parra, G. N. (2001). Las abejas sin aguijón (Hymenoptera: Apidae: Meliponini) de Colombia. Biota Colombiana, 2(3), 233-248. | es_CO |
dc.relation.references | Pasandide, B., Khodaiyan, F., Mousavi, Z. E., & Hosseini, S. S. (2017). Optimization of aqueous pectin extraction from Citrus medica peel. Carbohydrate Polymers, 178, 27–33. | es_CO |
dc.relation.references | Pasini, F., Gardini, S., Marcazzan, G. L., & Caboni, M. F. (2013). Buckwheat honeys: screening of composition and properties. Food Chemistry, 141(3), 2802-2811. | es_CO |
dc.relation.references | Philip, D. (2009). Honey mediated green synthesis of gold nanoparticles. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 73(4), 650-653. | es_CO |
dc.relation.references | Piljac-Žegarac, J., Stipčević, T. & Belščak, A. (2009). Antioxidant properties and phenolic content of different floral origin honeys. Journal of ApiProduct and ApiMedical Science 1(2): 43-50. | es_CO |
dc.relation.references | Rana, R., Müller, G., Naumann, A., & Polle, A. (2008). FTIR spectroscopy in combination with principal component analysis or cluster analysis as a tool to distinguish beech (Fagus sylvatica L.) trees grown at different sites. | es_CO |
dc.relation.references | Rasmussen, C., & Cameron, S. A. (2010). Global stingless bee phylogeny supports ancient divergence, vicariance, and long distance dispersal. Biological Journal of the Linnean Society, 99(1), 206-232. | es_CO |
dc.relation.references | Ribeiro, R. D. O. R., Mársico, E. T., da Silva Carneiro, C., Monteiro, M. L. G., Júnior, C. A. C., Mano, S., & de Jesus, E. F. O. (2014). Classification of Brazilian honeys by physical and chemical analytical methods and low field nuclear magnetic resonance (LF 1H NMR). LWT-Food Science and Technology, 55(1), 90-95. | es_CO |
dc.relation.references | Rios-Corripio, M. A., Rojas-López*, M., & Delgado-Macuil, R. (2012). Analysis of adulteration in honey with standard sugar solutions and syrups using attenuated total reflectance-Fourier transform infrared spectroscopy and multivariate methods. CyTA-Journal of Food, 10(2), 119-122. | es_CO |
dc.relation.references | Roubik D. W. (1989) Ecology and Natural History of Tropical Bees Cambridge Univ. Press, Cambridge, U.K. 514 pp. | es_CO |
dc.relation.references | Ruiz-Matute, A. I., Rodriguez-Sanchez, S., Sanz, M. L. & Martinez-Castro, I. (2010). Detection of adulterations of honey with high fructose syrups from inulin by GC analysis. Journal of Food Composition and Analysis 23(3): 273-276. | es_CO |
dc.relation.references | Ruoff, K., Luginbühl, W., Künzli, R., Bogdanov, S., Bosset, J. O., von der Ohe, K., ... & Amadò, R. (2006). Authentication of the botanical and geographical origin of honey by front-face fluorescence spectroscopy. Journal of agricultural and food chemistry, 54(18), 6858-6866. | es_CO |
dc.relation.references | Ruoff, K., Luginbühl, W., Bogdanov, S., Bosset, J. O., Estermann, B., Ziolko, T., & Amadò, R. (2006). Authentication of the botanical origin of honey by near-infrared spectroscopy. Journal of agricultural and food chemistry, 54(18), 6867-6872. | es_CO |
dc.relation.references | Ruoff, K., Luginbühl, W., Künzli, R., Iglesias, M. T., Bogdanov, S., Bosset, J. O., ... & Amadò, R. (2006). Authentication of the botanical and geographical origin of honey by mid-infrared spectroscopy. Journal of agricultural and food chemistry, 54(18), 6873-6880. | es_CO |
dc.relation.references | Ruoff, K., Iglesias, M. T., Luginbühl, W., Bosset, J. O., Bogdanov, S., & Amadò, R. (2006). Quantitative analysis of physical and chemical measurands in honey by mid-infrared spectrometry. European food research and technology, 223(1), 22-29. | es_CO |
dc.relation.references | Salzer, R., Steiner, G., Mantsch, H. H., Mansfield, J., & Lewis, E. N. (2000). Infrared and Raman imaging of biological and biomimetic samples. Fresenius' Journal of Analytical Chemistry, 366(6), 712-726. | es_CO |
dc.relation.references | Sanz, M. L., Gonzalez, M., De Lorenzo, C., Sanz, J., & Martınez-Castro, I. (2005). A contribution to the differentiation between nectar honey and honeydew honey. Food chemistry, 91(2), 313-317. | es_CO |
dc.relation.references | Saxena, S., Gautam, S., & Sharma, A. (2010). Physical, biochemical and antioxidant properties of some Indian honeys. Food chemistry, 118(2), 391-397. | es_CO |
dc.relation.references | Shimadzu. (2006). Application FTIR Sugar Honey [Archivo PDF]. Obtenido de https://shimadzu.com.au/sites/default/files/Appl_FTIR_Sugar-Honey_06D_en.pdf. | es_CO |
dc.relation.references | Sivakesava, S., & Irudayaraj, J. (2001). Prediction of inverted cane sugar adulteration of honey by Fourier transform infrared spectroscopy. Journal of food science, 66(7), 972-978. | es_CO |
dc.relation.references | Socrates, G. (2001) Infared and Raman Characteristic Group Frequencies. John Wiley & Sons Ltd. West Sussex, England. | es_CO |
dc.relation.references | Sousa, G. (2008). Composição e qualidade de méis de abelhas Apis mellifera e méis de abelha jataí (Tetragonisca angustula). São PaulO, Brasil: Doctoral dissertation, Universidade de São Paulo. | es_CO |
dc.relation.references | Stanimirova, I., Ustun, B., Cajka, T., Riddelova, K., Hajslova, J., Buydens, L. M. C. & Walczak, B. (2010). Tracing the geographical origin of honeys based on volatile compounds profiles assessment using pattern recognition techniques. Food Chemistry 118(1): 171-176. | es_CO |
dc.relation.references | Subari, N., Saleh, J. M., Shakaff, A. Y. M., & Zakaria, A. (2012). A hybrid sensing approach for pure and adulterated honey classification. Sensors, 12, 14022–14040.Sajid, M., & Azim, M. K. (2012). Characterization of the nematicidal activity of natural honey. Journal of agricultural and food chemistry, 60(30), 7428-7434. | es_CO |
dc.relation.references | Svečnjak, L., Prđun, S., Rogina, J., Bubalo, D., & Jerković, I. (2017). Characterization of Satsuma mandarin (Citrus unshiu Marc.) nectar-to-honey transformation pathway using FTIR-ATR spectroscopy. Food chemistry, 232, 286-294. | es_CO |
dc.relation.references | Terrab, A., Dıez, M. J., & ́ Heredia, F. J. (2002). Characterisation of Moroccan unifloral honeys by their physicochemical characteristics. Food chemistry, 79(3), 373-379. | es_CO |
dc.relation.references | Terrab, A., González, A. G., Díez, M. J., & Heredia, F. J. (2003). Characterisation of Moroccan unifloral honeys using multivariate analysis. European food research and technology, 218(1), 88-95. | es_CO |
dc.relation.references | Terrab, A., Recamales, A. F., Hernanz, D., & Heredia, F. J. (2004). Characterisation of Spanish thyme honeys by their physicochemical characteristics and mineral contents. Food Chemistry, 88(4), 537-542. | es_CO |
dc.relation.references | Tewari, J. C., & Irudayaraj, J. M. (2004). Quantification of saccharides in multiple floral honeys using Fourier transform infrared microattenuated total reflectance spectroscopy. Journal of Agricultural Food Chemistry, 52, 3237–3243. | es_CO |
dc.relation.references | Tewari, J. C., & Irudayaraj, J. M. (2005). Floral classification of honey using midinfrared spectroscopy and surface acoustic wave based z-Nose sensor. Journal of Agricultural Food Chemistry, 53, 6955– 6966. | es_CO |
dc.relation.references | Universidad EAFIT. (06 de Agosto de 2022). Abejas en EAFIT. Obtenido de https://www.eafit.edu.co/institucional/campus-eafit/universidadparque/especies/Paginas/abejas-en-eafit.aspx. | es_CO |
dc.relation.references | Villas-Bôas, J. K., & Malaspina, O. (2004). Physicalchemical analysis of Melipona compressipes and Melipona seminigra honey of Boa Vista do Ramos. Amazonas, Brazil. | es_CO |
dc.rights.accessrights | http://purl.org/coar/access_right/c_abf2 | es_CO |
dc.type.coarversion | http://purl.org/coar/resource_type/c_2df8fbb1 | es_CO |
Aparece en las colecciones: | Maestría en Química |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
Molina_2022_TG.pdf | Molina_2022_TG | 1,45 MB | Adobe PDF | Visualizar/Abrir |
Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.