• Repositorio Institucional Universidad de Pamplona
  • Tesis de maestría y doctorado
  • Facultad de Ciencias Básicas
  • Maestría en Química
  • Por favor, use este identificador para citar o enlazar este ítem: http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/9507
    Registro completo de metadatos
    Campo DC Valor Lengua/Idioma
    dc.contributor.authorMolina Rivera, Mario Elías.-
    dc.date.accessioned2025-05-15T17:20:00Z-
    dc.date.available2022-
    dc.date.available2025-05-15T17:20:00Z-
    dc.date.issued2022-
    dc.identifier.citationMolina Rivera, M. E. (2022). Caracterización y discriminación de mieles de Abejas sin aguijón colombianas por Espectroscopia Vibracional [Trabajo de Grado Maestría, Universidad de Pamplona]. Repositorio Hulago Universidad de Pamplona. http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/9507es_CO
    dc.identifier.urihttp://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/9507-
    dc.descriptionEn este proyecto se desarrolló un modelo predictivo para discriminar muestras de mieles de abejas sin aguijón colombianas de las especies, Melipona compressipes, Melipona fuscipes, Trigona angustula, Frieseomelitta nigra, Nannotrigona sp., Plebeia sp., que se compararon con Apis mellifera (africanizada) utilizando espectroscopía infrarroja con transformada de Fourier y quimiometría. El modelo se desarrolló con el análisis de muestras de mieles de dos municipios del departamento de Norte de Santander: Bochalema y Los Patios. Con el desarrollo de este trabajo, se planteó una metodología alterna para el análisis de mieles que permitió disminuir los tiempos de análisis, reducir costos, disminuir el uso de solventes, reduciendo los residuos tóxicos y la contaminación del medio ambiente. Además, ATR-FTIR es una técnica con buena resolución y tiempo de escaneo rápido, que puede evaluar varios componentes en una sola medición. Finalmente, este trabajo permitió obtener información técnica de estas mieles y en un futuro podría contribuir al ajuste de la legislación vigente en nuestro país, en la que no se establecen parámetros específicos para la miel de estas especies.es_CO
    dc.description.abstractIn this project, a predictive model was developed to discriminate honey samples from Colombian stingless bees of the species, Melipona compressipes, Melipona fuscipes, Trigona angustula, Frieseomelitta nigra, Nannotrigona sp., Plebeia sp., which were compared with Apis mellifera (Africanized) using Fourier transform infrared spectroscopy and chemometrics. The model was developed with the analysis of honey samples from two municipalities in the department of Norte de Santander: Bochalema and Los Patios. With the development of this work, an alternative methodology was proposed for the analysis of honey that allowed to reduce analysis times, reduce costs, reduce the use of solvents, reducing toxic waste and environmental pollution. Furthermore, ATR-FTIR is a technique with good resolution and fast scan time, that can evaluate multiple components in a single measurement. Finally, this work allowed to obtain technical information on these honeys and in the future could contribute to the adjustment of the current legislation in our country, in which specific parameters are not established for the honey of these species.es_CO
    dc.format.extent97es_CO
    dc.format.mimetypeapplication/pdfes_CO
    dc.language.isoeses_CO
    dc.publisherUniversidad de Pamplona – Facultad de Ciencias Básicas.es_CO
    dc.subjectAbejas sin aguijón.es_CO
    dc.subjectEspectroscopía infrarroja con transformada de Fourier.es_CO
    dc.subjectQuimiometría.es_CO
    dc.titleCaracterización y discriminación de mieles de Abejas sin aguijón colombianas por Espectroscopia Vibracional.es_CO
    dc.typehttp://purl.org/coar/resource_type/c_bdcces_CO
    dc.date.accepted2022-
    dc.relation.referencesAbd Jalil , M., Kasmuri , A., & Haid , H. (2017). Stingless bee honey, the natural wound healer: a review. Skin Pharmacol Physiol , 30:66-75.es_CO
    dc.relation.referencesAdab. (21 de Noviembre de 2014). Regulamento Técnico de Identidade e Qualidade do Mel de Abelha social sem ferrão, gênero Melipona. (Portaria Adab Nº 207). (A. E. Bahia, Ed.) Bahia, Brasil.es_CO
    dc.relation.referencesAlimentarius, C. d. C. (2001). Codex standard for honey.es_CO
    dc.relation.referencesAnjos , O., Campos, M. G., Ruiz, P. C., & Antunes, P. (2014). Application of FTIR-ATR spectroscopy to the quantification of sugar in honey. Food Chemistry.es_CO
    dc.relation.referencesAnjos, O., Campos, M., Ruiz, P., & Antunes, P. (2015). Food Chem.es_CO
    dc.relation.referencesAroca Gaona, I. A. (25 de Mayo de 2022). Agencia Prensa Rural. Obtenido de https://prensarural.org/spip/spip.php?article28059.es_CO
    dc.relation.referencesArvanitoyannis, I. S., Chalhoub, C., Gotsiou, P., Lydakis-Simantiris, N., & Kefalas, P. (2005). Novel quality control methods in conjunction with chemometrics (multivariate analysis) for detecting honey authenticity. Critical reviews in food science and nutrition, 45(3), 193-203.es_CO
    dc.relation.referencesAzeredo, L. C., Azeredo, M. A., & Beser, L. D. (2000). Características físico-químicas de amostras de méis de melíponas coletadas no estado de Tocantins. Santa Catarina, Brazil.es_CO
    dc.relation.referencesBertelli, D., Lolli, M., Papotti, G., Bortolotti, L., Serra, G., & Plessi, M. (2010). Detection of honey adulteration by sugar syrups using one-dimensional and two-dimensional high-resolution nuclear magnetic resonance. Journal of agricultural and food chemistry, 58(15), 8495-8501.es_CO
    dc.relation.referencesBlanco, Lorena. (28 de junio de 2022). Apis mellifera: características, hábitat, reproducción, alimentación. Lifeder. Recuperado de https://www.lifeder.com/apis-mellifera/.es_CO
    dc.relation.referencesBogdanov, S. (2004). Beeswax: quality issues today. Bee world, 85(3), 46-50.es_CO
    dc.relation.referencesVit, P. (2008). La miel precolombina de abejas sin aguijón (Meliponini) aún no tiene normas de calidad. Boletín del Centro de Investigaciones Biológicas, 42(3), 415-423.es_CO
    dc.relation.referencesVit, P., Medina, M., & Eunice , M. (2004). Quality standards for medicinal uses of Meliponinae honey in Guatemala, Mexico and Venezuela. Bee world, 85(1), 2-5.es_CO
    dc.relation.referencesVon Der Ohe, W., Oddo, L. P., Piana, M. L., Morlot, M., & Martin, P. (2004). Harmonized methods of melissopalynology. Apidologie, 35(Suppl. 1), S18-S25.es_CO
    dc.relation.referencesWang, Y. X., Xin, Y., Yin, J. Y., Huang, X. J., Wang, J. Q., Hu, J. L., ... & Nie, S. P. (2022). Revealing the architecture and solution properties of polysaccharide fractions from Macrolepiota albuminosa (Berk.) Pegler. Food Chemistry, 368, 130772.es_CO
    dc.relation.referencesWiercigroch, E., Szafraniec, E., Czamara, K., Pacia, M. Z., Majzner, K., Kochan, K., . . . Malek, K. (2017). Raman and infrared spectroscopy of carbohydrates: A review. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 185, 317-335.es_CO
    dc.relation.referencesWille, A., & Michener, C. D. (1973). The nest architecture of stingless bees with special reference to those of Costa Rica. Revista de biologia tropical, 21(supplemento 1), 1–279.es_CO
    dc.relation.referencesYaghoobi, N., Al-Waili, N., Ghayour-Mobarhan, M., Parizadeh, S. M. R., Abasalti, Z., Yaghoobi, Z., ... & Ferns, G. A. A. (2008). Natural honey and cardiovascular risk factors; effects on blood glucose, cholesterol, triacylglycerole, CRP, and body weight compared with sucrose. TheScientificWorldJournal, 8, 463-469.es_CO
    dc.relation.referencesYang, H., & Irudayaraj, J. (2002). Rapid determination of vitamine C by NIR, MIR and FT-Raman techniques. Journal of Pharmacy and Pharmacology, 54(9), 1247–1255.es_CO
    dc.relation.referencesBogdanov, S. (2009). Physical properties of honey. Book of honey, Cap. 4.es_CO
    dc.relation.referencesBogdanov, S., Ruoff, K., & Oddo, L. P. (2004). Physico-chemical methods for the characterisation of unifloral honeys: a review. Apidologie,, 35(Suppl. 1), S4-S17.es_CO
    dc.relation.referencesBureau, S., Ruiz, D., Reich, M., Gouble, B., Bertrand, D., Audergon, J. M., & Renard, C. M. (2009). Application of ATR-FTIR for a rapid and simultaneous determination of sugars and organic acids in apricot fruit. Food Chemistry, , 115(3), 1133-1140.es_CO
    dc.relation.referencesCai, S., & Singh, B. R. (2004). A distinct utility of the amide III infrared band for secondary structure estimation of aqueous protein solutions using partial least squares methods. Biochemistry, 43, 2541–2549.es_CO
    dc.relation.referencesCamargo, J. M., & Moure, J. S. (1983). Trichotrigona, um novo gênero de Meliponinae (Hymenoptera, Apidae). Acta Amazonica, 13(2), 421-429.es_CO
    dc.relation.referencesCardona-Rodríguez, Y. (2015). Contribución al conocimiento de las características fisicoquímicas y térmicas de mieles de siete especies de abejas sin aguijón presentes en Norte de Santander, Colombia, aplicando análisis multivariado. Pamplona.es_CO
    dc.relation.referencesCardona-Rodríguez, Y., Torres-Sánchez, D. A., & Hoffmann, W. (2015). Análisis térmico de mieles de Trigona (Tetragonisca) angustula de Norte de Santander, Colombia. Respuestas, 20(2), 135-144.es_CO
    dc.relation.referencesCardona-Rodríguez, Y., Torres-Sánchez, D. A., & Hoffmann, W. (2019). Colombian stingless bee honeys characterized by multivariate analysis of physicochemical properties. Apidologie, 50(6), 881-892.es_CO
    dc.relation.referencesCardona-Rodríguez, Y., Torres-Sánchez, D. A., & Hoffmann, W. (2020). Thermoanalytical investigations of honey produced by Trigona species using differential scanning calorimetry (DSC). Journal of Apicultural Research, 1, 1-8.es_CO
    dc.relation.referencesCardona-Rodríguez, Y., Torres-Sánchez, D. A., Lamprecht, I., & Hoffmann, W. (2018). Differentiation of Honey from Melipona Species Using Differential Scanning Calorimetry. Food Analytical Methods, 11(4), 1056- 1067.es_CO
    dc.relation.referencesChen, P. S. (1985). Amino acid and protein metabolism. Comprehensive Insect Physiology, Biochemistry and Pharmacology; Kerkut, GA, Gilbert, LI, Eds, 177-219.es_CO
    dc.relation.referencesCocciardi, R. A., Ismail, A. A., & Sedman, J. (2005). Investigation of the potential utility of single-bounce attenuated total reflectance Fourier transform infrared spectroscopy in the analysis of distilled liquors and wines. Journal of agricultural and food chemistry, 53(8), 2803-2809.es_CO
    dc.relation.referencesCuevas-Glory, L. F., Pino, J. A., & Santiago, L. S. (2007). A review of volatile analytical methods for determining the botanical origin of honey. Food Chemistry, 103(3), 1032-1043.es_CO
    dc.relation.referencesDas, C., Chakraborty, S., Acharya, K., Bera, N. K., Chattopadhyay, D., Karmakar, A., & Chattopadhyay, S. (2017). FT-MIR supported Electrical Impedance Spectroscopy based study of sugar adulterated honeys from different floral origin. Talanta, 171, 327-334.es_CO
    dc.relation.referencesde Villiers, A., Alberts, P., Tredoux, A. G., & Nieuwoudt, H. H. (2012). Analytical techniques for wine analysis: An African perspective; a review. Analytica Chimica Acta, 730, 2-23.es_CO
    dc.relation.referencesde la Mata, P., Dominguez-Vidal, A., Bosque-Sendra, J. M., Ruiz-Medina, A., Cuadros-Rodríguez, L., & Ayora-Cañada, M. J. (2012). Olive oil assessment in edible oil blends by means of ATR-FTIR and chemometrics. Food Control, 23(2), 449-455.es_CO
    dc.relation.referencesDoner, L. W. (1977). The sugars of honey: a review. Journal of the Science of Food and Agriculture, 28(5), 443-456.es_CO
    dc.relation.referencesEdelmann, A., Diewok, J., Schuster, K. C., & Lendl, B. (2001). Rapid method for the discrimination of red wine cultivars based on mid-infrared spectroscopy of phenolic wine extracts. Journal of Agricultural and Food Chemistry, 49(3), 1139-1145.es_CO
    dc.relation.referencesEtzold, E., & Lichtenberg-Kraag, B. (2008). Determination of the botanical origin of honey by Fouriertransformed infrared spectroscopy: an approach for routine analysis. European Food Research and Technology, 227(2), 579-586.es_CO
    dc.relation.referencesFernández, K., & Agosin, E. (2007). Quantitative analysis of red wine tannins using Fourier-transform midinfrared spectrometry. Journal of Agricultural and Food Chemistry, 55(18), 7294-7300.es_CO
    dc.relation.referencesFormosa, J. P., Lia, F., Mifsud, D., & Farrugia, C. (2020). Application of ATR-FT-MIR for tracing the geographical origin of honey produced in the Maltese islands. Foods, 9(6), 710.es_CO
    dc.relation.referencesGallardo-Velázquez, T., Osorio-Revilla, G., Zuñiga-de Loa, M., & Rivera-Espinoza, Y. (2009). Application of FTIR-HATR spectroscopy and multivariate analysis to the quantification of adulterants in Mexican honeys. Food Research International, 42(3), 313-318.es_CO
    dc.relation.referencesGan, Z., Yang, Y., Li, J., Wen, X., Zhu, M., Jiang, Y., & Ni, Y. (2016). Using sensor and spectral analysis to classify botanical origin and determine adulteration of raw honey. Journal of Food Engineering, 178, 151-158.es_CO
    dc.relation.referencesGok, S., Severcan, M., Goormaghtigh, E., Kandemir, I., & Severcan, F. (2015). Differentiation of Anatolian honey samples from different botanical origins by ATR-FTIR spectroscopy using multivariate analysis. Food chemistry, 170, 234-240.es_CO
    dc.relation.referencesGómez-Ordóñez, E., & Rupérez, P. (2011). FTIR-ATR spectroscopy as a tool for polysaccharide identification in edible brown and red seaweeds. Food hydrocolloids, 25(6), 1514-1520.es_CO
    dc.relation.referencesGuler, A., Bakan, A., Nisbet, C., & Yavuz, O. (2007). Determination of important biochemical properties of honey to discriminate pure and adulterated honey with sucrose (Saccharum officinarum L.) syrup. Food chemistry, 105(3), 1119-1125.es_CO
    dc.relation.referencesHebbar, H. U., Nandini, K. E., Lakshmi, M. C. & Subramanian, R. (2003). Microwave and infrared heat processing of honey and its quality. Food Science and Technology Research 9(1), 49-53. Icontec. (2007). NTC 1273:2007 Miel de abejas.es_CO
    dc.relation.referencesIñón, F. A., Garrigues, J. M., Garrigues, S., Molina, A., & de la Guardia, M. (2003). Selection of calibration set samples in determination of olive oil acidity by partial least squares–attenuated total reflectance–Fourier transform infrared spectroscopy. Analytica Chimica Acta, 489(1), 59-75.es_CO
    dc.relation.referencesJha, S. N., & Gunasekaran, S. (2010). Authentications of sweetness of mango juice using Fourier transform infrared-attenuated total reflection spectroscopy. Journal of Food Engineering, 101(3), 337–342.es_CO
    dc.relation.referencesKarabagias, I. K., Badeka, A., Kontakos, S., Karabournioti, S., & Kontominas, M. G. (2014). Characterisation and classification of Greek pine honeys according to their geographical origin based on volatiles, physicochemical parameters and chemometrics. Food chemistry, 146, 548-557.es_CO
    dc.relation.referencesKędzierska-Matysek, M., Matwijczuk, A., Florek, M., Barłowska, J., Wolanciuk, A., Matwijczuk, A., ... & Gładyszewska, B. (2018). Application of FTIR spectroscopy for analysis of the quality of honey. In BIO Web of Conferences (Vol. 10, p. 02008). EDP Sciences.es_CO
    dc.relation.referencesKelly, J. D., Downey, G., & Fouratier, V. (2004). Initial study of honey adulteration by sugar solutions using midinfrared (MIR) spectroscopy and chemometrics. Journal of agricultural and food chemistry, 52(1), 33-39.es_CO
    dc.relation.referencesKelly, J. D., Petisco, C., & Downey, G. (2006). Application of Fourier transform midinfrared spectroscopy to the discrimination between Irish artisanal honey and such honey adulterated with various sugar syrups. Journal of agricultural and food chemistry, 54, 6873–80.es_CO
    dc.relation.referencesKerr, W. E., Sakagami, S. F., Zucchi, R., Portugal-Araújo, V. D., & Camargo, J. D. (1967). Camargo, Atlas do simposio sobre a biota Amazonica, 5 (1967) 255–309.es_CO
    dc.relation.referencesKrska, R., Becalski, A., Braekevelt, E., Koerner, T., Cao, X. L., Dabeka, R., Godefroy, S., Lau, B., Moisey, J., Rawn, D. F., Scott, P. M., Wang, Z. & Forsyth, D. (2012). Challenges and trends in the determination of selected chemical contaminants and allergens in food. Anal Bioanal Chem 402(1): 139-162.es_CO
    dc.relation.referencesKuroiwa, T., Kimura, K., Aoki, Y., Neves, M. A., Sato, S., Mukataka, S., Kanazawa, A., Ichikawa, S. (2015) Quantitative Evaluation of the Effects of Moisture Distribution on Enzyme-Induced Acylation of the Trehalose in Reduced-Moisture Organic Media. Journal of Food Research, 4 (5), 133-142.es_CO
    dc.relation.referencesLachenmeier, D. W. (2007). Rapid quality control of spirit drinks and beer using multivariate data analysis of Fourier transform infrared spectra. Food Chemistry, 101(2), 825–832.es_CO
    dc.relation.referencesLas abejas, las reinas de nuestra biodiversidad, s.f. Recuperado 25 de mayo de 2021 de https://www.minambiente.gov.co/index.php/noticias-minambiente/4704-las-abejas-las-reinasde-nuestra-biodiversidad.es_CO
    dc.relation.referencesLi, S., Zhang, X., Shan, Y., Su, D., Ma, Q., Wen, R., & Li, J. (2017). Qualitative and quantitative detection of honey adulterated with high-fructose corn syrup and maltose syrup by using near-infrared spectroscopy. Food chemistry, 218, 231-236.es_CO
    dc.relation.referencesMadupalli, H., Pavan, B., & Tecklenburg, M. M. (2017). Carbonate substitution in the mineral component of bone: Discriminating the structural changes, simultaneously imposed by carbonate in A and B sites of apatite. Journal of solid state chemistry, 255, 27-35.es_CO
    dc.relation.referencesManthey, J. A. (2006). Fourier transform infrared spectroscopic analysis of the polymethoxylated flavone content of orange oil residues. Journal of agricultural and food chemistry, 54, 3215-3218.es_CO
    dc.relation.referencesMartos, I., Ferreres, F., & Tomás-Barberán, F. A. (2000). Identification of flavonoid markers for the botanical origin of Eucalyptus honey. Journal of Agricultural and Food Chemistry, 48, 1498-1502.es_CO
    dc.relation.referencesMesaik, M. A., Dastagir, N., Uddin, N., Rehman, K., & Azim, M. K. (2015). Characterization of immunomodulatory activities of honey glycoproteins and glycopeptides. Journal of agricultural and food chemistry, 63(1), 177-184.es_CO
    dc.relation.referencesMinistério da Agricultura. (2000). Instrução Normativa Nº 11, de 20 de Outubro de 2000: Aprova o regulamento técnico de identidade e qualidade do mel. Brasil.es_CO
    dc.relation.referencesMinisterio de Ambiente y Desarrollo Sostenible. (20 de Mayo de 2020). Las abejas, las reinas de nuestra biodiversidad. Recuperado el 25 de Mayo de 2021.es_CO
    dc.relation.referencesMinisterio de la Protección Social. (25 de Marzo de 2010). Resolución 1057. Sistema único de información normativa - Diario Oficial, 47.662, 5.es_CO
    dc.relation.referencesMolan, P. C. (2006). The evidence supporting the use of honey as a wound dressing. The international journal of lower extremity wounds 5(1), 40-54.es_CO
    dc.relation.referencesMondragón, P. (2020). Principios y aplicaciones de la espectroscopia de infrarrojo en el análisis de alimentos y bebidas. Zapopan, Jalisco, México: Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco.es_CO
    dc.relation.referencesMoreira, J. L., Marcos, A. M., & e Barros, P. (2002). Analysis of Portuguese wine by Fourier transform infrared spectrometry. Ciência e Técnica Vitivinícola/Journal of Viticulture and Enology, 17, 27– 33.es_CO
    dc.relation.referencesMovasaghi, Z., Rehman, S., & ur Rehman, D. I. (2008). Fourier transform infrared (FTIR) spectroscopy of biological tissues. Applied Spectroscopy Reviews, 43(2), 134-179.es_CO
    dc.relation.referencesSabri, N.F.M., See, H.H. (2016) eProceedings Chemistry 1, 22-26.es_CO
    dc.relation.referencesNikonenko, N. A., Buslov, D. K., Sushko, N. I., & Zhbankov, R. G. (2005). Spectroscopic manifestation of stretching vibrations of glycosidic linkage in polysaccharides. Journal of Molecular Structure, 752(1-3), 20–24.es_CO
    dc.relation.referencesNoor, M. J., Ahmad, M., Ashraf, M. A., Zafar, M., & Sultana, S. (2015). A review of the pollen analysis of South Asian honey to identify the bee floras of the region. Palynology (ahead-ofprint): 1-12.es_CO
    dc.relation.referencesOddo, L. P., Piro, R., Bruneau, É., Guyot-Declerck, C., Ivanov, T., Piskulová, J., ... & Ruoff, K. (2004). Main European unifloral honeys: descriptive sheets. Apidologie, 35(Suppl. 1), S38-S81.es_CO
    dc.relation.referencesOna, T., Sonoda, T., Ito, K., Shibata, M., Ootake, Y., Ohshima, J., Yokota, S. & Yoshizawa, N. (1999) Quantative FT-Raman spectroscopy to measure wood cell dimensions. The Analyst 124:1477– 1480.es_CO
    dc.relation.referencesOuchemoukh, S., Schweitzer, P., Bey, M. B., Djoudad-Kadji, H., & Louaileche, H. (2010). HPLC sugar profiles of Algerian honeys. Food Chemistry, 121, 561–568.es_CO
    dc.relation.referencesPanseri, S., Manzo, A., Chiesa, L. M., & Giorgi, A. (2013). Melissopalynological and volatile compounds analysis of buckwheat honey from different geographical origins and their role in botanical determination. Journal of Chemistry, 2013.es_CO
    dc.relation.referencesParra, G. N. (2001). Las abejas sin aguijón (Hymenoptera: Apidae: Meliponini) de Colombia. Biota Colombiana, 2(3), 233-248.es_CO
    dc.relation.referencesPasandide, B., Khodaiyan, F., Mousavi, Z. E., & Hosseini, S. S. (2017). Optimization of aqueous pectin extraction from Citrus medica peel. Carbohydrate Polymers, 178, 27–33.es_CO
    dc.relation.referencesPasini, F., Gardini, S., Marcazzan, G. L., & Caboni, M. F. (2013). Buckwheat honeys: screening of composition and properties. Food Chemistry, 141(3), 2802-2811.es_CO
    dc.relation.referencesPhilip, D. (2009). Honey mediated green synthesis of gold nanoparticles. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 73(4), 650-653.es_CO
    dc.relation.referencesPiljac-Žegarac, J., Stipčević, T. & Belščak, A. (2009). Antioxidant properties and phenolic content of different floral origin honeys. Journal of ApiProduct and ApiMedical Science 1(2): 43-50.es_CO
    dc.relation.referencesRana, R., Müller, G., Naumann, A., & Polle, A. (2008). FTIR spectroscopy in combination with principal component analysis or cluster analysis as a tool to distinguish beech (Fagus sylvatica L.) trees grown at different sites.es_CO
    dc.relation.referencesRasmussen, C., & Cameron, S. A. (2010). Global stingless bee phylogeny supports ancient divergence, vicariance, and long distance dispersal. Biological Journal of the Linnean Society, 99(1), 206-232.es_CO
    dc.relation.referencesRibeiro, R. D. O. R., Mársico, E. T., da Silva Carneiro, C., Monteiro, M. L. G., Júnior, C. A. C., Mano, S., & de Jesus, E. F. O. (2014). Classification of Brazilian honeys by physical and chemical analytical methods and low field nuclear magnetic resonance (LF 1H NMR). LWT-Food Science and Technology, 55(1), 90-95.es_CO
    dc.relation.referencesRios-Corripio, M. A., Rojas-López*, M., & Delgado-Macuil, R. (2012). Analysis of adulteration in honey with standard sugar solutions and syrups using attenuated total reflectance-Fourier transform infrared spectroscopy and multivariate methods. CyTA-Journal of Food, 10(2), 119-122.es_CO
    dc.relation.referencesRoubik D. W. (1989) Ecology and Natural History of Tropical Bees Cambridge Univ. Press, Cambridge, U.K. 514 pp.es_CO
    dc.relation.referencesRuiz-Matute, A. I., Rodriguez-Sanchez, S., Sanz, M. L. & Martinez-Castro, I. (2010). Detection of adulterations of honey with high fructose syrups from inulin by GC analysis. Journal of Food Composition and Analysis 23(3): 273-276.es_CO
    dc.relation.referencesRuoff, K., Luginbühl, W., Künzli, R., Bogdanov, S., Bosset, J. O., von der Ohe, K., ... & Amadò, R. (2006). Authentication of the botanical and geographical origin of honey by front-face fluorescence spectroscopy. Journal of agricultural and food chemistry, 54(18), 6858-6866.es_CO
    dc.relation.referencesRuoff, K., Luginbühl, W., Bogdanov, S., Bosset, J. O., Estermann, B., Ziolko, T., & Amadò, R. (2006). Authentication of the botanical origin of honey by near-infrared spectroscopy. Journal of agricultural and food chemistry, 54(18), 6867-6872.es_CO
    dc.relation.referencesRuoff, K., Luginbühl, W., Künzli, R., Iglesias, M. T., Bogdanov, S., Bosset, J. O., ... & Amadò, R. (2006). Authentication of the botanical and geographical origin of honey by mid-infrared spectroscopy. Journal of agricultural and food chemistry, 54(18), 6873-6880.es_CO
    dc.relation.referencesRuoff, K., Iglesias, M. T., Luginbühl, W., Bosset, J. O., Bogdanov, S., & Amadò, R. (2006). Quantitative analysis of physical and chemical measurands in honey by mid-infrared spectrometry. European food research and technology, 223(1), 22-29.es_CO
    dc.relation.referencesSalzer, R., Steiner, G., Mantsch, H. H., Mansfield, J., & Lewis, E. N. (2000). Infrared and Raman imaging of biological and biomimetic samples. Fresenius' Journal of Analytical Chemistry, 366(6), 712-726.es_CO
    dc.relation.referencesSanz, M. L., Gonzalez, M., De Lorenzo, C., Sanz, J., & Martınez-Castro, I. (2005). A contribution to the differentiation between nectar honey and honeydew honey. Food chemistry, 91(2), 313-317.es_CO
    dc.relation.referencesSaxena, S., Gautam, S., & Sharma, A. (2010). Physical, biochemical and antioxidant properties of some Indian honeys. Food chemistry, 118(2), 391-397.es_CO
    dc.relation.referencesShimadzu. (2006). Application FTIR Sugar Honey [Archivo PDF]. Obtenido de https://shimadzu.com.au/sites/default/files/Appl_FTIR_Sugar-Honey_06D_en.pdf.es_CO
    dc.relation.referencesSivakesava, S., & Irudayaraj, J. (2001). Prediction of inverted cane sugar adulteration of honey by Fourier transform infrared spectroscopy. Journal of food science, 66(7), 972-978.es_CO
    dc.relation.referencesSocrates, G. (2001) Infared and Raman Characteristic Group Frequencies. John Wiley & Sons Ltd. West Sussex, England.es_CO
    dc.relation.referencesSousa, G. (2008). Composição e qualidade de méis de abelhas Apis mellifera e méis de abelha jataí (Tetragonisca angustula). São PaulO, Brasil: Doctoral dissertation, Universidade de São Paulo.es_CO
    dc.relation.referencesStanimirova, I., Ustun, B., Cajka, T., Riddelova, K., Hajslova, J., Buydens, L. M. C. & Walczak, B. (2010). Tracing the geographical origin of honeys based on volatile compounds profiles assessment using pattern recognition techniques. Food Chemistry 118(1): 171-176.es_CO
    dc.relation.referencesSubari, N., Saleh, J. M., Shakaff, A. Y. M., & Zakaria, A. (2012). A hybrid sensing approach for pure and adulterated honey classification. Sensors, 12, 14022–14040.Sajid, M., & Azim, M. K. (2012). Characterization of the nematicidal activity of natural honey. Journal of agricultural and food chemistry, 60(30), 7428-7434.es_CO
    dc.relation.referencesSvečnjak, L., Prđun, S., Rogina, J., Bubalo, D., & Jerković, I. (2017). Characterization of Satsuma mandarin (Citrus unshiu Marc.) nectar-to-honey transformation pathway using FTIR-ATR spectroscopy. Food chemistry, 232, 286-294.es_CO
    dc.relation.referencesTerrab, A., Dıez, M. J., & ́ Heredia, F. J. (2002). Characterisation of Moroccan unifloral honeys by their physicochemical characteristics. Food chemistry, 79(3), 373-379.es_CO
    dc.relation.referencesTerrab, A., González, A. G., Díez, M. J., & Heredia, F. J. (2003). Characterisation of Moroccan unifloral honeys using multivariate analysis. European food research and technology, 218(1), 88-95.es_CO
    dc.relation.referencesTerrab, A., Recamales, A. F., Hernanz, D., & Heredia, F. J. (2004). Characterisation of Spanish thyme honeys by their physicochemical characteristics and mineral contents. Food Chemistry, 88(4), 537-542.es_CO
    dc.relation.referencesTewari, J. C., & Irudayaraj, J. M. (2004). Quantification of saccharides in multiple floral honeys using Fourier transform infrared microattenuated total reflectance spectroscopy. Journal of Agricultural Food Chemistry, 52, 3237–3243.es_CO
    dc.relation.referencesTewari, J. C., & Irudayaraj, J. M. (2005). Floral classification of honey using midinfrared spectroscopy and surface acoustic wave based z-Nose sensor. Journal of Agricultural Food Chemistry, 53, 6955– 6966.es_CO
    dc.relation.referencesUniversidad EAFIT. (06 de Agosto de 2022). Abejas en EAFIT. Obtenido de https://www.eafit.edu.co/institucional/campus-eafit/universidadparque/especies/Paginas/abejas-en-eafit.aspx.es_CO
    dc.relation.referencesVillas-Bôas, J. K., & Malaspina, O. (2004). Physicalchemical analysis of Melipona compressipes and Melipona seminigra honey of Boa Vista do Ramos. Amazonas, Brazil.es_CO
    dc.rights.accessrightshttp://purl.org/coar/access_right/c_abf2es_CO
    dc.type.coarversionhttp://purl.org/coar/resource_type/c_2df8fbb1es_CO
    Aparece en las colecciones: Maestría en Química

    Ficheros en este ítem:
    Fichero Descripción Tamaño Formato  
    Molina_2022_TG.pdfMolina_2022_TG1,45 MBAdobe PDFVisualizar/Abrir


    Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.