Por favor, use este identificador para citar o enlazar este ítem:
http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/9505
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | Rojas Diego, Ándres. | - |
dc.date.accessioned | 2025-05-15T16:15:58Z | - |
dc.date.available | 2022 | - |
dc.date.available | 2025-05-15T16:15:58Z | - |
dc.date.issued | 2022 | - |
dc.identifier.citation | Rojas Diego, A. (2022). Minería de datos del residuo Terminal-N y análisis del tiempo de vida de las Enzimas presentes en Proteomas de referencia (Escherichia coli, Nicotiana tabacum, Oryctolagus cuniculus, Saccharomyces cerevisiae y Virus inmunodeficiencia humana (VIH-1)) [Trabajo de Grado Maestría, Universidad de Pamplona]. Repositorio Hulago Universidad de Pamplona. http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/9505 | es_CO |
dc.identifier.uri | http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/9505 | - |
dc.description | La regla del Terminal-N indica que el tiempo de vida de las proteínas está determinado por su residuo aminoacídico Terminal-N. Estudiar esta regla experimentalmente, in vivo, ha sido una tarea muy compleja y, por ende, el número de proteínas en las que se ha estudiado es muy pequeño en comparación con el índice de proteínas que pueden ser expresadas por un genoma, el proteoma. En esta tesis de maestría se analizó el efecto estabilizador o desestabilizador del terminal-N en el tiempo de vida de las enzimas pertenecientes a los proteomas de los organismos Oryctolagus cuniculus, Nicotiana tabacum, Saccharomyces cerevisiae, Escherichia coli y del virus de inmunodeficiencia humana (VIH-1). Además, se identificaron las relaciones entre el terminal-N de las enzimas, las rutas metabólicas a las que pertenecen y la superfamilia de plegamiento proteico. Este estudio se enfocó en las enzimas con estatus de revisada pertenecientes a los proteomas de estudio y reportadas en la base de datos Uniprot. Las tendencias se identificaron utilizando las herramientas computacionales Power BI, Power Query y la hoja de cálculo de Excel y las relaciones se determinaron por medio del análisis de agrupamientos con el programa Cytoscape. Los resultados permitieron concluir que las oxidorreductasas (EC:1), transferasa (EC:2) e hidrolasas (EC:3) son las clases de enzimas con mayor número de proteínas con tiempos de vida estables, con mayor asignación de superfamilia y las que participan en un mayor número de rutas metabólicas. Además, al cruzar la información obtenida de cada uno de los proteomas, se encontró que la mayoría de las enzimas de los proteomas de Escherichia coli, Saccharomyces cerevisiae y Nicotiana tabacum pertenecen a la superfamilia proteica SSF52540 (Hidrolasas de trifosfato de nucleósido que contienen bucles P), mientras que la mayoría de las enzimas de del proteoma Oryctolagus cuniculus tienden a pertenecer a la superfamilia proteica SSF56112 (similar a la proteína quinasa (PK-like)). | es_CO |
dc.description.abstract | El autor no proporciona la información sobre este ítem. | es_CO |
dc.format.extent | 137 | es_CO |
dc.format.mimetype | application/pdf | es_CO |
dc.language.iso | es | es_CO |
dc.publisher | Universidad de Pamplona – Facultad de Ciencias Básicas. | es_CO |
dc.subject | El autor no proporciona la información sobre este ítem. | es_CO |
dc.title | Minería de datos del residuo Terminal-N y análisis del tiempo de vida de las Enzimas presentes en Proteomas de referencia (Escherichia coli, Nicotiana tabacum, Oryctolagus cuniculus, Saccharomyces cerevisiae y Virus inmunodeficiencia humana (VIH-1)). | es_CO |
dc.type | http://purl.org/coar/resource_type/c_bdcc | es_CO |
dc.date.accepted | 2022 | - |
dc.relation.references | Alvarez-Castelao, B., & Schuman, E. M. (2015). The regulation of synaptic protein turnover. Journal of Biological Chemistry, 290(48), 28623–28630. https://doi.org/10.1074/jbc.R115.657130. | es_CO |
dc.relation.references | Bachmair, A., Finley, D., & Varshavsky, A. (1986). In Vivo Half-Life of a Protein Is a Function of Its Amino-Terminal Residue, 523(1985). https://doi.org/10.1126/science.3018930. | es_CO |
dc.relation.references | Bairoch, A. (2000). The ENZYME database in 2000. Nucleic Acids Research, 28(1), 304– 305. https://doi.org/10.1093/nar/28.1.304. | es_CO |
dc.relation.references | Balaji, S. (2021). The transferred translocases: An old wine in a new bottle. Biotechnology and Applied Biochemistry. https://doi.org/10.1002/BAB.2230. | es_CO |
dc.relation.references | Basisty, N., Holtz, A., & Schilling, B. (2019). Accumulation of “Old Proteins” and the Critical Need for MS‐based Protein Turnover Measurements in Aging and Longevity. Proteomics, 1800403, 1800403. https://doi.org/10.1002/pmic.201800403. | es_CO |
dc.relation.references | Balaji, S. (2021). The transferred translocases: An old wine in a new bottle. Biotechnology and Applied Biochemistry. https://doi.org/10.1002/BAB.2230. | es_CO |
dc.relation.references | Bateman, A., Martin, M. J., Orchard, S., Magrane, M., Agivetova, R., Ahmad, S., Alpi, E., Bowler-Barnett, E. H., Britto, R., Bursteinas, B., Bye-A-Jee, H., Coetzee, R., Cukura, A., da Silva, A., Denny, P., Dogan, T., Ebenezer, T. G., Fan, J., Castro, L. G., … Teodoro, D. (2021). UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Research, 49(D1), D480–D489. https://doi.org/10.1093/NAR/GKAA1100. | es_CO |
dc.relation.references | Bozaykut, P., Ozer, N. K., & Karademir, B. (2014). Regulation of protein turnover by heat shock proteins. Free Radical Biology and Medicine, 77, 195–209. https://doi.org/10.1016/j.freeradbiomed.2014.08.012. | es_CO |
dc.relation.references | Cheignon, C., Tomas, M., Bonnefont-Rousselot, D., Faller, P., Hureau, C., & Collin, F. (2018). Oxidative stress and the amyloid beta peptide in Alzheimer’s disease. Redox Biology, 14(October 2017), 450–464. https://doi.org/10.1016/j.redox.2017.10.014. | es_CO |
dc.relation.references | Chen, S.-J., Wu, X., Wadas, B., Oh, J.-H., & Varshavsky, A. (2017). An N-end rule pathway that recognizes proline and destroys gluconeogenic enzymes. Science, 355(6323), eaal3655. https://doi.org/10.1126/science.aal3655. | es_CO |
dc.relation.references | Ciechanover, A. (2005). Proteolysis: from the lysosome to ubiquitin and the proteasome. Nature Reviews Molecular Cell Biology, 6(1), 79–87. https://doi.org/10.1038/nrm1552. | es_CO |
dc.relation.references | Collins, G. A., & Goldberg, A. L. (2017). The Logic of the 26S Proteasome. Cell, 169(5), 792–806. https://doi.org/10.101 6/j.cell.2017.04.023. | es_CO |
dc.relation.references | De Groot, R. J., Rumenapf, T., Kuhn, R. J., Strauss, E. G., & Strauss, J. H. (1991). Sindbis virus RNA polymerase is degraded by the N-end rule pathway. Proceedings of the National Academy of Sciences of the United States of America, 88(20), 8967–8971. https://doi.org/10.1073/pnas.88.20.8967. | es_CO |
dc.relation.references | Dissmeyer, N. (2019). Conditional Protein Function via N-Degron Pathway–Mediated Proteostasis in Stress Physiology. Annual Review of Plant Biology, 70(1), 83–117. https://doi.org/10.1146/annurev-arplant-050718-095937. | es_CO |
dc.relation.references | Dissmeyer, N., Rivas, S., & Graciet, E. (2018). Life and death of proteins after protease cleavage: protein degradation by the N-end rule pathway. New Phytologist, 218(3), 929– 935. https://doi.org/10.1111/nph.14619. | es_CO |
dc.relation.references | Dohmen, J. (2015). Starting with a degron: N-terminal formyl-methionine of nascent bacterial proteins contributes to their proteolytic control. Microbial Cell, 2(10), 356– 359. https://doi.org/10.15698/mic2015.10.235. | es_CO |
dc.relation.references | Dong, C., Zhang, H., Li, L., Tempel, W., Loppnau, P., & Min, J. (2018). Molecular basis of GID4-mediated recognition of degrons for the Pro/N-end rule pathway. Nature Chemical Biology, 14(5), 466–473. https://doi.org/10.1038/s41589-018-0036-1. | es_CO |
dc.relation.references | Donida, B., Jacques, C. E. D., Mescka, C. P., Rodrigues, D. G. B., Marchetti, D. P., Ribas, G., … Vargas, C. R. (2017). Oxidative damage and redox in Lysosomal Storage Disorders: Biochemical markers. Clinica Chimica Acta, 466, 46–53. https://doi.org/10.1016/j.cca.2017.01.007. | es_CO |
dc.relation.references | Dougan, D. A., Micevski, D., & Truscott, K. N. (2012). The N-end rule pathway: From recognition by N-recognins, to destruction by AAA+proteases. Biochimica et Biophysica Acta - Molecular Cell Research, 1823(1), 83–91. https://doi.org/10.1016/j.bbamcr.2011.07.002. | es_CO |
dc.relation.references | Dougan, D. A., Truscott, K. N., & Zeth, K. (2010). The bacterial N-end rule pathway: Expect the unexpected. Molecular Microbiology. Blackwell Publishing Ltd. https://doi.org/10.1111/j.1365-2958.2010.07120.x. | es_CO |
dc.relation.references | Dougan, David A., & Varshavsky, A. (2018). Understanding the Pro/N-end rule pathway. Nature Chemical Biology, 14(5), 415–416. https://doi.org/10.1038/s41589-018-0045-0. | es_CO |
dc.relation.references | Download Microsoft Power Query para Excel from Official Microsoft Download Center. (n.d.). Retrieved June 26, 2022, from https://www.microsoft.com/esco/download/details.aspx?id=39379. | es_CO |
dc.relation.references | Eldeeb, M., & Fahlman, R. (2016). The-N-End Rule: The Beginning Determines the End. Protein & Peptide Letters, 23(4), 343–348. https://doi.org/10.2174/0929866523666160108115809. | es_CO |
dc.relation.references | Gibbs, D. J., Lee, S. C., Md Isa, N., Gramuglia, S., Fukao, T., Bassel, G. W., … Holdsworth, M. J. (2011). Homeostatic response to hypoxia is regulated by the N-end rule pathway in plants. Nature, 479(7373), 415–418. https://doi.org/10.1038/nature10534. | es_CO |
dc.relation.references | Gonda, D. K., Bachmair, A., Wunning, I., Tobias, J. W., Lane, W. S., & Varshavsky, A. (1989). Universality and stucture of the N-end rule. Journal of Biological Chemistry, 264(28), 16700–16712. | es_CO |
dc.relation.references | Gough J., Karplus K., Hughey R., Chorhia C. Genome sequences using a library of hidden Markov models that represent all proteins of known structure. (2001). Journal of Molecular Biology, 903-919, 313(4). https://doi.org/10.1006/jmbi.2001.5080. | es_CO |
dc.relation.references | Graciet, E., Mesiti, F., & Wellmer, F. (2010). Structure and evolutionary conservation of the plant N-end rule pathway. The Plant Journal, 61(5), 741 –751. https://doi.org/10.1111/j.1365-313X.2009.04099.x. | es_CO |
dc.relation.references | Greer, J. B., Early, B. P., Durbin, K. R., Patrie, S. M., Thomas, P. M., Kelleher, N. L., LeDuc, R. D., & Fellers, R. T. (2022). ProSight Annotator: Complete control and customization of protein entries in UniProt XML files. PROTEOMICS, 22(11–12), 2100209. https://doi.org/10.1002/PMIC.202100209. | es_CO |
dc.relation.references | Hanson, A. D., Henry, C. S., Fiehn, O., & de Crécy-Lagard, V. (2016). Metabolite Damage and Metabolite Damage Control in Plants. Annual Review of Plant Biology, 67(1), 131– 152. https://doi.org/10.1146/annurev-arplant-043015-111648. | es_CO |
dc.relation.references | Hetzer, M. W., & Toyama, B. H. (2013). Protein homeostasis: live long, won’t prosper. Nature Reviews Molecular Cell Biology, 14(1), 55–61. https://doi.org/10.1016/j.biotechadv.2011.08.021.Secreted. | es_CO |
dc.relation.references | Hu, R.-G., Sheng, J., Qi, X., Xu, Z., Takahashi, T. T., & Varshavsky, A. (2005). The N-end rule pathway as a nitric oxide sensor controlling the levels of multiple regulators. Nature, 437(7061), 981–986. https://doi.org/10.1038/nature04027. | es_CO |
dc.relation.references | Izard, J. W., & Kendall, D. A. (1994). Signal peptides: exquisitely designed transport promoters. Molecular Microbiology, 13(5), 765–773. https://doi.org/10.1111/j.1365- 2958.1994.tb00469.x. | es_CO |
dc.relation.references | Kim, H.-K., Kim, R.-R., Oh, J.-H., Cho, H., Varshavsky, A., & Hwang, C.-S. (2014). The NTerminal Methionine of Cellular Proteins as a Degradation Signal. Cell, 156(1–2), 158– 169. https://doi.org/10.1016/j.cell.2013.11.031. | es_CO |
dc.relation.references | Kim, J. M., & Hwang, C. S. (2014). Crosstalk between the Arg/N-end and Ac/N-end rule. Cell Cycle, 13(9), 1366–1367. https://doi.org/10.4161/cc.28751. | es_CO |
dc.relation.references | Kim, J. M., Seok, O. H., Ju, S., Heo, J. E., Yeom, J., Kim, D. S., … Hwang, C. S. (2018). Formyl-methionine as an N-degron of a eukaryotic N-end rule pathway. Science, 362(6418), 6418 (1-28). https://doi.org/10.1126/science.aat0174. | es_CO |
dc.relation.references | Klionsky, D. J. (2005). The molecular machinery of autophagy: unanswered questions. Journal of Cell Science, 118(1), 7–18. https://doi.org/10.1242/jcs.01620. | es_CO |
dc.relation.references | Kwon, Y. T., & Ciechanover, A. (2017). The Ubiquitin Code in the Ubiquitin-Proteasome System and Autophagy. Trends in Biochemical Sciences, 42(11), 873–886. https://doi.org/10.1016/j.tibs.2017.09.002. | es_CO |
dc.relation.references | Lange, P. F., Huesgen, P. F., Nguyen, K., & Overall, C. M. (2014). Annotating N termini for the human proteome project: N termini and Nα-acetylation status differentiate stable cleaved protein species from degradation remnants in the human erythrocyte proteome. Journal of Proteome Research, 13(4), 2028–2044. https://doi.org/10.1021/pr401191w. | es_CO |
dc.relation.references | Li, L., Yan, G., & Zhang, X. (2019). A rapid and efficient method for N-termini analysis in short-lived proteins. Talanta, 204, 367–371. https://doi.org/10.1016/j.talanta.2019.06.025. | es_CO |
dc.relation.references | Martinez, A., Traverso, J. A., Valot, B., Ferro, M., Espagne, C., Ephritikhine, G., … Meinnel, T. (2008). Extent of N-terminal modifications in cytosolic proteins from eukaryotes. Proteomics, 8(14), 2809–2831. https://doi.org/10.1002/pmic.200701191. | es_CO |
dc.relation.references | Martoglio, B., & Dobberstein, B. (1998). Signal sequences: More than just greasy peptides. Trends in Cell Biology, 8(10), 410–415. https://doi.org/10.1016/S0962-8924(98)01360- 9 Mccaffrey, K., & Braakman, I. (2016). Protein quality control at the endoplasmic reticulum Protein folding at the endoplasmic reticulum Targeting and translocation. Essays in Biochemistry, 227–235. https://doi.org/10.1042/EBC20160003. | es_CO |
dc.relation.references | Mészáros, B., Kumar, M., Gibson, T. J., Uyar, B., & Dosztányi, Z. (2017). Degrons in cancer. Science Signaling, 10(470), eaak9982. https://doi.org/10.1126/scisignal.aak9982. | es_CO |
dc.relation.references | Mulder, L. C. F., & Muesing, M. A. (2000). Degradation of HIV-1 integrase by the N-end rule pathway. Journal of Biological Chemistry, 275(38), 29749–29753. https://doi.org/10.1074/jbc.M004670200. | es_CO |
dc.relation.references | Nguyen, K. T., Mun, S. H., Lee, C. S., & Hwang, C. S. (2018). Control of protein degradation by N-terminal acetylation and the N-end rule pathway. Experimental and Molecular Medicine, 50(7), 1–8. https://doi.org/10.1038/s12276-018-0097-y. | es_CO |
dc.relation.references | Otasek, D., Morris, J. H., Bouças, J., Pico, A. R., & Demchak, B. (2019). Cytoscape Automation: Empowering workflow-based network analysis. Genome Biology, 20(1). https://doi.org/10.1186/S13059-019-1758-4. | es_CO |
dc.relation.references | Owji, H., Nezafat, N., Negahdaripour, M., Hajiebrahimi, A., & Ghasemi, Y. (2018). A comprehensive review of signal peptides: Structure, roles, and applications. European Journal of Cell Biology, 97(6), 422–441. https://doi.org/10.1016/j.ejcb.2018.06.003. | es_CO |
dc.relation.references | Piatkov, K., Vu, T., Hwang, C.-S., & Varshavsky, A. (2015). Formyl-methionine as a degradation signal at the N-termini of bacterial proteins. Microbial Cell, 2(10), 376– 393. https://doi.org/10.15698/mic2015.10.231. | es_CO |
dc.relation.references | Porto de Souza Vandenberghe, L., Karp, S. G., Binder Pagnoncelli, M. G., von Linsingen Tavares, M., Libardi Junior, N., Valladares Diestra, K., Viesser, J. A., & Soccol, C. R. (2020). Classification of enzymes and catalytic properties. Biomass, Biofuels, Biochemicals, 11–30. https://doi.org/10.1016/B978-0-12-819820-9.00002-8. | es_CO |
dc.relation.references | Power BI Desktop: informes interactivos | Microsoft Power BI. (n.d.). Retrieved June 26, 2022, from https://powerbi.microsoft.com/es-es/desktop/. | es_CO |
dc.relation.references | Saez, I., & Vilchez, D. (2014). The Mechanistic Links Between Proteasome Activity, Aging and Agerelated Diseases. Current Genomics, 15(1), 38–51. https://doi.org/10.2174/138920291501140306113344. | es_CO |
dc.relation.references | Schmidt, R., Zahn, R., Bukau, B., & Mogk, A. (2009). ClpS is the recognition component for Escherichia coli substrates of the N-end rule degradation pathway. Molecular Microbiology, 72(2), 506–517. https://doi.org/10.1111/j.1365-2958.2009.06666.x. | es_CO |
dc.relation.references | Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., … Ideker, T. (2003). Cytoscape: A Software Environment for Integrated Model of Biomolecular Interaction Networks. Genome Research, 13(22), 2498–2504. https://doi.org/10.1101/gr.1239303. | es_CO |
dc.relation.references | Sharpless, N. E., & Sherr, C. J. (2015). Forging a signature of in vivo senescence. Nature Reviews Cancer, 15(7), 397–408. https://doi.org/10.1038/nrc3960. | es_CO |
dc.relation.references | Striebel, F., Imkamp, F., Özcelik, D., & Weber-Ban, E. (2014). Pupylation as a signal for proteasomal degradation in bacteria. Biochimica et Biophysica Acta - Molecular Cell Research, 1843(1), 103–113. https://doi.org/10.1016/j.bbamcr.2013.03.022. | es_CO |
dc.relation.references | Tamás, M. J., Fauvet, B., Christen, P., & Goloubinoff, P. (2018). Misfolding and aggregation of nascent proteins: a novel mode of toxic cadmium action in vivo. Current Genetics, 64(1), 177–181. https://doi.org/10.1007/s00294-017-0748-x. | es_CO |
dc.relation.references | Tao, Z., Dong, B., Teng, Z., & Zhao, Y. (2020). The Classification of Enzymes by Deep Learning. IEEE Access, 8, 89802–89811. https://doi.org/10.1109/ACCESS.2020.2992468. | es_CO |
dc.relation.references | Tasaki, T., Sriram, S. M., Park, K. S., & Kwon, Y. T. (2012). The N-End Rule Pathway. Annual Review of Biochemistry, 81(1), 261–289. https://doi.org/10.1146/annurevbiochem-051710-093308. | es_CO |
dc.relation.references | Tasaki, T., Zakrzewska, A., Dudgeon, D. D., Jiang, Y., Lazo, J. S., & Kwon, Y. T. (2009). The substrate recognition domains of the N-end rule pathway. Journal of Biological Chemistry, 284(3), 1884–1895. https://doi.org/10.1074/jbc.M803641200. | es_CO |
dc.relation.references | Tobias, J., Shrader, T., Rocap, G., & Varshavsky, A. (1991). The N-end rule in bacteria. Science, 254(5036), 1374–1377. https://doi.org/10.1126/science.1962196. | es_CO |
dc.relation.references | Ubíeta, R., & Santiago, N. (1993). Degradacion de proteinas en Escherichia coli: papel de la estructura proteica. Biotecnologia Aplicada, 1(3). | es_CO |
dc.relation.references | Varshavsky, A. (1992). The N-end rule. Cell, 69(5), 725–735. https://doi.org/10.1016/0092- 8674(92)90285-K. | es_CO |
dc.relation.references | Varshavsky, A. (1997). The N-end rule pathway of protein degradation. Genes to Cells, 2(1), 13–28. https://doi.org/10.1046/j.1365-2443.1997.1020301.x. | es_CO |
dc.relation.references | Varshavsky, A. (2008). Discovery of Cellular Regulation by Protein Degradation, 283(50), 34469–34489. https://doi.org/10.1074/jbc.X800009200. | es_CO |
dc.relation.references | Varshavsky, A. (2011). The N-end rule pathway and regulation by proteolysis. Protein Science, 20(8), 1298–1345. https://doi.org/10.1002/pro.666. | es_CO |
dc.relation.references | Varshavsky, A. (2019). N-degron and C-degron pathways of protein degradation. Proceedings of the National Academy of Sciences, 116(2), 358–366. https://doi.org/10.1073/pnas.1816596116. | es_CO |
dc.relation.references | Vittal, V., Stewart, M. D., Brzovic, P. S., & Klevit, R. E. (2015). Regulating the regulators: Recent revelations in the control of E3 ubiquitin ligases. Journal of Biological Chemistry, 290(35), 21244–21251. https://doi.org/10.1074/jbc.R115.675165. | es_CO |
dc.relation.references | Wouters, E. F. M., & Baarends, E. M. (2006). ENERGY METABOLISM. Encyclopedia of Respiratory Medicine, Four-Volume Set, 86–90. https://doi.org/10.1016/B0-12- 370879-6/00126-5. | es_CO |
dc.relation.references | Zeiler, E., List, A., Alte, F., Gersch, M., Wachtel, R., Poreba, M., … Sieber, S. A. (2013). Structural and functional insights into caseinolytic proteases reveal an unprecedented regulation principle of their catalytic triad. Proceedings of the National Academy of Sciences of the United States of America, 110(28), 11302–11307. https://doi.org/10.1073/pnas.1219125110. | es_CO |
dc.rights.accessrights | http://purl.org/coar/access_right/c_abf2 | es_CO |
dc.type.coarversion | http://purl.org/coar/resource_type/c_2df8fbb1 | es_CO |
Aparece en las colecciones: | Maestría en Química |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
Rojas_2022_TG.pdf | Rojas_2022_TG | 70,53 MB | Adobe PDF | Visualizar/Abrir |
Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.