• Repositorio Institucional Universidad de Pamplona
  • Producción Editorial Universidad de Pamplona
  • Revistas
  • Revista Colombiana de Tecnologias de Avanzada (RCTA)
  • Por favor, use este identificador para citar o enlazar este ítem: http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/9478
    Registro completo de metadatos
    Campo DC Valor Lengua/Idioma
    dc.contributor.authorJiménez Moreno, Robinson-
    dc.contributor.authorCastro Pescador, Andrés Mauricio-
    dc.contributor.authorEspitia Cubillos, Anny Astrid-
    dc.date.accessioned2025-05-08T14:55:56Z-
    dc.date.available2025-05-08T14:55:56Z-
    dc.date.issued2025-01-01-
    dc.identifier.citationJiménez Moreno, R., Castro Pescador, A. M., & Espitia Cubillos, A. A. (2025). Aprendizaje profundo para selección de opciones numéricas por voz como herramientas para chatbot. REVISTA COLOMBIANA DE TECNOLOGIAS DE AVANZADA (RCTA), 1(45), 74–81. https://doi.org/10.24054/rcta.v1i45.3044es_CO
    dc.identifier.issn1692-7257-
    dc.identifier.issn2500-8625-
    dc.identifier.urihttp://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/9478-
    dc.descriptionEste documento presenta el diseño de un asistente tipo chatbot operado por voz que funciona siguiendo un modelo de dialogo entre usuario y robot, el cual es entrenado con algoritmos de aprendizaje profundo usando una base de datos de espectrogramas, construidos a partir de voces tanto masculinas como femeninas, basados en la transformada de Fourier de corto tiempo y los coeficientes cepstrales de frecuencia Mel como técnicas de preprocesamiento de señales. Para el reconocimiento y clasificación de patrones de voz se diseñan cinco arquitecturas de red convolucional con los mismos parámetros. Se compara el desempeño en el entrenamiento de las redes donde todas obtuvieron grados de exactitud superior al 92.8%, se observa que el número de capas de las redes afecta el número de parámetros de aprendizaje, su grado de exactitud y peso digital, en general mayor cantidad de capas incrementa tanto el tiempo de entrenamiento como el tiempo de clasificación. Finalmente, para su validación mediante un App de chatbot, el diseño de la red seleccionada es aplicado al diligenciamiento de una encuesta que usa una escala de Likert de 1 a 5, en donde los usuarios además de decir la opción seleccionada la confirman con un Sí o un No, la App reproduce el audio de cada pregunta, muestra su identificación, escucha y confirma las respuestas del usuario. Se concluye el diseño de red seleccionado permite desarrollar aplicaciones de chatbot basadas en interacción por audio.es_CO
    dc.description.abstractThis document presents the design of a voice-operated chatbot-type assistant that works following a dialogue model between user and robot, which is trained with deep learning algorithms, using a database of spectrograms constructed from male and female voices, based on the short-time Fourier transform and Mel frequency cepstral coefficients as signal preprocessing techniques. For the recognition and classification of voice patterns, five convolutional network architectures are designed with the same parameters. The performance achieved in the training of the networks is compared, where all degrees of accuracy were greater than 92.8%. It is observed that the number of layers of the networks affects the number of learning parameters, their degree of accuracy and digital weight; in general, a greater number of layers increases both the training time and the classification time. Finally, for validation through a chatbot App, the selected network is applied to the completion of a survey that uses a Likert scale from 1 to 5, where users, in addition to saying the selected option, confirm it with a Yes or No, the App plays the audio of each question, shows its identification, listens and confirms the user's answers. The selected network design is concluded, allowing the development of chatbot applications based on audio interaction.es_CO
    dc.format.extent8es_CO
    dc.format.mimetypeapplication/pdfes_CO
    dc.language.isoeses_CO
    dc.publisherAldo Pardo García, Revista Colombiana de Tecnologías de Avanzada, Universidad de Pamplona.es_CO
    dc.relation.ispartofseries74;81-
    dc.subjectaprendizaje profundoes_CO
    dc.subjectinteligencia artificiales_CO
    dc.subjectrobóticaes_CO
    dc.subjectaplicaciónes_CO
    dc.subjectchatbotes_CO
    dc.titleAprendizaje profundo para selección de opciones numéricas por voz como herramientas para chatbotes_CO
    dc.typehttp://purl.org/coar/resource_type/c_2df8fbb1es_CO
    dc.description.editionVol. 1 Núm. 45 (2025): Enero – Junioes_CO
    dc.relation.referencesP. Rashmi and M. P. Singh, "Convolution neural networks with hybrid feature extraction methods for classification of voice sound signals," World Journal of Advanced Engineering Technology and Sciences, vol. 8, no. 2, pp. 110-125, doi: 10.30574/wjaets.2023.8.2.0083, 2023.es_CO
    dc.relation.referencesS. A. El-Moneim, M. A. Nassar and M. Dessouky, "Cancellable template generation for speaker recognition based on spectrogram patch selection and deep convolutional neural networks," International Journal of Speech Technology, vol. 25, no. 3, pp. 689-696, doi: 10.1007/s10772-020-09791-y, 2022.es_CO
    dc.relation.referencesP. H. Chandankhede, A. S. Titarmare and S. Chauhvan, "Voice recognition based security system using convolutional neural network," in 2021 International Conference on Computing, Communication and Intelligent Systems (ICCCIS), 2021.es_CO
    dc.relation.referencesO. Cetin, "Accent Recognition Using a Spectrogram Image Feature-Based Convolutional Neural Network," Arabian Journal for Science and Engineering, vol. 48, no. 2, pp. 1973-1990, doi: 10.1109/SLT.2018.8639622, 2023.es_CO
    dc.relation.referencesA. Soliman, S. Mohamed and I. A. Abdelrahman, "Isolated word speech recognition using convolutional neural network," in 2020 international conference on computer, control, electrical and electronics engineering (ICCCEEE), 2021.es_CO
    dc.relation.referencesA. Alsobhani, A. H. M. and H. Mahdi, "Speech recognition using convolution deep neural networks," in Journal of Physics: Conference Series, 2021.es_CO
    dc.relation.referencesJ. Li, L. Han, X. Li, J. Zhu, B. Yuan and Z. Gou, "An evaluation of deep neural network models for music classification using spectrograms," Multimedia Tools and Applications, vol. 81, pp. 4621- 4627, doi: 10.1007/s11042-020-10465-9, 2022.es_CO
    dc.relation.referencesV. Gupta, S. Juyal and Y. C. Hu, "Understanding human emotions through speech spectrograms using deep neural network," The Journal of Supercomputing, vol. 78, no. 5, pp. 6944-6973, doi: 10.1007/s11227-021-04124-5, 2022.es_CO
    dc.relation.referencesD. Issa, M. F. Demirci and A. Yazici, "Speech emotion recognition with deep convolutional neural networks," Biomedical Signal Processing and Control, vol. 59, pp. 101894, doi: 10.1016/j.bspc.2020.101894, 2020.es_CO
    dc.relation.referencesK. Bhangale and K. Mohanaprasad, "Speech emotion recognition using mel frequency log spectrogram and deep convolutional neural network," in International Conference on Futuristic Communication and Network Technologies, Singapore.es_CO
    dc.relation.referencesA. Iyer, A. Kemp, Y. Rahmatallah, L. Pillai, A. Glover, F. Prior, L. Larson-Prior and T. Virmani, "A machine learning method to process voice samples for identification of Parkinson’s disease," Scientific Reports, vol. 13, pp. 20615, doi: 10.1038/s41598-023-47568-w, 2023.es_CO
    dc.relation.referencesM. A. Mohammed, K. H. Abdulkareem, S. A. Mostafa, M. Khanapi Abd Ghani, M. S. Maashi, B. Garcia-Zapirain and F. T. Al-Dhief, "Voice pathology detection and classification using convolutional neural network model," Applied Sciences , vol. 10, no. 11, pp. 3723, doi: 10.3390/app10113723, 2020.es_CO
    dc.relation.referencesL. Vavrek, M. Hires, D. Kumar and P. Drotár, "Deep convolutional neural network for detection of pathological speech," in IEEE 19th world symposium on applied machine intelligence and informatics (SAMI), 2021.es_CO
    dc.relation.referencesA. Tursunov, Mustaqeem, J. Y. Choeh and S. Kwon, "Age and gender recognition using a convolutional neural network with a specially designed multi-attention module through speech spectrograms," Sensors, vol. 21, no. 17, p. 5892, 2021.es_CO
    dc.relation.referencesC. Cheng, K.-L. Lay, H. Yung-Fong and T. Yi-Miau , "Can Likert scales predict choices? Testing the congruence between using Likert scale and comparative judgment on measuring attribution," Methods in Psychology, vol. 5, pp. 100081,doi: 10.3390/ai5030048., 2021.es_CO
    dc.relation.referencesR. Liu, G. Yibei , J. Runxiang and Z. Xiaoli , "A Review of Natural-Language-Instructed Robot Execution Systems," AI 5, no. 3, pp. 948-989, doi: 10.1016/j.metip.2021.100081., 2024.es_CO
    dc.relation.referencesA. Koshy and S. Tavakoli, "Exploring British Accents: Modelling the Trap–Bath Split with Functional Data Analysis," Journal of the Royal Statistical Society Series C: Applied Statistics, vol. 71, pp. 773–805, doi: 10.1111/rssc.12555, 2022.es_CO
    dc.relation.referencesM. M. Kabir, M. F. Mridha, J. Shin, I. Jahan and A. Q. Ohi, "A Survey of Speaker Recognition: Fundamental Theories, Recognition Methods and Opportunities," IEEE Access, vol. 9, pp. 79236-79263, doi: 10.1109/ACCESS.2021.3084299, 2021.es_CO
    dc.relation.referencesQ. Kong, Y. Cao, T. Iqbal, Y. Wang, W. Wang and M. D. Plumbley, "PANNs: Large-Scale Pretrained Audio Neural Networks for Audio Pattern Recognition," IEEE/ACM Transactions on Audio, Speech, and Language Processing, vol. 28, pp. 2880-2894, doi: 10.1109/TASLP.2020.3030497, 2020,.es_CO
    dc.relation.referencesJ. Martinsson and M. Sandsten, "DMEL: The Differentiable Log-Mel Spectrogram as a Trainable Layer in Neural Networks," in IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Seoul, Korea, 2024.es_CO
    dc.relation.referencesJ. Ancilin and A. Milton, "Improved speech emotion recognition with Mel frequency magnitude coefficient," Applied Acoustics, vol. 179, p. doi.org/10.1016/j.apacoust.2021.108046, 2021.es_CO
    dc.relation.referencesM. Samaneh, C. Talen, A. Olayinka, T. John Michael, P. Christian, P. Dave and S. Sandra L, "Speech emotion recognition using machine learning — A systematic review," Intelligent Systems with Applications, vol. 20, p. doi.org/10.1016/j.iswa.2023.200266, 2023.es_CO
    dc.relation.referencesA. Yenni, H. Risanuri and B. Agus, "A Mel-weighted Spectrogram Feature Extraction for Improved Speaker," International Journal of Intelligent Engineering and Systems, vol. 15, no. 6, p. 74–82 DOI: 10.22266/ijies2022.1231.08, 2022.es_CO
    dc.rights.accessrightshttp://purl.org/coar/access_right/c_abf2es_CO
    dc.type.coarversionhttp://purl.org/coar/resource_type/c_2df8fbb1es_CO
    Aparece en las colecciones: Revista Colombiana de Tecnologias de Avanzada (RCTA)

    Ficheros en este ítem:
    Fichero Descripción Tamaño Formato  
    Art08_V1_N45_2025_esp.pdfArt08_V1_N45_2025_esp701,73 kBAdobe PDFVisualizar/Abrir


    Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.