Por favor, use este identificador para citar o enlazar este ítem:
http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/9435
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | Parada Botia, Mayra Yurley. | - |
dc.date.accessioned | 2025-04-24T18:24:07Z | - |
dc.date.available | 2022 | - |
dc.date.available | 2025-04-24T18:24:07Z | - |
dc.date.issued | 2022 | - |
dc.identifier.citation | Parada Botia, M. Y. (2022). Efecto Apoptótico y/o Necrótico de Zearalenona en células humanas y su cuantificación en el arroz cultivado en Norte de Santander [Trabajo de Grado Maestría, Universidad de Pamplona]. Repositorio Hulago Universidad de Pamplona. http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/9435 | es_CO |
dc.identifier.uri | http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/9435 | - |
dc.description | Las micotoxinas son metabolitos secundarios, sintetizados por diferentes especies de hongos filamentosos, siendo los géneros Fusarium, Aspergillus y Penicillium, los contaminantes micotoxigénicos más relevantes. Se encuentran frecuentemente como contaminantes naturales en una amplia variedad de alimentos (leche, frutos secos, granos, cereales y derivados) y piensos, representando un riesgo para la salud humana y animal. Por lo tanto, en el presente estudio se cuantificó y se estableció la presencia de ZEA en 3 muestras de arroz de cultivo (M009: 98 µg/Kg, M010:167 µg/Kg y M011: 490 µg/Kg) de 4 municipios de Norte de Santander por cromatografía líquida de alta eficacia (HPLC); a su vez, se pudo establecer la presencia de Fusarium sp., presuntivamente, teniendo en cuenta la caracterización fenotípica de acuerdo a la morfología macroscópica, microscópica y crecimiento micelial, en tres medios de cultivo (PDA, Avena, DG18). Adicionalmente, se evaluó el efecto citotóxico de un patrón de ZEA (10 µg/ml), mediante el ensayo de viabilidad (MTT), y la inducción de cambios morfológicos por microscopia electrónica de trasmisión (MET) en la línea celular HepG2. Los resultados obtenidos indicaron, que ZEA causó una disminución de la actividad metabólica, una reducción significativa en los porcentajes de proliferación celular (p<0,0001), de manera dependiente de la concentración y el tiempo de exposición; y la inducción de cambios morfológicos característicos de la muerte celular por apoptosis. Por citometría de flujo se evaluaron los cambios bioquímicos como externalización de la fosfatidilserina, fragmentación del ADN y pérdida del potencial de membrana mitocondrial, en células polimorfonucleares (PMN). Los resultados indicaron que ZEA, desencadena una serie de eventos de muerte celular, característicos del proceso apoptótico. | es_CO |
dc.description.abstract | Mycotoxins are secondary metabolites, synthesized by different species of filamentous fungi, the genera Fusarium, Aspergillus and Penicillium, are the most relevant mycotoxigenic contaminants. They are frequently found as natural contaminants in a wide variety of foods (milk, nuts, grains, cereals and derivatives) and feed, representing a risk to human and animal health. Therefore, in the present study, the presence of ZEA was quantified and established in 3 cultivated rice samples (M009: 98 µg/Kg, M010: 167 µg/Kg and M011: 490 µg/Kg) from 4 municipalities of Norte de Santander by high performance liquid chromatography (HPLC); in turn, the presence of Fusarium sp. could be established, presumptively, taking into account the phenotypic characterization according to macroscopic and microscopic morphology and mycelial growth, in three culture media (PDA, Oatmeal Agar, DG18). Additionally, the cytotoxic effect of a ZEA pattern (10 µg/ml) was evaluated by means of the viability assay (MTT), and the induction of morphological changes by transmission electron microscopy (TEM) in the HepG2 cell line. The results obtained indicated that ZEA caused a decrease in metabolic activity, a significant reduction in the percentages of cell proliferation (p<0.0001), depending on the concentration and exposure time; and the induction of morphological changes characteristic of cell death by apoptosis. Biochemical changes such as externalization of phosphatidylserine, DNA fragmentation and loss of mitochondrial membrane potential in polymorphonuclear cells (PMN) were evaluated by flow cytometry. The results indicated that ZEA triggers a series of cell death events, characteristic of the apoptotic process. | es_CO |
dc.format.extent | 140 | es_CO |
dc.format.mimetype | application/pdf | es_CO |
dc.language.iso | es | es_CO |
dc.publisher | Universidad de Pamplona – Facultad de Ciencias Básicas. | es_CO |
dc.subject | Arroz. | es_CO |
dc.subject | Citotoxicidad. | es_CO |
dc.subject | Fusarium. | es_CO |
dc.subject | Muerte celular. | es_CO |
dc.subject | Zearalenona. | es_CO |
dc.title | Efecto Apoptótico y/o Necrótico de Zearalenona en células humanas y su cuantificación en el arroz cultivado en Norte de Santander. | es_CO |
dc.type | http://purl.org/coar/resource_type/c_bdcc | es_CO |
dc.date.accepted | 2022 | - |
dc.relation.references | bbas, HK; Cartwright, RD; Xie, W; Mirocha, CJ; Richard, JL; Dvorak, TJ; Sciumbato, GL y Shier, WT. (1999). Mycotoxin production by Fusarium proliferatum isolates from rice with Fusarium sheath rot disease. Mycopathologia, 147(2): 97-104. https://doi.org/1 0.1023/a:1007147813326. | es_CO |
dc.relation.references | Abbas, S; Murtaza, S; Aslam, F; Khawar, A; Rafique, S y Naheed, S. (2011). Effect of Processing on Nutritional Value of Rice (Oryza sativa). World J. Med. Sci., 6. | es_CO |
dc.relation.references | Abbès, S; Ouanes, Z; Salah-Abbès, JB; Abdel-Wahhab, MA; Oueslati, R y Bacha, H. (2007). Preventive role of aluminosilicate clay against induction of micronuclei and chromosome aberrations in bone-marrow cells of Balb/c mice treated with Zearalenone. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 631(2), 85-92. https://doi.org/10.1016/j.mrgentox.2007.01.012. | es_CO |
dc.relation.references | Abid-Essefi, S; Baudrimont, I; Hassen, W; Ouanes, Z; Mobio, TA; Anane, R; Creppy, EE y Bacha, H. (2003). DNA fragmentation, apoptosis and cell cycle arrest induced by zearalenone in cultured DOK, Vero and Caco-2 cells: Prevention by Vitamin E. Toxicology, 192(2-3), 237-248. https://doi.org/10.1016/s0300-483x(03)00329-9. | es_CO |
dc.relation.references | Abid-Essefi, S; Ouanes, Z; Hassen, W; Baudrimont, I, Creppy, E y Bacha, H. (2004). Cytotoxicity, inhibition of DNA and protein syntheses and oxidative damage in cultured cells exposed to zearalenone. Toxicology in Vitro, 18(4). pp. 467-474. https://doi.org/10.1016/j.tiv.2003.12.011. | es_CO |
dc.relation.references | Abrunhosa, L; Morales, H; Soares, C; Calado, T; Vila-Chã, AS; Pereira, M y Venâncio, A. (2016). A Review of Mycotoxins in Food and Feed Products in Portugal and Estimation of Probable Daily Intakes. Critical Reviews in Food Science and Nutrition, 56(2), 249-265. https://doi.org/10.1080/10408398.2012.720619. | es_CO |
dc.relation.references | Adibnia, E; Razi, M y Malekinejad, H. (2016). Zearalenone and 17 β-estradiol induced damages in male rats reproduction potential; evidence for ERα and ERβ receptors expression and steroidogenesis. Toxicon: Official Journal of the International Society on Toxinology, 120, 133-146. https://doi.org/10.1016/j.toxicon.2016.08.009. | es_CO |
dc.relation.references | Albores, LC; Baños, SB; Herrera, JM; Necha, LB; López, MH y Hernández, AC. (2014). Morphological and molecular characterization of pathogenic isolates of Fusarium spp. Obtained from gladiolus corms and their sensitivity to Jatropha curcas L. oil. African Journal of Microbiology Research, 8(8), 724-733. https://doi.org/10.5897/AJMR2013.6413. | es_CO |
dc.relation.references | Alcaldía Municipal de San José de Cúcuta. (8 de diciembre de 2017). Nuestro municipio. http://www.cucuta-nortedesantander.gov.co/municipio/nuestro-municipio. | es_CO |
dc.relation.references | Alcaldía municipal de El Zulia. (16 de mayo de 2018) Nuestro municipio. http://www.elzulianortedesantander.gov.co/municipio/nuestro-municipio. | es_CO |
dc.relation.references | Alcaldía de Puerto Santander. (26 de junio de 2018). Nuestro municipio. http://www.puertosantander-nortedesantander.gov.co/municipio/nuestro-municipio. | es_CO |
dc.relation.references | Hong, M., Li, J., Li, S., y M. Almutairi, M. (2019). Acetylshikonin Sensitizes Hepatocellular Carcinoma Cells to Apoptosis through ROS-Mediated Caspase Activation. Cells, 8(11), 1466. https://doi.org/10.3390/cells8111466. | es_CO |
dc.relation.references | Hongmei, Z. (2012). Extrinsic and Intrinsic Apoptosis Signal Pathway Review. En Apoptosis and medicine. Capitulo I. https://doi.org/10.5772/50129. | es_CO |
dc.relation.references | Howard Shapiro M.. (2003). Parameters and Probes. En Practical Flow Cytometry (pp. 273-410). John Wiley & Sons, Ltd. https://doi.org/10.1002/0471 722731.ch7. | es_CO |
dc.relation.references | Hsu, H; Xiong, J y Goeddel, DV. (1995). The TNF receptor 1 -associated protein TRADD signals cell death and NF-κB activation. Cell, 81(4), 495-504. https://doi.org/10.1016/0092- 8674(95)90070-5. | es_CO |
dc.relation.references | Hu, J; Xu, M; Dai, Y; Ding, X; Xiao, C; Ji, H y Xu, Y. (2016). Exploration of Bcl-2 family and caspases-dependent apoptotic signaling pathway in Zearalenone-treated mouse endometrial stromal cells. Biochemical and Biophysical Research Communications, 476(4), 553-559. https://doi.org/10.1016/j.bbrc.201 6.05.161. | es_CO |
dc.relation.references | Hu, H; Tian, M; Ding, C y Yu, S. (2019). The C/EBP Homologous Protein (CHOP) Transcription Factor Functions in Endoplasmic Reticulum Stress-Induced Apoptosis and Microbial Infection. Frontiers in Immunology, 9. https://www.frontiersin.org/articles/10.3389/fimmu.2018.03083. | es_CO |
dc.relation.references | IARC (2012). Fungi Producing Significant Mycotoxins; IARC Scientific Publications, 158, 1-30. https://pubmed.ncbi.nlm.nih.gov/23477193/. | es_CO |
dc.relation.references | Ibáñez-Vea, M; Martínez, R; González-Peñas, E; Lizarraga, E y López de Cerain, A. (2011). Cooccurrence of aflatoxins, ochratoxin A and zearalenone in breakfast cereals from spanish market. Food Control, 22(12), 1949-1955. https://doi.org/10.1016/j.foodcont.2011.05.008. | es_CO |
dc.relation.references | Igney, FH y Krammer, PH. (2002). Death and anti-death: Tumour resistance to apoptosis. Nature Reviews Cancer, 2(4), 277-288. https://doi.org/10.1038/nrc776. | es_CO |
dc.relation.references | Iqbal, SZ; Nisar, S; Asi, MR y Jinap, S. (2014). Natural incidence of aflatoxins, ochratoxin A and zearalenone in chicken meat and eggs. Food Control, 43, pp. 98-103. https://doi.org/10.1016/j.foodcont.2014.02.046. | es_CO |
dc.relation.references | Aldana, A. (2001). Enciclopedia agropecuaria. Producción Agrícola. 2 ed. Bogotá D. C.: Terranova. p. 304-306. | es_CO |
dc.relation.references | Iurlaro, R y Muñoz-Pinedo, C. (2016). Cell death induced by endoplasmic reticulum stress. The FEBS Journal, 283(14), 2640-2652. https://doi.org/10.1111/febs.13598. | es_CO |
dc.relation.references | Jaimes, N; Salmen, S; Colmenares, MC; Burgos, AE; Tamayo, L; Mendoza, RV y Cantor, A. (2016). Cytotoxic effect of palladium (II) inclusion compounds in beta-cyclodextrin. Biomédica, 36(4), 603. https://doi.org/10.7705/biomedica.v36i4.2880. | es_CO |
dc.relation.references | Jee, Y; Noh, EM; Cho, ES y Son, HY. (2010). Involvement of the Fas and Fas ligand in testicular germ cell apoptosis by zearalenone in rat. Journal of Veterinary Science, 11(2), 115-119. https://doi.org/10.4142/jvs.2010.11.2.115. | es_CO |
dc.relation.references | Jin, H; Yin, S; Song, X; Zhang, E; Fan, L y Hu, H. (2016). P53 activation contributes to patulininduced nephrotoxicity via modulation of reactive oxygen species generation. Scientific Reports, 6(1), 24455. https://doi.org/10.1038/srep24455. | es_CO |
dc.relation.references | Jin, Z y El-Deiry, WS. (2005). Overview of cell death signaling pathways. Cancer Biology & Therapy, 4(2), 147-171. https://doi.org/10.4161/cbt.4.2.1508. | es_CO |
dc.relation.references | Johnstone, RW; Ruefli, AA y Lowe, SW. (2002). Apoptosis: A Link between Cancer Genetics and Chemotherapy. Cell, 108(2), 153-164. https://doi.org/10.1016/S0092-8674(02)00625-6. | es_CO |
dc.relation.references | Julian, L y Olson, MF. (2015). Apoptotic membrane dynamics in health and disease. Cell Health and Cytoskeleton, 2015(7), 133-142. https://doi.org/10.2147/CHC.S57893. | es_CO |
dc.relation.references | Kamiloglu, S; Sari, G; Ozdal, T y Capanoglu, E. (2020). Guidelines for cell viability assays. Food Frontiers, 1(3), 332-349. https://doi.org/10.1002/fft2.44. | es_CO |
dc.relation.references | Kamp, DW; Liu, G; Cheresh, P; Kim, SJ; Mueller, A; Lam, AP; Trejo, H; Williams, D; Tulasiram, S; Baker, M; Ridge, K; Chandel, NS y Beri, R. (2013). Asbestos-induced alveolar epithelial cell apoptosis. The role of endoplasmic reticulum stress response. American Journal of Respiratory Cell and Molecular Biology, 49(6), 892-901. https://doi.org/10.1165/rcmb.2013-0053OC. | es_CO |
dc.relation.references | Karaman, EF; Zeybel, M y Ozden, S. (2020). Evaluation of the epigenetic alterations and gene expression levels of HepG2 cells exposed to zearalenone and α-zearalenol. Toxicology Letters, 326, 52-60. https://doi.org/10.1016/j.toxlet.2020.02.015. | es_CO |
dc.relation.references | Alshannaq, A y Yu, JH. (2017). Occurrence, Toxicity, and Analysis of Major Mycotoxins in Food. International Journal of Environmental Research and Public Health, 14(6), 632. https://doi.org/10.3390/ijerph14060632. | es_CO |
dc.relation.references | Kerr, J. FR; Wyllie, AH y Currie, AR. (1972). Apoptosis: A Basic Biological Phenomenon with Wide-ranging Implications in Tissue Kinetics. British Journal of Cancer, 26(4), 239-257. | es_CO |
dc.relation.references | Kharayat, BS y Singh, Y. (2018). Chapter 13 - Mycotoxins in Foods: Mycotoxicoses, Detection, and Management. En A. M. Holban y A. M. Grumezescu (Eds.), Microbial Contamination and Food Degradation (pp. 395-421). Academic Press. https://doi.org/10.1016/B978-0- 12-811515-2.00013-5. | es_CO |
dc.relation.references | Khodaei, D., Javanmardi, F., y Khaneghah, A. M. (2021). The global overview of the occurrence of mycotoxins in cereals: A three-year survey. Current Opinion in Food Science, 39, 36- 42. https://doi.org/10.1016/j.cofs.2020.12.012. | es_CO |
dc.relation.references | Kim, JE; Son, H y Lee, YW. (2018). Biosynthetic mechanism and regulation of zearalenone in Fusarium graminearum. JSM Mycotoxins, 68, 1-6. https://doi.org/10.2520/myco.68-1-2. | es_CO |
dc.relation.references | Kim, YT; Lee, YR; Jin, J; Han, KH; Kim, H; Kim, JC; Lee, T; Yun, SH y Lee, YW. (2005). Two different polyketide synthase genes are required for synthesis of zearalenone in Gibberella zeae. Molecular Microbiology, 58(4), 1102-1113. https://doi.org/10.1111/j.1365- 2958.2005.04884.x. | es_CO |
dc.relation.references | Kischkel, FC; Hellbardt, S; Behrmann, I; Germer, M; Pawlita, M; Krammer, PH y Peter, ME. (1995). Cytotoxicity-dependent APO-1 (Fas/CD95)-associated proteins form a deathinducing signaling complex (DISC) with the receptor. The EMBO Journal, 14(22), 5579- 5588. doi https://doi.org/10.1002/j.1460-2075.1995.tb00245.x. | es_CO |
dc.relation.references | Kiš, M; Vulić, A; Kudumija, N; Šarkanj, B; Jaki Tkalec, V; Aladić, K; Škrivanko, M; Furmeg, S y Pleadin, J. (2021). A Two-Year Occurrence of Fusarium T-2 and HT-2 Toxin in Croatian Cereals Relative of the Regional Weather. Toxins, 13(39), pp. 1 -12. https://doi.org/10.3390/toxins13010039. | es_CO |
dc.relation.references | Knutsen, H; Alexander, J; Barregård, L; Bignami, M; Brüschweiler, B; Ceccatelli, S; Cottrill, B; Dinovi, M; Edler, L; Grasl‐Kraupp, B; Hogstrand, C; Hoogenboom, L; Nebbia, C; Petersen, A; Rose, M; Roudot, AC; Schwerdtle, T; Vleminckx, C; Vollmer, G y Oswald, I. (2017). Risks for animal health related to the presence of zearalenone and its modified forms in feed. EFSA Journal, 15. https://doi.org/10.2903/j.efsa.2017.4851. | es_CO |
dc.relation.references | Kondratskyi, A; Kondratska, K; Skryma, R y Prevarskaya, N. (2015). Ion channels in the regulation of apoptosis. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1848(10, Part B), 2532-2546. https://doi.org/10.1016/j.bbamem.2014.10.030. | es_CO |
dc.relation.references | Kouadio, JH; Mobio, TA; Baudrimont, I; Moukha, S; Dano, SD y Creppy, EE. (2005). Comparative study of cytotoxicity and oxidative stress induced by deoxynivalenol, zearalenone or fumonisin B1 in human intestinal cell line Caco-2. Toxicology, 213(1-2), 56-65. https://doi.org/10.1016/j.tox.2005.05.010. | es_CO |
dc.relation.references | Amarante-Mendes, GP; Finucane, DM; Martin, SJ; Cotter, TG; Salvesen, GS y Green, DR. (1998). Anti-apoptotic oncogenes prevent caspase-dependent and independent commitment for cell death. Cell Death & Differentiation, 5(4), 298-306. https://doi.org/10.1038/sj.cdd.4400354. | es_CO |
dc.relation.references | Kovalsky Paris, MP; Schweiger, W; Hametner, C; Stückler, R; Muehlbauer, GJ; Varga, E; Krska, R; Berthiller, F y Adam, G. (2014). Zearalenone-16-O-glucoside: A new masked mycotoxin. Journal of Agricultural and Food Chemistry, 62(5), 1181 -1189. https://doi.org/10.1021/jf405627d. | es_CO |
dc.relation.references | Kowalska, K; Habrowska-Górczyńska, DE; Domińska, K y Piastowska-Ciesielska, AW. (2017). The dose-dependent effect of zearalenone on mitochondrial metabolism, plasma membrane permeabilization and cell cycle in human prostate cancer cell lines. Chemosphere, 180, 455-466. https://doi.org/10.1016/j.chemosphere.2017.04.027. | es_CO |
dc.relation.references | Kowalska, K; Habrowska-Górczyńska, DE; Urbanek, KA; Domińska, K; Sakowicz, A y Piastowska-Ciesielska, AW. (2019). Estrogen receptor β plays a protective role in zearalenone-induced oxidative stress in normal prostate epithelial cells. Ecotoxicology and Environmental Safety, 172, 504-513. https://doi.org/10.1016/j.ecoenv.2019.01.115. | es_CO |
dc.relation.references | Kroemer, G; Galluzzi, L y Brenner, C. (2007). Mitochondrial membrane permeabilization in cell death. Physiological Reviews, 87(1), 99-163. https://doi.org/10.1152/physrev.00013.2006. | es_CO |
dc.relation.references | Kroemer, G; El-Deiry, WS; Golstein, P; Peter, ME; Vaux, D; Vandenabeele, P; Zhivotovsky, B; Blagosklonny, MV; Malorni, W; Knight, RA; Piacentini, M; Nagata, S y Melino, G. (2005). Classification of cell death: Recommendations of the Nomenclature Committee on Cell Death. Cell Death & Differentiation, 12(2), 1463-1467. https://doi.org/10.1038/sj.cdd.4401724. | es_CO |
dc.relation.references | Kroemer, G; Zamzami, N y Susin, SA. (1997). Mitochondrial control of apoptosis. Immunology Today, 18(1), 44-51. https://doi.org/10.1016/S0167-5699(97)80014-X. | es_CO |
dc.relation.references | Kumar, GV; Kumar, MA y Kumar, GR. (2010). Growth characteristics of Fusarium spp. Causing wilt disease in Psidium guajava L. in India. Journal of Plant Protection Research, 50(4), 452-462. https://doi.org/10.2478/v10045-010-0076-3. | es_CO |
dc.relation.references | Kunishige, K; Kawate, N; Inaba, T y Tamada, H. (2017). Exposure to Zearalenone During Early Pregnancy Causes Estrogenic Multitoxic Effects in Mice. Reproductive Sciences (Thousand Oaks, Calif.), 24(3), 421-427. https://doi.org/10.1177/1933719116657194. | es_CO |
dc.relation.references | Kupcsik, L. (2011). Estimation of Cell Number Based on Metabolic Activity: The MTT Reduction Assay. En M. J. Stoddart (Ed.), Mammalian Cell Viability: Methods and Protocols (pp. 13- 19). Humana Press. https://doi.org/10.1007/978-1-61779-108-6_3. | es_CO |
dc.relation.references | Langerak, P y Russell, P. (2011). Regulatory networks integrating cell cycle control with DNA damage checkpoints and double-strand break repair. Philosophical Transactions of the Royal Society B: Biological Sciences, 366(1584), 3562-3571. https://doi.org/10.1098/rstb.2011.0070. | es_CO |
dc.relation.references | Amirahmadi, M; Shoeibi, S; Rastegar, H; Elmi, M y Mousavi Khaneghah, A. (2018). Simultaneous analysis of mycotoxins in corn flour using LC/MS-MS combined with a modified QuEChERS procedure. Toxin Reviews, 37(3), 187-195. https://doi.org/10.1080/15569543.2017.1354306. | es_CO |
dc.relation.references | Lecomte, S; Lelong, M; Bourgine, G; Efstathiou, T; Saligaut, C y Pakdel, F. (2017). Assessment of the potential activity of major dietary compounds as selective estrogen receptor modulators in two distinct cell models for proliferation and differentiation. Toxicology and Applied Pharmacology, 325, 61-70. https://doi.org/10.1016/j.taap.2017.04.005. | es_CO |
dc.relation.references | Lee, H; Kang, C; Yoo, YS; Hah, DY; Kim, CH; Kim, E y Kim, JS. (2013). Cytotoxicity and the induction of the stress protein Hsp 70 in Chang liver cells in response to zearalenoneinduced oxidative stress. Environmental Toxicology and Pharmacology, 36(2), 732-740. https://doi.org/10.1016/j.etap.2013.06.005. | es_CO |
dc.relation.references | Lee, HJ; Oh, SY y Jo, I. (2021). Zearalenone Induces Endothelial Cell Apoptosis through Activation of a Cytosolic Ca2+/ERK1/2/p53/Caspase 3 Signaling Pathway. Toxins, 13(3), 187. https://doi.org/10.3390/toxins13030187. | es_CO |
dc.relation.references | Lee, R; Kim, DW; Lee, WY y Park, HJ. (2022). Zearalenone Induces Apoptosis and Autophagy in a Spermatogonia Cell Line. Toxins, 14(2), 148. https://doi.org/10.3390/toxins14020148. | es_CO |
dc.relation.references | Lemasters, JJ; Qian, T; He, L; Kim, JS; Elmore, SP; Cascio, WE y Brenner, DA. (2002). Role of Mitochondrial Inner Membrane Permeabilization in Necrotic Cell Death, Apoptosis, and Autophagy. Antioxidants & Redox Signaling, 4(5), 769-781. https://doi.org/10.1089/152308602760598918. | es_CO |
dc.relation.references | Leslie, JF y Summerell, BA. (2006). The Fusarium Laboratory Manual. Wiley-Blackwell. http://gen.lib.rus.ec/book/index.php?md5=70f83b94eb30227f954e619e539ba244. | es_CO |
dc.relation.references | Lin, L; Zhang, J; Wang, P; Wang, Y y Chen, J. (1998). Thin-layer chromatography of mycotoxins and comparison with other chromatographic methods. Journal of Chromatography A, 815(1), 3-20. https://doi.org/10.1016/S0021 -9673(98)00204-0. | es_CO |
dc.relation.references | Lioi, MB; Santoro, A; Barbieri, R; Salzano, S y Ursini, MV. (2004). Ochratoxin A and zearalenone: A comparative study on genotoxic effects and cell death induced in bovine lymphocytes. Mutation Research, 557(1). pp.19-27. https://doi.org/10.1016/j.mrgentox.2003.09.009. | es_CO |
dc.relation.references | Liu, J y Applegate, T. (2020). Zearalenone (ZEN) in Livestock and Poultry: Dose, Toxicokinetics, Toxicity and Estrogenicity. Toxins, 12(6). pp. 377-406. https://doi.org/10.3390/toxins12060377. | es_CO |
dc.relation.references | Liu, KH; Sun, XF; Feng, YZ; Cheng, SF; Li, B; Li, YP; Shen, W y Li, L. (2017). The impact of Zearalenone on the meiotic progression and primordial follicle assembly during early oogenesis. Toxicology and Applied Pharmacology, 329, 9-17. https://doi.org/10.1016/j.taap.2017.05.024. | es_CO |
dc.relation.references | Arur, S; Uche, UE; Rezaul, K; Fong, M; Scranton, V; Cowan, AE; Mohler, W y Han, DK. (2003). Annexin I Is an Endogenous Ligand that Mediates Apoptotic Cell Engulfment. Developmental Cell, 4(4), 587-598. https://doi.org/10.1016/S1534-5807(03)00090-X. | es_CO |
dc.relation.references | Liu, T; Zhu, W; Yang, X; Chen, L; Yang, R; Hua, Z y Li, G. (2009). Detection of apoptosis based on the interaction between annexin V and phosphatidylserine. Analytical Chemistry, 81(6), 2410-2413. https://doi.org/10.1021/ac801267s. | es_CO |
dc.relation.references | Liu, XL; Wu, RY; Sun, XF; Cheng, SF; Zhang, RQ; Zhang, TY; Zhang, XF; Zhao, Y; Shen, W y Li, L. (2018). Mycotoxin zearalenone exposure impairs genomic stability of swine follicular granulosa cells in vitro. International Journal of Biological Sciences, 14(3), 294- 305. https://doi.org/10.7150/ijbs.23898. | es_CO |
dc.relation.references | Liu, Y y Nair, MG. (2010). An efficient and economical MTT assay for determining the antioxidant activity of plant natural product extracts and pure compounds. Journal of Natural Products, 73(7), 1193-1195. https://doi.org/10.1021/np1000945. | es_CO |
dc.relation.references | Locksley, RM; Killeen, N y Lenardo, MJ. (2001). The TNF and TNF Receptor Superfamilies: Integrating Mammalian Biology. Cell, 104(4), 487-501. https://doi.org/10.1016/S0092- 8674(01)00237-9. | es_CO |
dc.relation.references | Lozano-Sánchez, J; Borrás-Linares, I; Sass-Kiss, A y Segura-Carretero, A. (2018). Chapter 13 - Chromatographic Technique: High-Performance Liquid Chromatography (HPLC). En D.- W. Sun (Ed.), Modern Techniques for Food Authentication (Second Edition) (pp. 459-526). Academic Press. https://doi.org/10.1016/B978-0-12-814264-6.00013-X. | es_CO |
dc.relation.references | Lu, S. C y Huang, HY. (1994). Comparison of sulfur amino acid utilization for GSH synthesis between HepG2 cells and cultured rat hepatocytes. Biochemical Pharmacology, 47(5), 859-869. https://doi.org/10.1016/0006-2952(94)90486-3. | es_CO |
dc.relation.references | Macey, MG. (2007). Principles of Flow Cytometry. En M. G. Macey (Ed.), Flow Cytometry: Principles and Applications (pp. 1-15). Humana Press. https://doi.org/10.1007/978-1- 59745-451-3_1. | es_CO |
dc.relation.references | Magan, N; Hope, R; Cairns, V y Aldred, D. (2003). Post-harvest fungal ecology: Impact of fungal growth and mycotoxin accumulation in stored grain. En X. Xu, J. A. Bailey, y B. M. Cooke (Eds.), Epidemiology of Mycotoxin Producing Fungi: Under the aegis of COST Action 835 ‘Agriculturally Important Toxigenic Fungi 1998–2003’, EU project (QLK 1-CT-1998– 01380), pp. 723-730. Springer Netherlands. https://doi.org/10.1007/978-94-017-1452-5_7. | es_CO |
dc.relation.references | Majno, G y Joris, I. (1995). Apoptosis, oncosis, and necrosis. An overview of cell death. The American Journal of Pathology, 146(1), 3-15. doi https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1870771/. | es_CO |
dc.relation.references | Majtnerová, P y Roušar, T. (2018). An overview of apoptosis assays detecting DNA fragmentation. Molecular Biology Reports, 45(5), 1469-1478. https://doi.org/10.1007/s11033-018-4258-9. | es_CO |
dc.relation.references | Ashkenazi, A y Dixit, VM. (1998). Death Receptors: Signaling and Modulation. Science, 281(5381), 1305-1308. https://doi.org/10.1126/science.281.5381.1305. | es_CO |
dc.relation.references | Makowska, K; Obremski, K; Zielonka, L y Gonkowski, S. (2017). The Influence of Low Doses of Zearalenone and T-2 Toxin on Calcitonin Gene Related Peptide-Like Immunoreactive (CGRP-LI) Neurons in the ENS of the Porcine Descending Colon. Toxins, 9(3), E98. https://doi.org/10.3390/toxins9030098. | es_CO |
dc.relation.references | Makun, HA; Gbodi, TA; Akanya, OH; Salako, EA y Ogbadu, GH. (2007). Fungi and some mycotoxins contaminating rice (Oryza Sativa) in Niger State, Nigeria. African Journal of Biotechnology, 6(2), pp. 099-108, Article 2. https://doi.org/10.4314/ajb.v6i2.56106. | es_CO |
dc.relation.references | Mally, A; Solfrizzo, M y Degen, GH. (2016). Biomonitoring of the mycotoxin Zearalenone: Current state-of-the art and application to human exposure assessment. Archives of Toxicology, 90(6). pp.1281-1292. https://doi.org/10.1007/s00204-016-1704-0. | es_CO |
dc.relation.references | Manizan, AL; Oplatowska-Stachowiak, M; Piro-Metayer, I; Campbell, K; Koffi-Nevry, R; Elliott, C; Akaki, D; Montet, D y Brabet, C. (2018). Multi-mycotoxin determination in rice, maize and peanut products most consumed in Côte d’Ivoire by UHPLC-MS/MS. Food Control, 87, pp. 22-30. https://doi.org/10.1016/j.foodcont.2017.11.032. | es_CO |
dc.relation.references | Marasas, WFO; Nelson, PE y Toussoun, TA. (1984). Toxigenic Fusarium species. Identity and mycotoxicology. Toxigenic Fusarium Species. Identity and Mycotoxicology. https://www.cabdirect.org/cabdirect/abstract/19871323192. | es_CO |
dc.relation.references | Marín, S; Ramos, AJ; Cano-Sancho, G y Sanchis, V. (2013). Mycotoxins: Occurrence, toxicology, and exposure assessment. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association, 60. pp. 218-237. https://doi.org/10.1016/j.fct.2013.07.047. | es_CO |
dc.relation.references | Marín, S; Sanchis, V; Sáenz, R; Ramos, AJ; Vinas, I y Magan, N. (1998). Ecological determinants for germination and growth of some Aspergillus and Penicillium spp. From maize grain. Journal of Applied Microbiology, 84(1), 25-36. https://doi.org/10.1046/j.1365- 2672.1997.00297.x. | es_CO |
dc.relation.references | Marnett, LJ. (2000). Oxyradicals and DNA damage. Carcinogenesis, 21(3), 361-370. https://doi.org/10.1093/carcin/21.3.361. | es_CO |
dc.relation.references | Marti, GE; Stetler-Stevenson, M; Bleesing, JJ y Fleisher, TA. (2001). Introduction to flow cytometry. Seminars in Hematology, 38(2), 93-99. https://doi.org/10.1016/s0037- 1963(01)90043-5. | es_CO |
dc.relation.references | Martinvalet, D; Zhu, P y Lieberman, J. (2005). Granzyme A Induces Caspase-Independent Mitochondrial Damage, a Required First Step for Apoptosis. Immunity, 22(3), 355-370. https://doi.org/10.1016/j.immuni.2005.02.004. | es_CO |
dc.relation.references | Aupanun, S; Phuektes, P; Poapolathep, S; Sutjarit, S; Giorgi, M y Poapolathep, A. (2016). Apoptosis and gene expression in Jurkat human T cells and lymphoid tissues of fusarenonX-treated mice. Toxicon, 123, 15-24. https://doi.org/10.1016/j.toxicon.2016.10.012. | es_CO |
dc.relation.references | Martucciello, S; Masullo, M; Cerulli, A y Piacente, S. (2020). Natural Products Targeting ER Stress, and the Functional Link to Mitochondria. International Journal of Molecular Sciences, 21(6), 1905. https://doi.org/10.3390/ijms21061905. | es_CO |
dc.relation.references | Masson, JJR; Ostrowski, M; Duette, G; Lee, MKS; Murphy, AJ; Crowe, SM y Palmer, CS. (2020). The Multiparametric Analysis of Mitochondrial Dynamics in T Cells from Cryopreserved Peripheral Blood Mononuclear Cells (PBMCs). Methods in Molecular Biology (Clifton, N.J.), 2184, 215-224. https://doi.org/10.1007/978-1-0716-0802-9_15. | es_CO |
dc.relation.references | Mayr, U; Butsch, A y Schneider, S. (1992). Validation of two in vitro test systems for estrogenic activities with zearalenone, phytoestrogens and cereal extracts. Toxicology, 74(2), 135- 149. https://doi.org/10.1016/0300-483X(92)90134-Z. | es_CO |
dc.relation.references | McConkey, DJ y Orrenius, S. (1997). The Role of Calcium in the Regulation of Apoptosis. Biochemical and Biophysical Research Communications, 239(2), 357-366. https://doi.org/10.1006/bbrc.1997.7409. | es_CO |
dc.relation.references | McDonnell, DP; Connor, CE; Wijayaratne, A; Chang, CY y Norris, JD. (2002). Definition of the molecular and cellular mechanisms underlying the tissue-selective agonist/antagonist activities of selective estrogen receptor modulators. Recent Progress in Hormone Research, 57, 295-316. https://doi.org/10.1210/rp.57.1.295. | es_CO |
dc.relation.references | Mesnil, M; Crespin, S; Avanzo, JL y Zaidan-Dagli, ML. (2005). Defective gap junctional intercellular communication in the carcinogenic process. Biochimica Et Biophysica Acta, 1719(1-2), 125-145. https://doi.org/10.1016/j.bbamem.2005.11.004. | es_CO |
dc.relation.references | Milani, J. (2013). Ecological conditions affecting mycotoxin production in cereals: A review. Veterinární Medicína, 58(8), pp. 405-411. https://doi.org/10.17221/6979-VETMED. | es_CO |
dc.relation.references | Ministerio de Salud y Protección Social (MSPS). (2013). Resolución Número 2674 de 2013. | es_CO |
dc.relation.references | Milićević, DR; Skrinjar, M y Baltić, T. (2010). Real and perceived risks for mycotoxin contamination in foods and feeds: Challenges for food safety control. Toxins, 2(4), 572- 592. https://doi.org/10.3390/toxins2040572. | es_CO |
dc.relation.references | Moretti, A; Logrieco, AF y Susca, A. (2017). Mycotoxins: An Underhand Food Problem. En A. Moretti y A. Susca (Eds.), Mycotoxigenic Fungi: Methods and Protocols (pp. 3-12). Springer. https://doi.org/10.1007/978-1-4939-6707-0_1. | es_CO |
dc.relation.references | Ayed-Boussema, I; Bouaziz, C; Rjiba, K; Valenti, K; Laporte, F; Bacha, H y Hassen, W. (2008). The mycotoxin Zearalenone induces apoptosis in human hepatocytes (HepG2) via p53- dependent mitochondrial signaling pathway. Toxicology in Vitro, 22(7). pp. 1671-1680. https://doi.org/10.1016/j.tiv.2008.06.016. | es_CO |
dc.relation.references | Morris, Navarro LF (2011). Determinación de aflatoxinas en muestras de maíz (Zea mays) y arroz (Oryza sativa) para consumo humano en cinco departamentos de la Costa Caribe Colombiana mediante cromatografía de alta eficiencia durante seis meses en 2011. (Trabajo de grado Maestría). Universidad Nacional de Colombia. https://repositorio.unal.edu.co/handle/unal/8318. | es_CO |
dc.relation.references | Mosmann, T. (1983). Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. Journal of Immunological Methods, 65(1), 55-63. https://doi.org/10.1016/0022-1759(83)90303-4. | es_CO |
dc.relation.references | Moss, MO. (1996). Mycotoxins. Mycological Research, 100(5), 513-523. https://doi.org/10.1016/S0953-7562(96)80001-3. | es_CO |
dc.relation.references | Mullen, P. (2004). PARP cleavage as a means of assessing apoptosis. Methods in Molecular Medicine, 88, 171-181. https://doi.org/10.1385/1 -59259-406-9:171. | es_CO |
dc.relation.references | Nacalai, Tesque Inc. (S. F.). Nacalai Tesque, Inc. Recuperado 20 de marzo de 2022, de https://www.nacalai.co.jp/. | es_CO |
dc.relation.references | Naeem, A; James, N; Tanvir, M; Marriam, M; Nathaniel, S y Nathaniel, S. (2017). Fluorescence Activated Cell Sorting (FACS): An Advanced Cell Sorting Technique. PSM Biological Research, 2(2), 83-88. | es_CO |
dc.relation.references | Neme, K y Mohammed, A. (2017). Mycotoxin occurrence in grains and the role of postharvest management as a mitigation strategies. A review. Food Control, 78, 412-425. https://doi.org/10.1016/j.foodcont.2017.03.012. | es_CO |
dc.relation.references | Niles, AL; Moravec, RA y Riss, TL. (2008). Update on in vitro cytotoxicity assays for drug development. Expert Opinion on Drug Discovery, 3(6), 655-669. https://doi.org/10.1517/17460441.3.6.655. | es_CO |
dc.relation.references | Norbury, CJ; y Hickson, ID. (2001). Cellular Responses to DNA Damage. Annual Review of Pharmacology and Toxicology, 41(1), 367-401. https://doi.org/10.1146/annurev.pharmtox.41.1.367. | es_CO |
dc.relation.references | Norbury, CJ y Zhivotovsky, B. (2004). DNA damage-induced apoptosis. Oncogene, 23(16), 2797- 2808. https://doi.org/10.1038/sj.onc.1207532. | es_CO |
dc.relation.references | Banjerdpongchai, R; Kongtawelert, P; Khantamat, O; Srisomsap, C; Chokchaichamnankit, D; Subhasitanont, P y Svasti, J. (2010). Mitochondrial and endoplasmic reticulum stress pathways cooperate in zearalenone-induced apoptosis of human leukemic cells. Journal of Hematology & Oncology, 3(1), 50. https://doi.org/10.1186/1756-8722-3-50. | es_CO |
dc.relation.references | Nutrition Division. (2003). Manual sobre la aplicación del sistema de Análisis de Peligros y de Puntos Críticos de Control (APPCC) en la prevención y control de las micotoxinas: Centro da Capacitación y Referencia FAO/OIEA para el Control de los Alimentos y los Plaguicidas. FAO. https://www.fao.org/publications/card/es/c/7bbcbf7b-2fd4-59c0-8ff8- 698d4bcf9c29/. | es_CO |
dc.relation.references | Obeng, E. (2020). Apoptosis (programmed cell death) and its signals—A review. Brazilian Journal of Biology, 81, 1133-1143. do: 10.1590/1519-6984.228437. | es_CO |
dc.relation.references | O’Brien, MA; Moravec, RA y Riss, TL. (2001). Poly (ADP-ribose) polymerase cleavage monitored in situ in apoptotic cells. BioTechniques, 30(4), 886-891. https://doi.org/10.2144/01304pf01. | es_CO |
dc.relation.references | Ok, HE; Kim, DM; Kim, D; Chung, SH; Chung, MS; Park, KH y Chun, HS. (2014). Mycobiota and natural occurrence of aflatoxin, deoxynivalenol, nivalenol and zearalenone in rice freshly harvested in South Korea. Food Control, 37, 284-291. https://doi.org/10.1016/j.foodcont.2013.09.020. | es_CO |
dc.relation.references | Omotayo, O. P., Omotayo, A. O., Mwanza, M., y Babalola, O. O. (2019). Prevalence of Mycotoxins and Their Consequences on Human Health. Toxicological Research, 35(1), 1- 7. https://doi.org/10.5487/TR.2019.35.1.001. | es_CO |
dc.relation.references | Oren, M. (2003). Decision making by p53: Life, death and cancer. Cell Death & Differentiation, 10(4), 431-442. https://doi.org/10.1038/sj.cdd.4401183. | es_CO |
dc.relation.references | Orrenius, S; Zhivotovsky, B y Nicotera, P. (2003). Regulation of cell death: The calcium– apoptosis link. Nature Reviews Molecular Cell Biology, 4(7), 552-565. https://doi.org/10.1038/nrm1150. | es_CO |
dc.relation.references | Osuchowski, MF y Sharma, RP. (2005). Fumonisin B1 Induces Necrotic Cell Death in BV-2 Cells and Murine Cultured Astrocytes and is Antiproliferative in BV-2 Cells While N2A Cells and Primary Cortical Neurons are Resistant. NeuroToxicology, 26(6), 981-992. https://doi.org/10.1016/j.neuro.2005.05.001. | es_CO |
dc.relation.references | Ouanes, Z; Abid, S; Ayed, I; Anane, R; Mobio, T; Creppy, EE y Bacha, H. (2003). Induction of micronuclei by Zearalenone in Vero monkey kidney cells and in bone marrow cells of mice: Protective effect of Vitamin E. Mutation Research, 538(1-2). pp.63-70. https://doi.org/10.1016/s1383-5718(03)00093-7. | es_CO |
dc.relation.references | Ouanes-Ben Othmen, Z; Essefi, S y Bacha, H. (2008). Mutagenic and epigenetic mechanisms of zearalenone: Prevention by Vitamin E. World Mycotoxin Journal, 1(3), 369-374. https://doi.org/10.3920/WMJ2008.1036. | es_CO |
dc.relation.references | pathways cooperate in zearalenone-induced apoptosis of human leukemic cells. Journal of Hematology & Oncology, 3(1), 50. https://doi.org/10.1186/1756-8722-3-50. | es_CO |
dc.relation.references | Palacios, Pru¨ EL y Mendoza Bricen˜o, RV. (1972). An unusual relationship between glial cells and neuronal dendrites in olfactory bulbs of Desmodus rotundus. Brain Research, 36(2), 404-408. https://doi.org/10.1016/0006-8993(72)90744-5. | es_CO |
dc.relation.references | Park, AR; Son, H; Min, K; Park, J; Goo, JH; Rhee, S; Chae, SK y Lee, YW. (2015). Autoregulation of ZEB2 expression for zearalenone production in Fusarium graminearum. Molecular Microbiology, 97(5), 942-956. https://doi.org/10.1111/mmi.13078. | es_CO |
dc.relation.references | Park, JW; Choi, SY; Hwang, HJ y Kim, YB. (2005). Fungal mycoflora and mycotoxins in Korean polished rice destined for humans. International Journal of Food Microbiology, 103(3), 305-314. https://doi.org/10.1016/j.ijfoodmicro.2005.02.001. | es_CO |
dc.relation.references | Paterson, RRM y Lima, N. (2010). How will climate change affect mycotoxins in food? Food Research International, 43(7), pp. 1902-1914. https://doi.org/10.1016/j.foodres.2009.07.010. | es_CO |
dc.relation.references | Patil, C y Walter, P. (2001). Intracellular signaling from the endoplasmic reticulum to the nucleus: The unfolded protein response in yeast and mammals. Current Opinion in Cell Biology, 13(3), 349-355. https://doi.org/10.1016/S0955-0674(00)00219-2. | es_CO |
dc.relation.references | Patriarca, A y Fernández, Pinto V. (2017). Prevalence of mycotoxins in foods and decontamination. Current Opinion in Food Science, 14, 50-60. https://doi.org/10.1016/j.cofs.2017.01.011. | es_CO |
dc.relation.references | Peng, X; Yu, Z; Liang, N; Chi, X; Li, X; Jiang, M; Fang, J; Cui, H; Lai, W; Zhou, Y y Zhou, S. (2016). The mitochondrial and death receptor pathways involved in the thymocytes apoptosis induced by aflatoxin B1. Oncotarget, 7(11), 12222-12234. https://doi.org/10.18632/oncotarget.7731. | es_CO |
dc.relation.references | Pereira, CMF. (2013). Crosstalk between Endoplasmic Reticulum Stress and Protein Misfolding in Neurodegenerative Diseases. ISRN Cell Biology, 2013, e256404. https://doi.org/10.1155/2013/256404. | es_CO |
dc.relation.references | Perkowski, J; Plattner, R; Goliński, P; Vesonder, R y Chelkowski, J. (1990). Natural occurrence of deoxynivalenol, 3-acetyl-deoxynivalenol, 15-acetyl-deoxynivalenol, nivalenol, 4,7- dideoxynivalenol, and zearalenone in polish wheat. Mycotoxin Research, 6(1), 7-12. https://doi.org/10.1007/BF031921 33. | es_CO |
dc.relation.references | Petit, PX; Lecoeur, H; Zorn, E; Dauguet, C; Mignotte, B y Gougeon, ML. (1995). Alterations in mitochondrial structure and function are early events of dexamethasone-induced thymocyte apoptosis. The Journal of Cell Biology, 130(1), 157-167. https://doi.org/10.1083/jcb.130.1.157. | es_CO |
dc.relation.references | Ben Salah-Abbès, J; Belgacem, H; Ezzdini, K; Abdel-Wahhab, MA y Abbès, S. (2020). Zearalenone nephrotoxicity: DNA fragmentation, apoptotic gene expression and oxidative stress protected by Lactobacillus plantarum MON03. Toxicon: Official Journal of the International Society on Toxinology, 175, 28-35. https://doi.org/10.1016/j.toxicon.2019.12.004. | es_CO |
dc.relation.references | Pfeiffer, E; Kommer, A; Dempe, JS; Hildebrand, AA y Metzler, M. (2011). Absorption and metabolism of the mycotoxin zearalenone and the growth promotor zeranol in Caco-2 cells in vitro. Molecular Nutrition & Food Research, 55(4), 560-567. https://doi.org/10.1002/mnfr.201000381. | es_CO |
dc.relation.references | Pistol, GC; Gras, MA; Marin, DE; Israel-Roming, F; Stancu, M y Taranu, I. (2014). Natural feed contaminant zearalenone decreases the expressions of important pro- and antiinflammatory mediators and mitogen-activated protein kinase/NF-κB signalling molecules in pigs. The British Journal of Nutrition, 111(3), 452-464. https://doi.org/10.1017/S0007114513002675. | es_CO |
dc.relation.references | Pistritto, G; Trisciuoglio, D; Ceci, C; Garufi, A y D’Orazi, G. (2016). Apoptosis as anticancer mechanism: Function and dysfunction of its modulators and targeted therapeutic strategies. Aging (Albany NY), 8(4), 603-619. https://doi.org/10.18632/aging.100934. | es_CO |
dc.relation.references | Plenchette, S; Filomenko, R; Logette, E; Solier, S; Buron, N; Cathelin, S y Solary, E. (2004). Analyzing markers of apoptosis in vitro. Methods in Molecular Biology (Clifton, N.J.), 281, 313-331. https://doi.org/10.1385/1 -59259-811-0:313. | es_CO |
dc.relation.references | Poon, IKH; Lucas, CD; Rossi, AG y Ravichandran, KS. (2014). Apoptotic cell clearance: Basic biology and therapeutic potential. Nature Reviews Immunology, 14(3), 166-180. https://doi.org/10.1038/nri3607. | es_CO |
dc.relation.references | Pozarowski, P; Grabarek, J y Darzynkiewicz, Z. (2003). Flow Cytometry of Apoptosis. Current Protocols in Cell Biology, 21(1). https://doi.org/10.1002/0471143030.cb1808s21. | es_CO |
dc.relation.references | Rai, A; Dixit, S; Singh, SP; Gautam, NK; Das, M y Tripathi, A. (2018). Presence of Zearalenone in Cereal Grains and Its Exposure Risk Assessment in Indian Population. Journal of Food Science, 83(12), 3126-3133. https://doi.org/10.1111/1750-3841.14404. | es_CO |
dc.relation.references | Rai, A; Das, M y Tripathi, A. (2020). Occurrence and toxicity of a fusarium mycotoxin, zearalenone. Critical Reviews in Food Science and Nutrition, 60(16), 2710-2729. https://doi.org/10.1080/10408398.2019.1655388. | es_CO |
dc.relation.references | Rai, NK; Tripathi, K; Sharma, D y Shukla, VK. (2005). Apoptosis: A Basic Physiologic Process in Wound Healing. The International Journal of Lower Extremity Wounds, 4(3), 138-144. https://doi.org/10.1177/1534734605280018. | es_CO |
dc.relation.references | Rajendran, P; Ammar, RB; Al-Saeedi, FJ; Mohamed, ME; ElNaggar, MA; Al-Ramadan, SY; Bekhet, GM y Soliman, AM. (2021). Kaempferol Inhibits Zearalenone-Induced Oxidative Stress and Apoptosis via the PI3K/Akt-Mediated Nrf2 Signaling Pathway: In Vitro and In. | es_CO |
dc.relation.references | Ben, Salem, I; Prola, A; Boussabbeh, M; Guilbert, A; Bacha, H; Abid-Essefi, S y Lemaire, C. (2015). Crocin and Quercetin protect HCT116 and HEK293 cells from Zearalenoneinduced apoptosis by reducing endoplasmic reticulum stress. Cell Stress and Chaperones, 20(6). pp.927-938. https://doi.org/10.1007/s12192-015-0613-0. | es_CO |
dc.relation.references | Vivo Studies. International Journal of Molecular Sciences, 22(1), 217. https://doi.org/10.3390/ijms22010217. | es_CO |
dc.relation.references | Ramaswamy, M; Deng, M y Siegel, RM. (2011). Harnessing programmed cell death as a therapeutic strategy in rheumatic diseases. Nature Reviews Rheumatology, 7(3), 152-160. https://doi.org/10.1038/nrrheum.2010.225. | es_CO |
dc.relation.references | Rami, A. (2003). Ischemic neuronal death in the rat hippocampus: The calpain–calpastatin– caspase hypothesis. Neurobiology of Disease, 13(2), 75-88. https://doi.org/10.1016/S0969- 9961(03)00018-4. | es_CO |
dc.relation.references | Rawlings, ND; Barrett, AJ y Bateman, A. (2010). MEROPS: The peptidase database. Nucleic Acids Research, 38(suppl_1), D227-D233. https://doi.org/10.1093/nar/gkp971. | es_CO |
dc.relation.references | Reynolds, ES. (1963). The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. The Journal of Cell Biology, 17, 208-212. https://doi.org/10.1083/jcb.17.1.208. | es_CO |
dc.relation.references | Richetti, A; Cavallaro, A; Ainis, T y Fimiani, V. (2003). Effect of some mycotoxins on superoxide anion production of isolated human neutrophils and in whole blood. Immunopharmacology and Immunotoxicology, 25(3), 441-449. https://doi.org/10.1081/iph-120024511. | es_CO |
dc.relation.references | Riss, TL; Moravec, RA; Niles, AL; Duellman, S; Benink, HA; Worzella, TJ y Minor, L. (2016). Cell Viability Assays. En Assay Guidance Manual [Internet]. Eli Lilly & Company and the National Center for Advancing Translational Sciences. https://www.ncbi.nlm.nih.gov/books/NBK144065/. | es_CO |
dc.relation.references | Rizzuto, R; Pinton, P; Carrington, W; Fay, FS; Fogarty, KE; Lifshitz, LM; Tuft, RA y Pozzan, T. (1998). Close Contacts with the Endoplasmic Reticulum as Determinants of Mitochondrial Ca2+ Responses. Science, 280(5370), 1763-1766. https://doi.org/10.1126/science.280.5370.1763. | es_CO |
dc.relation.references | Rodríguez-Carrasco, Y; Moltó, JC; Berrada, H y Mañes, J. (2014). A survey of trichothecenes, zearalenone and patulin in milled grain-based products using GC-MS/MS. Food Chemistry, 146, 212-219. https://doi.org/10.1016/j.foodchem.2013.09.053. | es_CO |
dc.relation.references | Rogowska, A; Pomastowski, P; Sagandykova, G y Buszewski, B. (2019). Zearalenone and its metabolites: Effect on human health, metabolism and neutralisation methods. Toxicon, 162. pp.46-56. https://doi.org/10.1016/j.toxicon.2019.03.004. | es_CO |
dc.relation.references | Bennett, JW y Klich, M. (2003). Mycotoxins. Clinical Microbiology Reviews, 16(3), pp. 497-516. https://doi.org/10.1128/CMR.16.3.497-516.2003. | es_CO |
dc.relation.references | Rojas, Contreras L. (2021). Estudio de la incidencia de aflatoxinas, zearalenona y desoxinivalenol en el arroz producido en las principales zonas arroceras de Colombia [Ph.D. Thesis, Universitat Autònoma de Barcelona]. En TDX (Tesis Doctorals en Xarxa). http://www.tdx.cat/handle/10803/671611. | es_CO |
dc.relation.references | Rojas, MD; Peterson, DL; Barboza, L; Terán-Ángel, G; Labastida-Moreno, CA; Berrueta, L y Salmen, S. (2014). Programmed hepatocytes cell death associated with FLIP downregulation in response to extracellular preS1/2. Journal of Medical Virology, 86(3), 496-504. https://doi.org/10.1002/jmv.23859. | es_CO |
dc.relation.references | Ropejko, K y Twarużek, M. (2021). Zearalenone and Its Metabolites—General Overview, Occurrence, and Toxicity. Toxins, 13(1), 35. https://doi.org/10.3390/toxins13010035. | es_CO |
dc.relation.references | Saelens, X; Festjens, N; Walle, LV; Gurp, M; Van, Loo G; Van, y Vandenabeele, P. (2004). Toxic proteins released from mitochondria in cell death. Oncogene, 23(16), 2861 -2874. https://doi.org/10.1038/sj.onc.1207523. | es_CO |
dc.relation.references | Sakamuru, S; Attene-Ramos, MS y Xia, M. (2016). Mitochondrial Membrane Potential Assay. En H. Zhu y M. Xia (Eds.), High-Throughput Screening Assays in Toxicology (Vol. 1473, pp. 17-22). Springer New York. https://doi.org/10.1007/978-1-4939-6346-1_2. | es_CO |
dc.relation.references | Sakamuru, S; Li, X; Attene-Ramos, MS; Huang, R; Lu, J; Shou, L; Shen, M; Tice, RR; Austin, CP y Xia, M. (2012). Application of a homogenous membrane potential assay to assess mitochondrial function. Physiological Genomics, 44(9), 495-503. https://doi.org/10.1152/physiolgenomics.00161.2011. | es_CO |
dc.relation.references | Sang, Y; Li, W y Zhang, G. (2016). The protective effect of resveratrol against cytotoxicity induced by mycotoxin, zearalenone. Food & Function, 7(9), 3703-3715. https://doi.org/10.1039/C6FO00191B. | es_CO |
dc.relation.references | Saraste, A y Pulkki, K. (2000). Morphologic and biochemical hallmarks of apoptosis. Cardiovascular Research, 45(3), 528-537. https://doi.org/10.1016/S0008-6363(99)00384- 3. | es_CO |
dc.relation.references | Savi, GD; Piacentini, KC; Rocha, LO; Carnielli-Queiroz, L; Furtado, BG; Scussel, R; Zanoni, ET; Machado-De-Ávila, RA; Corrêa, B y Angioletto, E. (2018). Incidence of toxigenic fungi and zearalenone in rice grains from Brazil. International Journal of Food Microbiology, 270, 5-13. https://doi.org/10.1016/j.ijfoodmicro.2018.02.004. | es_CO |
dc.relation.references | Schimmer, AD. (2004). Inhibitor of apoptosis proteins: Translating basic knowledge into clinical practice. Cancer Research, 64(20), 7183-7190. https://doi.org/10.1158/0008-5472.CAN- 04-1918. | es_CO |
dc.relation.references | Blond-Elguindi, S; Fourie, AM; Sambrook, JF y Gething, MJ. (1993). Peptide-dependent stimulation of the ATPase activity of the molecular chaperone BiP is the result of conversion of oligomers to active monomers. Journal of Biological Chemistry, 268(17), 12730-12735. https://doi.org/10.1016/S0021 -9258(18)31449-2. | es_CO |
dc.relation.references | Schmit, T; Klomp, M y Khan, MN. (2021). An Overview of Flow Cytometry: Its Principles and Applications in Allergic Disease Research. Methods in Molecular Biology (Clifton, N.J.), 2223, 169-182. https://doi.org/10.1007/978-1-0716-1001-5_13. | es_CO |
dc.relation.references | Schuler, M y Green, DR. (2001). Mechanisms of p53-dependent apoptosis. Biochemical Society Transactions, 29(6), 684-688. https://doi.org/10.1042/bst0290684. | es_CO |
dc.relation.references | Sciau, Ph. (2016). Chapter Two - Transmission Electron Microscopy: Emerging Investigations for Cultural Heritage Materials. En P. W. Hawkes (Ed.), Advances in Imaging and Electron Physics (Vol. 198, pp. 43-67). Elsevier. https://doi.org/10.1016/bs.aiep.2016.09.002. | es_CO |
dc.relation.references | Sherma, J y Fried, B. (2005). Thin Layer Chromatographic Analysis of Biological Samples. A Review. Journal of Liquid Chromatography & Related Technologies, 28(15), 2297-2314. https://doi.org/10.1080/10826070500187491. | es_CO |
dc.relation.references | Shi, B, Su, Y; Chang, S; Sun, Y; Meng, X y Shan, A. (2017). Vitamin C protects piglet liver against zearalenone-induced oxidative stress by modulating expression of nuclear receptors PXR and CAR and their target genes. Food & Function, 8(10). pp. 3675-3687. https://doi.org/10.1039/C7FO01301A. | es_CO |
dc.relation.references | Shier, WT; Shier, AC; Xie, W y Mirocha, CJ. (2001). Structure-activity relationships for human estrogenic activity in zearalenone mycotoxins. Toxicon: Official Journal of the International Society on Toxinology, 39(9), 1435-1438. https://doi.org/10.1016/s0041 - 0101(00)00259-2. | es_CO |
dc.relation.references | Singh, N y Bose, K. (2015). Apoptosis: Pathways, Molecules and Beyond. En K. Bose (Ed.), Proteases in Apoptosis: Pathways, Protocols and Translational Advances (pp. 1-30). Springer International Publishing. https://doi.org/10.1007/978-3-319-19497-4_1. | es_CO |
dc.relation.references | Singh, BK; Tiwari, S y Dubey, NK. (2021). Essential oils and their nanoformulations as green preservatives to boost food safety against mycotoxin contamination of food commodities: A review. Journal of the Science of Food and Agriculture, 101(12), 4879-4890. https://doi.org/10.1002/jsfa.11255. | es_CO |
dc.relation.references | Sivandzade, F; Bhalerao, A y Cucullo, L. (2019). Analysis of the Mitochondrial Membrane Potential Using the Cationic JC-1 Dye as a Sensitive Fluorescent Probe. BIO-PROTOCOL, 9(1). https://doi.org/10.21769/BioProtoc.3128. | es_CO |
dc.relation.references | Smith, MC; Madec, S; Coton, E y Hymery, N. (2016). Natural Co-Occurrence of Mycotoxins in Foods and Feeds and Their in vitro Combined Toxicological Effects. Toxins, 8(4), 1-36. https://doi.org/10.3390/toxins8040094. | es_CO |
dc.relation.references | Boersma, HH; Bennaghmouch, A; Hofstra, L; Narula, J; Heidendal, G K y Reutelingsperger, C. P. M. (s. f.). Past, Present, and Future of Annexin A5: From Protein Discovery to Clinical Applications. 16. | es_CO |
dc.relation.references | Smyth, PG y Berman, SA. (2002). Markers of apoptosis: Methods for elucidating the mechanism of apoptotic cell death from the nervous system. BioTechniques, 32(3), 648-650, 652, 654 passim. https://doi.org/10.2144/02323dd02. | es_CO |
dc.relation.references | So, MY; Tian, Z; Phoon, YS; Sha, S;Antoniou, MN; Zhang, J; Wu, RSS y Tan-Un, KC. (2014). Gene Expression Profile and Toxic Effects in Human Bronchial Epithelial Cells Exposed to Zearalenone. PLOS ONE, 9(5), e96404. https://doi.org/10.1371/journal.pone.0096404. | es_CO |
dc.relation.references | Souza, WCO; Nascimento, LC; Oliveira, MDM; Porcino, MM y Silva, HAO. (2018). Genetic diversity of Fusarium spp. In pineapple ‘Pérola’ cultivar. European Journal of Plant Pathology, 150(4), 853-868. https://doi.org/10.1007/s10658-017-1328-0. | es_CO |
dc.relation.references | Springler, A: Hessenberger, S; Reisinger, N; Kern, C; Nagl, V; Schatzmayr, G y Mayer, E. (2017). Deoxynivalenol and its metabolite deepoxy-deoxynivalenol: Multi-parameter analysis for the evaluation of cytotoxicity and cellular effects. Mycotoxin Research, 33(1), 25-37. https://doi.org/10.1007/s12550-016-0260-z. | es_CO |
dc.relation.references | Stakheev, A. A., Erokhin, D. V., Meleshchuk, E. A., Mikityuk, O. D., y Statsyuk, N. V. (2022). Effect of Compactin on the Mycotoxin Production and Expression of Related Biosynthetic and Regulatory Genes in Toxigenic Fusarium culmorum. Microorganisms, 10(7), 1347. https://doi.org/10.3390/microorganisms10071347. | es_CO |
dc.relation.references | Stępień, Ł; Koczyk, G y Waśkiewicz, A. (2013). Diversity of Fusarium species and mycotoxins contaminating pineapple. Journal of Applied Genetics, 54(3), 367-380. https://doi.org/10.1007/s13353-013-0146-0. | es_CO |
dc.relation.references | Strasser, A. (2005). The role of BH3-only proteins in the immune system. Nature Reviews Immunology, 5(3), 189-200. https://doi.org/10.1038/nri1568. | es_CO |
dc.relation.references | Summerell, BA; Salleh, B y Leslie, JF. (2003). A Utilitarian Approach to Fusarium Identification. Plant Disease, 87(2), 117-128. https://doi.org/10.1094/PDIS.2003.87.2.117. | es_CO |
dc.relation.references | Sun, L; Dai, J; Xu, J; Yang, J y Zhang, D. (2022). Comparative Cytotoxic Effects and Possible Mechanisms of Deoxynivalenol, Zearalenone and T-2 Toxin Exposure to Porcine Leydig Cells In Vitro. Toxins, 14(2), 113. https://doi.org/10.3390/toxins14020113. | es_CO |
dc.relation.references | Tamura, M; Mochizuki, N; Nagatomi, Y; Harayama, K; Toriba, A y Hayakawa, K. (2015). A method for simultaneous determination of 20 Fusarium toxins in cereals by high-resolution liquid chromatography-Orbitrap mass spectrometry with a pentafluorophenyl column. Toxins, 7(5), 1664-1682. https://doi.org/10.3390/toxins7051664. | es_CO |
dc.relation.references | Boersma, HH; Kietselaer, BL; Stolk, LM; Bennaghmouch, A; Hofstra, L; Narula, J y Reutelingsperger, CP. (2005). Past, present, and future of annexin A5: from protein discovery to clinical applications. Journal of nuclear medicine, 46(12), 2035-2050. | es_CO |
dc.relation.references | Tatay, E; Espín, S; García-Fernández, AJ y Ruiz, MJ. (2017). Oxidative damage and disturbance of antioxidant capacity by zearalenone and its metabolites in human cells. Toxicology in Vitro, 45, 334-339. https://doi.org/10.1016/j.tiv.2017.04.026. | es_CO |
dc.relation.references | Tatay, E; Font, G y Ruiz, MJ. (2016). Cytotoxic effects of zearalenone and its metabolites and antioxidant cell defense in CHO-K1 cells. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association, 96, 43-49. https://doi.org/10.1016/j.fct.2016.07.027. | es_CO |
dc.relation.references | Tatay, E; Meca, G; Font, G y Ruiz, MJ. (2014). Cytotoxic and interactive effects of zearalenone, alpha-zearalenol and beta-zearalenol and formation of metabolites in HepG2 cells. Rev. Toxicol, 187-195. | es_CO |
dc.relation.references | Tobey, RA. (1975). Different drugs arrest cells at a number of distinct stages in G2. Nature, 254(5497), 245-247. https://doi.org/10.1038/254245a0. | es_CO |
dc.relation.references | Britannica. (s. f.). Transmission electron microscope | instrument | Britannica. Recuperado 10 de julio de 2022, de https://www.britannica.com/technology/transmission-electronmicroscope. | es_CO |
dc.relation.references | Travers, KJ; Patil, CK; Wodicka, L; Lockhart, DJ; Weissman, JS y Walter, P. (2000). Functional and genomic analyses reveal an essential coordination between the unfolded protein response and ER-associated degradation. Cell, 101(3), 249-258. https://doi.org/10.1016/s0092-8674(00)80835-1. | es_CO |
dc.relation.references | Tuchin, VV; Tárnok, A y Zharov, VP. (2011). In vivo flow cytometry: A horizon of opportunities. Cytometry Part A, 79A(10), 737-745. https://doi.org/10.1002/cyto.a.21143. | es_CO |
dc.relation.references | Urry, WH; Wehrmeister, HL; Hodge, EB y Hidy, PH. (1966). The structure of zearalenone. Tetrahedron Letters, 7(27), 3109-3114. https://doi.org/10.1016/S0040-4039(01)99923-X. | es_CO |
dc.relation.references | Van, Loo G; Van, Gurp M; Depuydt, B; Srinivasula, SM; Rodriguez, I; Alnemri, ES; Gevaert, K; Vandekerckhove, J; Declercq, W y Vandenabeele, P. (2002). The serine protease Omi/HtrA2 is released from, mitochondria during apoptosis. Omi interacts with caspaseinhibitor XIAP and induces enhanced caspase activity. Cell Death and Differentiation, 9(1), 20-26. https://doi.org/10.1038/sj.cdd.4400970. | es_CO |
dc.relation.references | Verhulst, C; Coiffard, C; Coiffard, LJM; Rivalland, P y De Roeck-Holtzhauer, Y. (1998). In vitro correlation between two colorimetric assays and the pyruvic acid consumption by fibroblasts cultured to determine the sodium laurylsulfate cytotoxicity. Journal of Pharmacological and Toxicological Methods, 39(3), 143-146. https://doi.org/10.1016/S1056-8719(98)00016-1. | es_CO |
dc.relation.references | Booth, C. (1977). Fusarium: Laboratory guide to the identification of the major species. Commonwealth Mycological Institute. | es_CO |
dc.relation.references | Viera, Limon MJ; Morlett, Chavez JA; Sierra, Rivera CA; Contreras, DL y Zugasti-Cruz, A. (2015). Zearalenone Induced Cytotoxicity and Oxidative Stress in Human Peripheral Blood Leukocytesevita. Toxicology: Open Access, 01(01). https://doi.org/10.4172/2476- 2067.1000102. | es_CO |
dc.relation.references | Virk, P; Al-mukhaizeem, NAR; Bin, Morebah SH; Fouad, D y Elobeid, M. (2020). Protective effect of resveratrol against toxicity induced by the mycotoxin, zearalenone in a rat model. Food and Chemical Toxicology, 146, 111840. https://doi.org/10.1016/j.fct.2020.111840. | es_CO |
dc.relation.references | Vlata, Z; Porichis, F; Tzanakakis, G; Tsatsakis, A y Krambovitis, E. (2006). A study of zearalenone cytotoxicity on human peripheral blood mononuclear cells. Toxicology Letters, 165(3). pp. 274-281. https://doi.org/10.1016/j.toxlet.2006.05.001. | es_CO |
dc.relation.references | Vousden, KH y Lane, DP. (2007). P53 in health and disease. Nature Reviews Molecular Cell Biology, 8(4), 275-283. https://doi.org/10.1038/nrm2147. | es_CO |
dc.relation.references | Wajant, H. (2002). The Fas Signaling Pathway: More Than a Paradigm. Science, 296(5573), 1635- 1636. https://doi.org/10.1126/science.1071553. | es_CO |
dc.relation.references | Wanga, DB; Kinoshita, C; Kinoshita, Y y Morrison, RS. (2014). P53 and mitochondrial function in neurons. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 1842(8), 1186-1197. https://doi.org/10.1016/j.bbadis.2013.12.015. | es_CO |
dc.relation.references | Wangb, S y El-Deiry, WS. (2004). Cytochrome c: A crosslink between the mitochondria and the endoplasmic reticulum in calcium-dependent apoptosis. Cancer Biology & Therapy, 3(1), 44-46. https://doi.org/10.4161/cbt.3.1.740. | es_CO |
dc.relation.references | Wangc, Y; Zheng, W; Bian, X; Yuan, Y; Gu, J; Liu, X; Liu, Z y Bian, J. (2014). Zearalenone induces apoptosis and cytoprotective autophagy in primary Leydig cells. Toxicology Letters, 226(2), 182-191. https://doi.org/10.1016/j.toxlet.2014.02.003. | es_CO |
dc.relation.references | Wang, X; Yu, H; Fang, H; Zhao, Y; Jin, Y; Shen, J; Zhou, C; Zhou, Y; Fu, Y; Wang, J y Zhang, J. (2019). Transcriptional profiling of zearalenone-induced inhibition of IPEC-J2 cell proliferation. Toxicon: Official Journal of the International Society on Toxinology, 172, 8-14. https://doi.org/10.1016/j.toxicon.2019.10.004. | es_CO |
dc.relation.references | Watson, ML. (1958). Staining of Tissue Sections for Electron Microscopy with Heavy Metals. The Journal of Biophysical and Biochemical Cytology, 4(4), 475-478. https://doi.org/10.1083/jcb.4.4.475. | es_CO |
dc.relation.references | Bossy-Wetzel, E y Green, DR. (2000). Assays for cytochrome c release from mitochondria during apoptosis. Methods in Enzymology, 322, 235-242. https://doi.org/10.1016/s0076- 6879(00)22024-7. | es_CO |
dc.relation.references | Wentzel, JF, Lombard, MJ; Du Plessis, LH y Zandberg, L. (2017). Evaluation of the cytotoxic properties, gene expression profiles and secondary signalling responses of cultured cells exposed to fumonisin B1, deoxynivalenol and zearalenone mycotoxins. Archives of Toxicology, 91(5), 2265-2282. https://doi.org/10.1007/s00204-016-1872-y. | es_CO |
dc.relation.references | Wilkerson, MJ. (2012). Principles and Applications of Flow Cytometry and Cell Sorting in Companion Animal Medicine. Veterinary Clinics: Small Animal Practice, 42(1), 53-71. https://doi.org/10.1016/j.cvsm.2011.09.012. | es_CO |
dc.relation.references | Winey, M; Meehl, JB; O’Toole, ET y Giddings, TH. (2014). Conventional transmission electron microscopy. Molecular Biology of the Cell, 25(3), 319-323. https://doi.org/10.1091/mbc.E12-12-0863. | es_CO |
dc.relation.references | Xu, C; Bailly-Maitre, B y Reed, JC. (2005). Endoplasmic reticulum stress: Cell life and death decisions. The Journal of Clinical Investigation, 115(10), 2656-2664. https://doi.org/10.1172/JCI26373. | es_CO |
dc.relation.references | Xu, ML; Hu, J; Guo, BP; Niu, YR; Xiao, C y Xu, YX. (2016). Exploration of intrinsic and extrinsic apoptotic pathways in zearalenone-treated rat sertoli cells. Environmental Toxicology, 31(12), 1731 -1739. https://doi.org/10.1002/tox.22175. | es_CO |
dc.relation.references | Yamashima, T. (2004). Ca2+-dependent proteases in ischemic neuronal death: A conserved ‘calpain–cathepsin cascade’ from nematodes to primates. Cell Calcium, 36(3), 285-293. https://doi.org/10.1016/j.ceca.2004.03.001. | es_CO |
dc.relation.references | Yang, JY; Wang, GX; Liu, JL; Fan, JJ y Cui, S. (2007). Toxic effects of zearalenone and its derivatives α-zearalenol on male reproductive system in mice. Reproductive Toxicology, 24(3), 381-387. https://doi.org/10.1016/j.reprotox.2007.05.009. | es_CO |
dc.relation.references | Yang, LJ; Zhou, M; Huang, LB; Yang, WR; Yang, ZB; Jiang, SZ y Ge, JS. (2018). ZearalenonePromoted Follicle Growth through Modulation of Wnt-1/β-Catenin Signaling Pathway and Expression of Estrogen Receptor Genes in Ovaries of Postweaning Piglets. Journal of Agricultural and Food Chemistry, 66(30), 7899-7906. https://doi.org/10.1021/acs.jafc.8b02101. | es_CO |
dc.relation.references | Yazar, S y Omurtag, GZ. (2008). Fumonisins, Trichothecenes and Zearalenone in Cereals. International Journal of Molecular Sciences, 9(11), pp. 2062-2090. https://doi.org/10.3390/ijms9112062. | es_CO |
dc.relation.references | Yin, S; Liu, X; Fan, L y Hu, H. (2018). Mechanisms of cell death induction by food-borne mycotoxins. Critical Reviews in Food Science and Nutrition, 58(8), 1406-1417. https://doi.org/10.1080/10408398.2016.1260526. | es_CO |
dc.relation.references | Bottalico, A. (1998). Fusarium diseases of cereals: species complex and related mycotoxin profiles, in Europe. Journal of Plant Pathology, 80(2). pp. 85-103. | es_CO |
dc.relation.references | Yu, JY; Zheng, ZH; Son, YO; Shi, X; Jang, YO y Lee, JC. (2011). Mycotoxin zearalenone induces AIF- and ROS-mediated cell death through p53- and MAPK-dependent signaling pathways in RAW264.7 macrophages. Toxicology in Vitro, 25(8), 1654-1663. https://doi.org/10.1016/j.tiv.2011.07.002. | es_CO |
dc.relation.references | Yu, M; Chen, L; Peng, Z; Wang, D; Song, Y; Wang, H; Yao, P; Yan, H; Nüssler, AK; Liu, L; y Yang, W. (2017). Embryotoxicity Caused by DON-Induced Oxidative Stress Mediated by Nrf2/HO-1 Pathway. Toxins, 9(6), 188. https://doi.org/10.3390/toxins9060188. | es_CO |
dc.relation.references | Yu, Z; Zhang, L; Wu, D y Liu, F. (2005). Anti-apoptotic action of zearalenone in MCF-7 cells. Ecotoxicology and Environmental Safety, 62(3), 441 -446. https://doi.org/10.1016/j.ecoenv.2004.10.003. | es_CO |
dc.relation.references | Yue, J y López, JM. (2020). Understanding MAPK Signaling Pathways in Apoptosis. International Journal of Molecular Sciences, 21(7), 2346. https://doi.org/10.3390/ijms21072346. | es_CO |
dc.relation.references | Zaied, C; Zouaoui, N; Bacha, H y Abid, S. (2012). Natural occurrence of zearalenone in Tunisian wheat grains. Food Control, 25(2), 773-777. https://doi.org/10.1016/j.foodcont.2011.12.012. | es_CO |
dc.relation.references | Zain, ME. (2011). Impact of mycotoxins on humans and animals. Journal of Saudi Chemical Society, 15(2), 129-144. https://doi.org/10.1016/j.jscs.2010.06.006. | es_CO |
dc.relation.references | Zamzami, N; Métivier, D y Kroemer, G. (2000). Quantitation of Mitochondrial Transmembrane Potential in Cells and in Isolated Mitochondria. Methods in Enzymology, 322, 208-213. https://doi.org/10.1016/S0076-6879(00)22021-1. | es_CO |
dc.relation.references | Zhanga, GL; Feng, YL; Song, JL y Zhou, XS. (2018). Zearalenone: A Mycotoxin With Different Toxic Effect in Domestic and Laboratory Animals’ Granulosa Cells. Frontiers in Genetics, 9, 667. https://doi.org/10.3389/fgene.2018.00667. | es_CO |
dc.relation.references | Zhang, GL; Sun, XF; Feng, YZ; Li, B; Li, YP; Yang, F; Nyachoti, CM; Shen, W; Sun, SD y Li, L. (2017). Zearalenone exposure impairs ovarian primordial follicle formation via down-regulation of Lhx8 expression in vitro. Toxicology and Applied Pharmacology, 317, 33-40. https://doi.org/10.1016/j.taap.2017.01.004. | es_CO |
dc.relation.references | Zhangb, K; Tan, X; Li, Y; Liang, G; Ning, Z; Ma, Y y Li, Y. (2018). Transcriptional profiling analysis of Zearalenone-induced inhibition proliferation on mouse thymic epithelial cell line 1. Ecotoxicology and Environmental Safety, 153, 135-141. https://doi.org/10.1016/j.ecoenv.2018.01.005. | es_CO |
dc.relation.references | Bouaziz, C; Sharaf el Dein, O; Martel, C; Golli, EE, Abid-Essefi, S; Brenner, C; Lemaire, C y Bacha, H. (2011). Molecular events involved in ochratoxin A induced mitochondrial pathway of apoptosis, modulation by Bcl-2 family members. Environmental Toxicology, 26(6), 579-590. https://doi.org/10.1002/tox.20581. | es_CO |
dc.relation.references | Zheng, W; Pan, S; Wang, G; Wang, YJ; Liu, Q; Gu, J; Yuan, Y; Liu, XZ; Liu, ZP y Bian, JC. (2016). Zearalenone impairs the male reproductive system functions via inducing structural and functional alterations of sertoli cells. Environmental Toxicology and Pharmacology, 42, 146-155. https://doi.org/10.1016/j.etap.2016.01.013. | es_CO |
dc.relation.references | Zhenga, W; Wang, B; Li, X; Wang, T; Zou, H; Gu, J; Yuan, Y; Liu, X; Bai, J; Bian, J y Liu, Z. (2018). Zearalenone Promotes Cell Proliferation or Causes Cell Death? Toxins, 10(5), 184. https://doi.org/10.3390/toxins10050184. | es_CO |
dc.relation.references | Zhengb, WL; Wang, BJ; Wang, L; Shan, YP; Zou, H; Song, RL; Wang, T; Gu, JH; Yuan, Y; Liu, XZ; Zhu, GQ; Bai, JF; Liu, ZP y Bian, JC. (2018). ROS-Mediated Cell Cycle Arrest and Apoptosis Induced by Zearalenone in Mouse Sertoli Cells via ER Stress and the ATP/AMPK Pathway. Toxins, 10(1), 24. https://doi.org/10.3390/toxins10010024. | es_CO |
dc.relation.references | Zhou, C; Zhang, Y; Yin, S; Jia, Z y Shan, A. (2015). Biochemical changes and oxidative stress induced by zearalenone in the liver of pregnant rats. Human & Experimental Toxicology, 34(1). pp.65-73. https://doi.org/10.1177/0960327113504972. | es_CO |
dc.relation.references | Ziegler, U y Groscurth, P. (2004). Morphological Features of Cell Death. Physiology, 19(3), 124- 128. https://doi.org/10.1152/nips.01519.2004. | es_CO |
dc.relation.references | Zinedine, A; Soriano, JM; Moltó, JC y Mañes, J. (2007). Review on the toxicity, occurrence, metabolism, detoxification, regulations and intake of zearalenone: An oestrogenic mycotoxin. Food and Chemical Toxicology, 45(1), 1-18. https://doi.org/10.1016/j.fct.2006.07.030. | es_CO |
dc.relation.references | Zong, WX y Thompson, CB. (2006). Necrotic death as a cell fate. Genes & Development, 20(1), 1-15. https://doi.org/10.1101/gad.1376506. | es_CO |
dc.relation.references | Zuo, JM y Spence, JCH. (2017). Introduction and Historical Background. En J. M. Zuo y J. C. H. Spence (Eds.), Advanced Transmission Electron Microscopy: Imaging and Diffraction in Nanoscience (pp. 1 -18). Springer. https://doi.org/10.1007/978-1-4939-6607-3_1. | es_CO |
dc.relation.references | Branzei, D y Foiani, M. (2008). Regulation of DNA repair throughout the cell cycle. Nature Reviews. Molecular Cell Biology, 9(4). pp. 297-308. https://doi.org/10.1038/nrm2351. | es_CO |
dc.relation.references | Breckenridge, DG; Germain, M; Mathai, JP; Nguyen, M y Shore, GC. (2003). Regulation of apoptosis by endoplasmic reticulum pathways. Oncogene, 22(53), 8608-8618. https://doi.org/10.1038/sj.onc.1207108. | es_CO |
dc.relation.references | Broom, L. (2015). Mycotoxins and the intestine. Animal Nutrition, 1(4), 262-265. https://doi.org/10.1016/j.aninu.2015.11.001. | es_CO |
dc.relation.references | Bryden, WL. (2012). Mycotoxin contamination of the feed supply chain: Implications for animal productivity and feed security. Animal Feed Science and Technology, 173(1), 134-158. https://doi.org/10.1016/j.anifeedsci.2011.12.014. | es_CO |
dc.relation.references | Cai, G; Si, M; Li, X; Zou, H; Gu, J; Yuan, Y; Liu, X; Liu, Z y Bian, J. (2019). Zearalenone induces apoptosis of rat Sertoli cells through Fas-Fas ligand and mitochondrial pathway. Environmental Toxicology, 34(4), 424-433. https://doi.org/10.1002/tox.22696. | es_CO |
dc.relation.references | Cai, G; Sun, K; Xia, S; Feng, Z; Zou, H; Gu, J, Yuan, Y; Zhu, J., Liu, Z., y Bian, J. (2020). Decrease in immune function and the role of mitogen-activated protein kinase (MAPK) overactivation in apoptosis during T lymphocytes activation induced by zearalenone, deoxynivalenol, and their combinations. Chemosphere, 255, 126999. https://doi.org/10.1016/j.chemosphere.2020.126999. | es_CO |
dc.relation.references | Cao, SS, y Kaufman, RJ. (2014). Endoplasmic reticulum stress and oxidative stress in cell fate decision and human disease. Antioxidants & Redox Signaling, 21(3), 396-413. https://doi.org/10.1089/ars.2014.5851. | es_CO |
dc.relation.references | Carlson, MP y Ensley, SM. (2003). Sampling and Analyzing Feed for Fungal (Mold) Toxins (Mycotoxins). 4. | es_CO |
dc.relation.references | Carlson, MP y Ensley, SM. (2003). Sampling and analyzing feed for fungal (mold) toxins (mycotoxins). Lincoln, NE, USA: Cooperative Extension, Institute of Agriculture and Natural Resources, University of Nebraska-Lincoln. | es_CO |
dc.relation.references | Chandravarnan, P; Agyei, D y Ali, A. (2022). Green and sustainable technologies for the decontamination of fungi and mycotoxins in rice: A review. Trends in Food Science & Technology, 124, 278-295. https://doi.org/10.1016/j.tifs.2022.04.020. | es_CO |
dc.relation.references | Channaiah, L y Maier, D. (2014). Best Stored Maize Management Practices for the Prevention of Mycotoxin Contamination. Capíptulo 6. p. 78-88. https://doi.org/10.1002/9781118832790. | es_CO |
dc.relation.references | Charoenpornsook, K; Fitzpatrick, JL y Smith, JE. (1998). The effects of four mycotoxins on the mitogen stimulated proliferation of bovine peripheral blood mononuclear cells in vitro. Mycopathologia, 143(2), 105-111. https://doi.org/10.1023/A:1006971724678. | es_CO |
dc.relation.references | Chen, F; Li, Q; Zhang, Z; Lin, P; Lei, L; Wang, A Jin, Y. (2015). Endoplasmic Reticulum Stress Cooperates in Zearalenone-Induced Cell Death of RAW 264.7 Macrophages. International Journal of Molecular Sciences, 16(8), 19780-19795. https://doi.org/10.3390/ijms160819780. | es_CO |
dc.relation.references | Chen, Q; Thompson, J; Hu, Y; Das, A y Lesnefsky, EJ. (2019). Cardiac Specific Knockout of p53 Decreases ER Stress-Induced Mitochondrial Damage. Frontiers in Cardiovascular Medicine, 6. https://www.frontiersin.org/articles/10.3389/fcvm.2019.00010. | es_CO |
dc.relation.references | Chen, Q; Takeyama, N; Brady, G; Watson, AJ y Dive, C. (1998). Blood cells with reduced mitochondrial membrane potential and cytosolic cytochrome C can survive and maintain clonogenicity given appropriate signals to suppress apoptosis. Blood, 92(12), 4545-4553. | es_CO |
dc.relation.references | Chinnaiyan, AM. (1999). The apoptosome: Heart and soul of the cell death machine. Neoplasia (New York, N.Y.), 1(1), 5-15. https://doi.org/10.1038/sj.neo.7900003. | es_CO |
dc.relation.references | Consejo Ejecutivo, 110. (2002). Informe sobre las reuniones de los comités de expertos y los grupos de estudio: Informe de la Secretaría (EB110/6). Organización Mundial de la Salud. https://apps.who.int/iris/handle/10665/81563. | es_CO |
dc.relation.references | Cook, SA y Poole-Wilson, PA. (1999). Cardiac myocyte apoptosis. European Heart Journal, 20(22), 1619-1629. https://doi.org/1 0.1053/euhj.1999.1548. | es_CO |
dc.relation.references | Crowley, LC; Marfell, BJ; Scott, AP y Waterhouse, NJ. (2016). Quantitation of Apoptosis and Necrosis by Annexin V Binding, Propidium Iodide Uptake, and Flow Cytometry. Cold Spring Harbor Protocols, 2016(11), pdb.prot087288. https://doi.org/10.1101/pdb.prot087288. | es_CO |
dc.relation.references | C.S Reddy, Reddy, KRN; N.R.Kumar, y Muralidharan, K. (2004). Exploration aflatoxin contamination and its management in rice grains. Journal of Mycology and Plant Pathology, 34, 816-820. | es_CO |
dc.relation.references | Cúcuta nuestra. (s.f.).Los Patios Norte de Santander. https://www.cucutanuestra.com/tema/geografia/municipios/region-centro/los-patios/los patios.htm. | es_CO |
dc.relation.references | D’Arcy, MS. (2019). Cell death: A review of the major forms of apoptosis, necrosis and autophagy. Cell Biology International, 43(6), 582-592. https://doi.org/10.1002/cbin.11137. | es_CO |
dc.relation.references | Daou, R; Joubrane, K; Maroun, RG; Khabbaz, LR; Ismail, A; Khoury, AE; Daou, R; Joubrane, K; Maroun, R G; Khabbaz, L. R., Ismail, A., y Khoury, A. E. (2021). Mycotoxins: Factors influencing production and control strategies. AIMS Agriculture and Food, 6(1), 416-447. https://doi.org/10.3934/agrfood.2021025. | es_CO |
dc.relation.references | DANE (2017). Características que se destacan en el cultivo de arroz secano (Oryza Sativa L.) en Colombia. Boletín mensual insumos y factores asociados a la producción agropecuaria n°58. disponible en: https://www.dane.gov.co/files/investigaciones/agropecuario/sipsa/bol_insumos_abr_2017 .pdf, fecha de consulta 8-05-2020. | es_CO |
dc.relation.references | Darbre, P; Byford, R; Shaw, L; Horton, R; Pope, G y Sauer, M. (2002). Oestogenic activity of isobutylparaben in vitro and in vivo. Journal of applied toxicology : JAT, 22, 219-226. https://doi.org/10.1002/jat.860. | es_CO |
dc.relation.references | Darzynkiewicz, Z; Galkowski, D y Zhao, H. (2008). Analysis of apoptosis by cytometry using TUNEL assay. Methods (San Diego, Calif.), 44(3), 250-254. https://doi.org/10.1016/j.ymeth.2007.11.008. | es_CO |
dc.relation.references | Demchenko, AP. (2013). Beyond annexin V: Fluorescence response of cellular membranes to apoptosis. Cytotechnology, 65(2), 157-172. https://doi.org/10.1007/s10616-012-9481-y. | es_CO |
dc.relation.references | Díaz, M; Herrero, M; García, LA y Quirós, C. (2010). Application of flow cytometry to industrial microbial bioprocesses. Biochemical Engineering Journal, 48(3), 385-407. https://doi.org/10.1016/j.bej.2009.07.013. | es_CO |
dc.relation.references | D’Mello, JPF; Placinta, CM. y Macdonald, AMC. (1999). Fusarium mycotoxins: A review of global implications for animal health, welfare and productivity. Animal Feed Science and Technology, 80(3). pp.183-205. https://doi.org/10.1016/S0377-8401(99)00059-0. | es_CO |
dc.relation.references | Dors, G. C., Bierhals, V. da S., y Badiale-Furlong, E. (2011). Parboiled rice: Chemical composition and the occurrence of mycotoxins. Food Science and Technology, 31, 172-177. | es_CO |
dc.relation.references | Du, C; Fang, M; Li, Y; Li, L y Wang, X. (2000). Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell, 102(1), 33-42. https://doi.org/10.1016/s0092-8674(00)00008-8. | es_CO |
dc.relation.references | Duarte-Vogel, S y Villamil-Jiménez, LC. (2006). Micotoxinas en la Salud Pública. Revista de Salud Pública, 8(1), pp. 129-135. https://doi.org/10.1590/S0124-00642006000400011. | es_CO |
dc.relation.references | Edinger, AL y Thompson, CB. (2004). Death by design: Apoptosis, necrosis and autophagy. Current Opinion in Cell Biology, 16(6), 663-669. https://doi.org/10.1016/j.ceb.2004.09.011. | es_CO |
dc.relation.references | Da Rocha, M. E. B., Freire, F. D. C. O., Maia, F. E. F., Guedes, M. I. F., & Rondina, D. (2014). Mycotoxins and their effects on human and animal health. Food Control, 36(1), 159-165. | es_CO |
dc.relation.references | Eguchi, Y; Shimizu, S y Tsujimoto, Y. (1997). Intracellular ATP Levels Determine Cell Death Fate by Apoptosis or Necrosis1. Cancer Research, 57(10), 1835-1840. | es_CO |
dc.relation.references | El Golli Bennour, E; Bouaziz, C; Ladjimi, M; Renaud, F y Bacha, H. (2009). Comparative mechanisms of zearalenone and ochratoxin A toxicities on cultured HepG2 cells: Is oxidative stress a common process? Environmental Toxicology, 24(6), 538-548. https://doi.org/10.1002/tox.20449. | es_CO |
dc.relation.references | Elmore, S. (2007). Apoptosis: A Review of Programmed Cell Death. Toxicologic Pathology, 35(4), 495-516. https://doi.org/10.1080/01926230701320337. | es_CO |
dc.relation.references | Escobar, ML; Echeverría, OM y Vázquez-Nin, GH. (2015). Necrosis as Programmed Cell Death. En Cell Death—Autophagy, Apoptosis and Necrosis. IntechOpen. https://doi.org/10.5772/61483. | es_CO |
dc.relation.references | FAO - 28a Conferencia Regional De La FAO Para América Latina y El Caribe. (s. f.). Recuperado 10 de julio de 2022, de https://www.fao.org/3/J1225s/J1225s00.htm. | es_CO |
dc.relation.references | Fedearroz (1998). Censo Nacional Arrocero. Cubrimiento cosecha. Fondo nacional del arroz División de investigaciones económicas 2(B). pp.167-197. | es_CO |
dc.relation.references | Fedearroz. (2012). El clima y el cultivo del arroz en Norte de Santander. Revista de arroz. Cúcuta. En: FEDEARROZ. 2012, Vol. 60, No. 497. | es_CO |
dc.relation.references | Feng, N; Wang, B; Cai, P; Zheng, W; Zou, H; Gu, J; Yuan, Y; Liu, X; Liu, Z y Bian, J. (2020). ZEA-induced autophagy in TM4 cells was mediated by the release of Ca2+ activates CaMKKβ-AMPK signaling pathway in the endoplasmic reticulum. Toxicology Letters, 323, 1-9. https://doi.org/10.1016/j.toxlet.2020.01.010. | es_CO |
dc.relation.references | Fleisher, TA y Oliveira, JB. (2019). 92—Flow Cytometry. En R. R. Rich, T. A. Fleisher, W. T. Shearer, H. W. Schroeder, A. J. Frew, y C. M. Weyand (Eds.), Clinical Immunology (Fifth Edition) (pp. 1239-1251.e1). Elsevier. https://doi.org/10.1016/B978-0-7020-6896- 6.00092-2. | es_CO |
dc.relation.references | Formigli, L; Papucci, L; Tani, A; Schiavone, N; Tempestini, A; Orlandini, GE; Capaccioli, S y Zecchi Orlandini, S. (2000). Aponecrosis: Morphological and biochemical exploration of a syncretic process of cell death sharing apoptosis and necrosis. Journal of Cellular Physiology, 182(1), 41-49. https://doi.org/10.1002/(SICI)1097- 4652(200001)182:1<41::AID-JCP5>3.0.CO;2-7. | es_CO |
dc.relation.references | Gaffoor, I., y Trail, F. (2006). Characterization of Two Polyketide Synthase Genes Involved in Zearalenone Biosynthesis in Gibberella zeae. Applied and Environmental Microbiology, 72(3), 1793-1799. https://doi.org/10.1128/AEM.72.3.1793-1799.2006. | es_CO |
dc.relation.references | Gaffoor, I., y Trail, F. (2006). Characterization of Two Polyketide Synthase Genes Involved in Zearalenone Biosynthesis in Gibberella zeae. Applied and Environmental Microbiology, 72(3), 1793-1799. https://doi.org/10.1128/AEM.72.3.1793-1799.2006. | es_CO |
dc.relation.references | Garzón-González, HD; Jaimes-Méndez, N; Rojas-Contreras, L; Salmen-Halabi, S y Gil-Durán, MA. (2021). Efecto citotóxico de Deoxinivalenol sobre la proliferación de la línea celular HepG2. Revista MVZ Córdoba, 26(3), e2080-e2080. https://doi.org/10.21897/rmvz.2080. | es_CO |
dc.relation.references | Gasser, JP; Hehl, M y Millward, TA. (2009). A homogeneous time-resolved fluorescence resonance energy transfer assay for phosphatidylserine exposure on apoptotic cells. Analytical Biochemistry, 384(1), 49-55. https://doi.org/10.1016/j.ab.2008.09.016. | es_CO |
dc.relation.references | Gavrieli, Y; Sherman, Y y Ben-Sasson, SA. (1992). Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. The Journal of Cell Biology, 119(3), 493-501. https://doi.org/10.1083/jcb.119.3.493. | es_CO |
dc.relation.references | Gazzah, AC; Camoin, L; Abid, S; Bouaziz, C; Ladjimi, M y Bacha, H. (2013). Identification of proteins related to early changes observed in Human hepatocellular carcinoma cells after treatment with the mycotoxin Zearalenone. Experimental and Toxicologic Pathology: Official Journal of the Gesellschaft Fur Toxikologische Pathologie, 65(6), 809-816. https://doi.org/10.1016/j.etp.2012.11.007. | es_CO |
dc.relation.references | Gazzah, AC; El Golli Bennour, E; Bouaziz, C; Abid, S; Ladjimi, M y Bacha, H. (2010). Sequential events of apoptosis induced by zearalenone in cultured hepatocarcinoma cells. Mycotoxin Research, 26(3), 187-197. https://doi.org/10.1007/s12550-010-0053-8. | es_CO |
dc.relation.references | Gimeno, A y Martins, ML. (2011). Micotoxinas y micotoxicosis en animales y humanos. Special Nutrients, Florida, 50-53. | es_CO |
dc.relation.references | Golge, O y Kabak, B. (2020). Occurrence of deoxynivalenol and zearalenone in cereals and cereal products from Turkey. Food Control, 110, 106982. https://doi.org/10.1016/j.foodcont.2019.106982. | es_CO |
dc.relation.references | Graham, L y Orenstein, JM. (2007). Processing tissue and cells for transmission electron microscopy in diagnostic pathology and research. Nature Protocols, 2(10), 2439-2450. https://doi.org/10.1038/nprot.2007.304. | es_CO |
dc.relation.references | Green, DR y Reed, JC. (1998). Mitochondria and Apoptosis. Science, 281(5381), 1309-1312. https://doi.org/10.1126/science.281.5381.1309. | es_CO |
dc.relation.references | Grimsley, C y Ravichandran, KS. (2003). Cues for apoptotic cell engulfment: Eat-me, don’t eatme and come-get-me signals. Trends in Cell Biology, 13(12), 648-656. https://doi.org/10.1016/j.tcb.2003.1 0.004. | es_CO |
dc.relation.references | Gromadzka, K; Waskiewicz, A; Chelkowski, J y Golinski, P. (2008). Zearalenone and its metabolites: Occurrence, detection, toxicity and guidelines. World Mycotoxin Journal, 1(2). pp.209-220. https://doi.org/10.3920/WMJ2008.x015. | es_CO |
dc.relation.references | Gross, A; Yin, XM; Wang, K; Wei, MC; Jockel, J; Milliman, C; Erdjument-Bromage, H; Tempst, P y Korsmeyer, SJ. (1999). Caspase Cleaved BID Targets Mitochondria and Is Required for Cytochrome c Release, while BCL-XL Prevents This Release but Not Tumor Necrosis Factor-R1/Fas Death *. Journal of Biological Chemistry, 274(2), 1156-1163. https://doi.org/10.1074/jbc.274.2.1156. | es_CO |
dc.relation.references | Gupta, RC; Mostrom, MS y Evans, TJ. (2018). Chapter 76—Zearalenone. En R. C. Gupta (Ed.), Veterinary Toxicology (Third Edition). pp. 1055-1063. Academic Press. https://doi.org/10.1016/B978-0-12-811410-0.00076-3. | es_CO |
dc.relation.references | Hadiani, MR; Yazdanpanah, H; Ghazi-Khansari, MM. Cheraghali, A y Goodarzi, M. (2003). Survey of the natural occurrence of zearalenone in maize from northern Iran by thin-layer chromatography densitometry. Food Additives & Contaminants, 20(4), 380-385. https://doi.org/10.1080/0265203031000087968. | es_CO |
dc.relation.references | Han, Y y Lo, YH. (2015). Imaging Cells in Flow Cytometer Using Spatial-Temporal Transformation. Scientific Reports, 5(1), 13267. https://doi.org/10.1038/srep13267. | es_CO |
dc.relation.references | Hansen, FT; Sørensen, JL; Giese, H; Sondergaard, TE y Frandsen, RJN. (2012). Quick guide to polyketide synthase and nonribosomal synthetase genes in Fusarium. International Journal of Food Microbiology, 155(3), 128-136. https://doi.org/10.1016/j.ijfoodmicro.2012.01.018. | es_CO |
dc.relation.references | Hartley, A; Stone, JM; Heron, C; Cooper, JM y Schapira, AHV. (1994). Complex I Inhibitors Induce Dose-Dependent Apoptosis in PC12 Cells: Relevance to Parkinson’s Disease. Journal of Neurochemistry, 63(5), 1987-1990. https://doi.org/10.1046/j.1471 - 4159.1994.63051987.x. | es_CO |
dc.relation.references | Hassan, M; Watari, H; AbuAlmaaty, A; Ohba, Y y Sakuragi, N. (2014). Apoptosis and molecular targeting therapy in cancer. BioMed Research International. https://go.gale.com/ps/i.do?p=AONE&sw=w&issn=23146133&v=2.1&it=r&id=GALE% 7CA427021940&sid=googleScholar&linkaccess=abs. | es_CO |
dc.relation.references | Hassen, W; El Golli, E; Baudrimont, I; Mobio, AT; Ladjimi, MM; Creppy, EE y Bacha, H. (2005). Cytotoxicity and Hsp 70 induction in Hep G2 cells in response to zearalenone and cytoprotection by sub-lethal heat shock. Toxicology, 207(2), 293-301. https://doi.org/10.1016/j.tox.2004.10.001. | es_CO |
dc.relation.references | Heatwole, VM. (1999). TUNEL Assay for Apoptotic Cells. En L. C. Javois, Immunocytochemical Methods and Protocols (Vol. 115, pp. 141-148). Humana Press. https://doi.org/10.1385/1 - 59259-213-9:141. | es_CO |
dc.relation.references | Hengartner, MO. (2000). The biochemistry of apoptosis. Nature, 407(6805), 770-776. https://doi.org/10.1038/35037710. | es_CO |
dc.relation.references | Hingorani, R; Deng, J; Elia, J; McIntyre, C y Mittar, D. (2011). Detection of apoptosis using the BD annexin V FITC assay on the BD FACSVerseTM system. BD Biosciences, San Jose, 1-. | es_CO |
dc.relation.references | Hirsch, T; Marchetti, P; Susin, SA; Dallaporta, B; Zamzami, N; Marzo, I; Geuskens, M y Kroemer, G. (1997). The apoptosis-necrosis paradox. Apoptogenic proteases activated after mitochondrial permeability transition determine the mode of cell death. Oncogene, 15(13), 1573-1581. https://doi.org/10.1038/sj.onc.1201324. | es_CO |
dc.rights.accessrights | http://purl.org/coar/access_right/c_abf2 | es_CO |
dc.type.coarversion | http://purl.org/coar/resource_type/c_2df8fbb1 | es_CO |
Aparece en las colecciones: | Maestría en Biología Molecular y Biotecnología |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
Parada_2022_TG.pdf | Parada_2022_TG | 2,97 MB | Adobe PDF | Visualizar/Abrir |
Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.