• Repositorio Institucional Universidad de Pamplona
  • Producción Editorial Universidad de Pamplona
  • Revistas
  • Revista Colombiana de Tecnologias de Avanzada (RCTA)
  • Por favor, use este identificador para citar o enlazar este ítem: http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/9425
    Registro completo de metadatos
    Campo DC Valor Lengua/Idioma
    dc.contributor.authorCazares Alegría, Hipatia.-
    dc.contributor.authorPico Valencia, Pablo.-
    dc.date.accessioned2025-04-21T22:24:07Z-
    dc.date.available2025-04-21T22:24:07Z-
    dc.date.issued2025-01-01-
    dc.identifier.citationCazares Alegría , H., & Pico Valencia, P. (2025). Agentes de software basados en técnicas de aprendizaje automático. Perspectivas desde 2010 hasta 2023. REVISTA COLOMBIANA DE TECNOLOGIAS DE AVANZADA (RCTA), 1(45), 39–56. https://doi.org/10.24054/rcta.v1i45.3131es_CO
    dc.identifier.issn1692-7257-
    dc.identifier.issn2500-8625-
    dc.identifier.urihttp://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/9425-
    dc.descriptionEste estudio tiene como objetivo analizar las principales propuestas teóricas y prácticas en las que se han integrado agentes de software con modelos de aprendizaje automático para determinar su alcance en términos de inteligencia, proactividad, colaboración y aprendizaje. Para el desarrollo de esta investigación se usó la metodología propuesta por Kofod-Peterson. Se analizaron 55 estudios los cuales mostraron que, en la interacción entre agentes de software y aprendizaje automático, los procesos cooperativos y colaborativos se han utilizado ampliamente en la resolución de problemas de control y en la optimización de datos en escenarios distribuidos como el hogar, juegos y las telecomunicaciones. También se evidenció que se utilizaron principalmente modelos de aprendizaje por refuerzo en comparación con los modelos de aprendizaje automático porque contribuyen de manera más significativa al modelado cooperativo de tareas en sistemas inteligentes.es_CO
    dc.description.abstractThis study aims to analyze the main theoretical and practical proposals in which software agents have been integrated with machine learning models to determine their scope in terms of intelligence, proactivity, collaboration and learning. For the development of this research, the methodology proposed by Kofod-Peterson was carried out. Applying the methodology, 55 studies were analyzed. The studies showed that in the interaction between software agents and machine learning, cooperative and collaborative processes have been widely used in the resolution of control problems and in the optimization of data in distributed scenarios such as home, games and telecommunication. It was also found that mostly reinforcement learning models were used compared to machine learning models because they contribute more significantly to cooperative task modeling, which is widely used in intelligent systems.es_CO
    dc.format.extent18es_CO
    dc.format.mimetypeapplication/pdfes_CO
    dc.language.isoeses_CO
    dc.publisherAldo Pardo García, Revista Colombiana de Tecnologías de Avanzada, Universidad de Pamplona.es_CO
    dc.relation.ispartofseries39;56-
    dc.subjectaprendizaje automáticoes_CO
    dc.subjectagente softwarees_CO
    dc.subjectsistema multiagentees_CO
    dc.subjectinteligencia artificiales_CO
    dc.titleAgentes de software basados en técnicas de aprendizaje automático. Perspectivas desde 2010 hasta 2023es_CO
    dc.typehttp://purl.org/coar/resource_type/c_2df8fbb1es_CO
    dc.date.accepted2024-12-15-
    dc.description.editionVol. 1 Núm. 45 (2025): Enero – Junioes_CO
    dc.relation.referencesS. K. Polu, “Modeling of efficient multi-agent based mobile health care system,” Int J Innov Res Sci Technol, vol. 5, no. 8, pp. 10–14, 2019.es_CO
    dc.relation.referencesS. Munawar, S. K. Toor, M. Aslam, and E. Aimeur, “PACA-ITS: A Multi-agent system for intelligent virtual laboratory courses,” Applied Sciences (Switzerland), vol. 9, no. 23, 2019, doi: 10.3390/app9235084.es_CO
    dc.relation.referencesS. Cho and F. Zhang, “An adaptive control law for controlled lagrangian particle tracking,” WUWNet 2016 - 11th ACM International Conference on Underwater Networks and Systems, 2016, doi: 10.1145/2999504.3001077.es_CO
    dc.relation.referencesR. K. Jain et al., “Stability analysis of piezoelectric actuator based micro gripper for robotic micro assembly,” ACM International Conference Proceeding Series, no. c, 2013, doi: 10.1145/2506095.2506105.es_CO
    dc.relation.referencesM. Tanti, S. Fossey, L. Madrid-Briand, P. Carrieri, B. Spire, and P. Roux, “Une analyse de Twiter pour mieux comprendre les acteurs de la communication des nouvelles drogues et leurs discussions,” ACM International Conference Proceeding Series, pp. 36–38, 2018, doi: 10.1145/3240431.3240438.es_CO
    dc.relation.referencesY. Islen and S. Juan, “Componente para la extracción y transformación de datos en el proceso de vigilancia tecnológica Component for the data mining and transformation within the technological surveillance process,” no. June 2017, 2016.es_CO
    dc.relation.referencesM. Kaisers, D. Bloembergen, and K. Tuyls, “A Common Gradient in Multi-agent Reinforcement Learning (Extended Abstract),” Proc. of 11th Int. Conf. on Autonomous Agents and Multiagent Systems (AAMAS), pp. 1393–1394, 2012.es_CO
    dc.relation.referencesS. H. Chen and T. K. Fu, “Eliminating artificial-natural dichotomy a formal study on a core cognitive process in artificial intelligence,” ACM International Conference Proceeding Series, vol. Part F1285, 2017, doi: 10.1145/3080845.3080866.es_CO
    dc.relation.referencesS. R. Hamidi, E. N. M. Ibrahim, M. F. B. A. Rahman, and S. M. Shuhidan, “Industry 4.0 urban mobility: goNpark smart parking tracking module,” ACM International Conference Proceeding Series, pp. 503–507, 2017, doi: 10.1145/3162957.3163042.es_CO
    dc.relation.referencesC. Cappelli, G. V. Pereira, M. B. Bernardes, F. Bernardini, and A. Gomyde, “Building a reference model & an evaluation method for cities of the Brazilian network of smart & human cities,” ACM International Conference Proceeding Series, vol. Part F1282, pp. 580–581, 2017, doi: 10.1145/3085228.3085257.es_CO
    dc.relation.referencesA. A. F. Brandão, L. Vercouter, S. Casare, and J. Sichman, “Exchanging reputation values among heterogeneous agent reputation models: An experience on ART testbed,” Proceedings of the International Conference on Autonomous Agents, vol. 5, pp. 1047–1049, 2007, doi: 10.1145/1329125.1329405.es_CO
    dc.relation.referencesI. Menchaca, M. Guenaga, and J. Solabarrieta, “Using learning analytics to assess project management skills on engineering degree courses,” ACM International Conference Proceeding Series, vol. 02-04-Nove, pp. 369–376, 2016, doi: 10.1145/3012430.3012542.es_CO
    dc.relation.referencesA. Kofod-petersen, “How to do a Structured Literature Review in computer science,” 2014. [Online]. Available: https://research.idi.ntnu.no/aimasters/files/SLR_HowTo2018.pdfes_CO
    dc.relation.referencesE. Saadatian, T. Salafi, H. Samani, Y. De Lim, and R. Nakatsu, “An affective telepresence system using smartphone high level sensing and intelligent behavior generation,” HAI 2014 - Proceedings of the 2nd International Conference on Human-Agent Interaction, pp. 75–82, 2014, doi: 10.1145/2658861.2658878.es_CO
    dc.relation.referencesJ. Jumadinova, P. Dasgupta, and L. K. Soh, “Strategic capability-learning for improved multi-agent collaboration in ad-hoc environments,” Proceedings - 2012 IEEE/WIC/ACM International Conference on Intelligent Agent Technology, IAT 2012, vol. 2, pp. 287–292, 2012, doi: 10.1109/WI-IAT.2012.57.es_CO
    dc.relation.referencesJ. A. Manrique, J. S. Rueda-Rueda, and J. M. T. Portocarrero, “Contrasting Internet of Things and Wireless Sensor Network from a Conceptual Overview,” Proceedings - 2016 IEEE International Conference on Internet of Things; IEEE Green Computing and Communications; IEEE Cyber, Physical, and Social Computing; IEEE Smart Data, iThings-GreenCom-CPSCom-Smart Data 2016, pp. 252–257, 2017, doi: 10.1109/iThings-GreenCom-CPSCom-SmartData.2016.66.es_CO
    dc.relation.referencesT. H. Teng, A. H. Tan, J. A. Starzyk, Y. S. Tan, and L. N. Teow, “Integrating motivated learning and k-winner-take-all to coordinate multi-agent reinforcement learning,” Proceedings - 2014 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology - Workshops, WI-IAT 2014, vol. 3, pp. 190–197, 2014, doi: 10.1109/WI-IAT.2014.167.es_CO
    dc.relation.referencesD. P. Kingma, D. J. Rezende, S. Mohamed, and M. Welling, “Semi-supervised learning with deep generative models,” Adv Neural Inf Process Syst, vol. 4, no. January, pp. 3581–3589, 2014.es_CO
    dc.relation.referencesE. Levy, O. E. David, and N. S. Netanyahu, “Genetic algorithms and deep learning for automatic painter classification,” GECCO 2014 - Proceedings of the 2014 Genetic and Evolutionary Computation Conference, no. Dl, pp. 1143–1150, 2014, doi: 10.1145/2576768.2598287.es_CO
    dc.relation.referencesH. Kim, Y. Kim, and J. Hong, “Cluster management framework for autonomic machine learning platform,” Proceedings of the 2019 Research in Adaptive and Convergent Systems, RACS 2019, pp. 128–130, 2019, doi: 10.1145/3338840.3355691.es_CO
    dc.relation.referencesR. Rǎdulescu, P. Vrancx, and A. Nowé, “Analysing congestion problems in multi-agent reinforcement learning,” Proceedings of the International Joint Conference on Autonomous Agents and Multiagent Systems, AAMAS, vol. 3, pp. 1705–1707, 2017.es_CO
    dc.relation.referencesS. Kim, Y. K. Row, and T. J. Nam, “Thermal interaction with a voice-based intelligent agent,” Conference on Human Factors in Computing Systems - Proceedings, vol. 2018-April, pp. 1–6, 2018, doi: 10.1145/3170427.3188656.es_CO
    dc.relation.referencesJ. Yan, D. Hu, S. S. Liao, and H. Wang, “Mining agents’ goals in agent-oriented business processes,” ACM Trans Manag Inf Syst, vol. 5, no. 4, 2015, doi: 10.1145/2629448.es_CO
    dc.relation.referencesK. Hassani and W. S. Lee, “On designing migrating agents: From autonomous virtual agents to intelligent robotic systems,” SIGGRAPH Asia 2014 Autonomous Virtual Humans and Social Robot for Telepresence, SA 2014, 2014, doi: 10.1145/2668956.2668963.es_CO
    dc.relation.referencesD. Singh, L. Padgham, and B. Logan, “Integrating BDI Agents with Agent-Based Simulation Platforms,” Auton Agent Multi Agent Syst, vol. 30, no. 6, pp. 1050–1071, 2016, doi: 10.1007/s10458-016-9332-x.es_CO
    dc.relation.referencesA. Leite, R. Girardi, and P. Novais, “Using ontologies in hybrid software agent architectures,” Proceedings - 2013 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology - Workshops, WI-IATW 2013, vol. 3, pp. 155–158, 2013, doi: 10.1109/WI-IAT.2013.172.es_CO
    dc.relation.referencesR. Amin and S. Khalid, “Machine Learning Algorithms for Depression”.es_CO
    dc.relation.referencesA. Wilson and A. Fern, “Bayesian Role Discovery for ( Extended Abstract ),” Learning, pp. 1587–1588.es_CO
    dc.relation.referencesM. E. Taylor, B. Kulis, and F. Sha, “Metric learning for reinforcement learning agents,” 10th International Conference on Autonomous Agents and Multiagent Systems 2011, AAMAS 2011, vol. 2, pp. 729–736, 2011.es_CO
    dc.relation.referencesS. Hoet and N. Sabouret, “Reinforcement learning of communication in a multi-agent context,” Proceedings - 2011 IEEE/WIC/ACM International Conference on Intelligent Agent Technology, IAT 2011, vol. 2, pp. 240–243, 2011, doi: 10.1109/WI-IAT.2011.125.es_CO
    dc.relation.referencesC. Wu et al., “Spectrum Management of Cognitive Radio Using Multi-agent Reinforcement Learning,” in Proc. of 9th Int. Conf. on Autonomous Agents and Multiagent Systems (AAMAS 2010), 2010, pp. 10–14. [Online]. Available: www.ifaamas.orges_CO
    dc.relation.referencesS. Bromuri, “A tensor factorization approach to generalization in multi-agent reinforcement learning,” Proceedings - 2012 IEEE/WIC/ACM International Conference on Intelligent Agent Technology, IAT 2012, vol. 2, pp. 274–281, 2012, doi: 10.1109/WI-IAT.2012.21.es_CO
    dc.relation.referencesW. T. L. Teacy et al., “Decentralized Bayesian reinforcement learning for online agent collaboration,” 11th International Conference on Autonomous Agents and Multiagent Systems 2012, AAMAS 2012: Innovative Applications Track, vol. 1, pp. 312–319, 2012.es_CO
    dc.relation.referencesX. Zhu, C. Zhang, and V. Lesser, “Combining dynamic reward shaping and action shaping for coordinating multi-agent learning,” Proceedings - 2013 IEEE/WIC/ACM International Conference on Intelligent Agent Technology, IAT 2013, vol. 2, pp. 321–328, 2013, doi: 10.1109/WI-IAT.2013.127.es_CO
    dc.relation.referencesL. Torrey and M. E. Taylor, “Teaching on a Budget: Agents advising agents in reinforcement learning,” 12th International Conference on Autonomous Agents and Multiagent Systems 2013, AAMAS 2013, vol. 2, pp. 1053–1060, 2013.es_CO
    dc.relation.referencesC. Zhang and V. Lesser, “Coordinating multi-agent reinforcement learning with limited communication,” 12th International Conference on Autonomous Agents and Multiagent Systems 2013, AAMAS 2013, vol. 2, no. Aamas, pp. 1101–1108, 2013.es_CO
    dc.relation.referencesW. Rand, “Machine Learning Meets Agent-Based Modelling: When Not To Go: When Not To Go To a Bar,” 2006. [Online]. Available: https://ccl.northwestern.edu/papers/agent2006rand.pdfes_CO
    dc.relation.referencesP. Mannion, K. Mason, S. Devlin, J. Duggan, and E. Howley, “Multi-objective dynamic dispatch optimisation using Multi-Agent Reinforcement Learning,” Proceedings of the International Joint Conference on Autonomous Agents and Multiagent Systems, AAMAS, pp. 1345–1346, 2016.es_CO
    dc.relation.referencesH. Wang et al., “Integrating reinforcement learning with multi-agent techniques for adaptive service composition,” ACM Transactions on Autonomous and Adaptive Systems, vol. 12, no. 2, 2017, doi: 10.1145/3058592.es_CO
    dc.relation.referencesA. Marinescu, I. Dusparic, and S. Clarke, “Prediction-based multi-agent reinforcement learning in inherently non-stationary environments,” ACM Transactions on Autonomous and Adaptive Systems, vol. 12, no. 2, 2017, doi: 10.1145/3070861.es_CO
    dc.relation.referencesG. Henri and N. Lu, “A Multi-Agent Shared Machine Learning Approach for Real-time Battery Operation Mode Prediction and Control,” IEEE Power and Energy Society General Meeting, vol. 2018-Augus, pp. 1–5, 2018, doi: 10.1109/PESGM.2018.8585907.es_CO
    dc.relation.referencesP. Rosello and M. J. Kochenderfer, “Multi-agent reinforcement learning for multi-object tracking,” Proceedings of the International Joint Conference on Autonomous Agents and Multiagent Systems, AAMAS, vol. 2, pp. 1397–1413, 2018.es_CO
    dc.relation.referencesB. Khelifa and M. R. Laouar, “Multi-agent reinforcement learning for urban projects planning,” ACM International Conference Proceeding Series, 2018, doi: 10.1145/3330089.3330134.es_CO
    dc.relation.referencesH. Kazmi, J. Suykens, and J. Driesen, “Valuing knowledge, information and agency in multi-agent reinforcement learning: A case study in smart buildings: Industrial applications track,” Proceedings of the International Joint Conference on Autonomous Agents and Multiagent Systems, AAMAS, vol. 1, pp. 585–587, 2018.es_CO
    dc.relation.referencesP. Sunehag et al., “Value-decomposition networks for cooperative multi-agent learning based on team reward,” Proceedings of the International Joint Conference on Autonomous Agents and Multiagent Systems, AAMAS, vol. 3, pp. 2085–2087, 2018.es_CO
    dc.relation.referencesG. Palmer and K. Tuyls, “Lenient Multi-Agent Deep Reinforcement Learning,” no. Aamas, pp. 443–451, 2018.es_CO
    dc.relation.referencesJ. Wang and L. Sun, “Dynamic holding control to avoid bus bunching: A multi-agent deep reinforcement learning framework,” Transp Res Part C Emerg Technol, vol. 116, no. April, p. 102661, 2020, doi: 10.1016/j.trc.2020.102661.es_CO
    dc.relation.referencesW. Amaral, G. Braz, L. Rivero, and D. Viana, “Using machine learning technique for effort estimation in software development,” ACM International Conference Proceeding Series, 2019, doi: 10.1145/3364641.3364670.es_CO
    dc.relation.referencesG. Palmer, R. Savani, and K. Tuyls, “Negative update intervals in deep multi-agent reinforcement learning,” Proceedings of the International Joint Conference on Autonomous Agents and Multiagent Systems, AAMAS, vol. 1, pp. 43–51, 2019.es_CO
    dc.relation.referencesR. B. Diddigi, K. J. Prabuchandran, D. Sai Koti Reddy, and S. Bhatnagar, “Actor-critic algorithms for constrained multi-agent reinforcement learning,” Proceedings of the International Joint Conference on Autonomous Agents and Multiagent Systems, AAMAS, vol. 4, pp. 1931–1933, 2019.es_CO
    dc.relation.referencesS. Bhalla, S. G. Subramanian, and M. Crowley, “Training cooperative agents for multi-agent reinforcement learning,” Proceedings of the International Joint Conference on Autonomous Agents and Multiagent Systems, AAMAS, vol. 3, pp. 1826–1828, 2019.es_CO
    dc.relation.referencesM. Kaushik, N. Singhania, S. Phaniteja, and K. M. Krishna, “Parameter sharing reinforcement learning architecture for multi agent driving,” ACM International Conference Proceeding Series, pp. 0–6, 2019, doi: 10.1145/3352593.3352625.es_CO
    dc.relation.referencesG. Bacchiani, D. Molinar, and M. Patander, “Microscopic traffic simulation by cooperative multi-agent deep reinforcement learning,” Proceedings of the International Joint Conference on Autonomous Agents and Multiagent Systems, AAMAS, vol. 3, pp. 1547–1555, 2019.es_CO
    dc.relation.referencesT. Molderez, B. Oeyen, C. De Roover, and W. De Meuter, “Marlon - a domain-specific language for multi-agent reinforcement learning on networks,” Proceedings of the ACM Symposium on Applied Computing, vol. Part F1477, pp. 1322–1329, 2019, doi: 10.1145/3297280.3297413.es_CO
    dc.relation.referencesM. Zhou et al., “Factorized Q-Learning for Large-Scale Multi-Agent Systems,” 2019.es_CO
    dc.relation.referencesD. S. K. Reddy, A. Saha, S. G. Tamilselvam, P. Agrawal, and P. Dayama, “Risk averse reinforcement learning for mixed multi-agent environments,” Proceedings of the International Joint Conference on Autonomous Agents and Multiagent Systems, AAMAS, vol. 4, no. 2, pp. 2171–2173, 2019.es_CO
    dc.relation.referencesY. Zhao and X. Ma, “Learning efficient communication in cooperative multi-agent environment,” Proceedings of the International Joint Conference on Autonomous Agents and Multiagent Systems, AAMAS, vol. 4, pp. 2321–2323, 2019.es_CO
    dc.relation.referencesW. Zhou, Y. Chen, and J. Li, “Competitive Evolution Multi-Agent Deep Reinforcement Learning,” in CSAE2019, China, 2019.es_CO
    dc.relation.referencesH. R. Lee and T. Lee, “Improved cooperative multi-agent reinforcement learning algorithm augmented by mixing demonstrations from centralized policy,” Proceedings of the International Joint Conference on Autonomous Agents and Multiagent Systems, AAMAS, vol. 2, no. Aamas, pp. 1089–1098, 2019.es_CO
    dc.relation.referencesM. Ossenkopf, M. Jorgensen, and K. Geihs, “Hierarchical multi-agent deep reinforcement learning to develop long-term coordination,” Proceedings of the ACM Symposium on Applied Computing, vol. Part F1477, pp. 922–929, 2019, doi: 10.1145/3297280.3297371.es_CO
    dc.relation.referencesJ. Castellini, R. Savani, F. A. Oliehoek, and S. Whiteson, “The representational capacity of action-value networks for multi-agent reinforcement learning,” Proceedings of the International Joint Conference on Autonomous Agents and Multiagent Systems, AAMAS, vol. 4, no. 1, pp. 1862–1864, 2019.es_CO
    dc.relation.referencesH. Zhang et al., “CityFlow: A multi-agent reinforcement learning environment for large scale city traffic scenario,” The Web Conference 2019 - Proceedings of the World Wide Web Conference, WWW 2019, pp. 3620–3624, 2019, doi: 10.1145/3308558.3314139.es_CO
    dc.relation.referencesX. Li, J. Zhang, J. Bian, Y. Tong, and T. Y. Liu, “A cooperative multi-agent reinforcement learning framework for resource balancing in complex logistics network,” Proceedings of the International Joint Conference on Autonomous Agents and Multiagent Systems, AAMAS, vol. 2, pp. 980–988, 2019.es_CO
    dc.relation.referencesJ. Hook, V. De Silva, and A. Kondoz, “Deep Multi-Critic Network for accelerating Policy Learning in multi-agent environments,” Neural Networks, vol. 128, pp. 97–106, 2020, doi: 10.1016/j.neunet.2020.04.023.es_CO
    dc.relation.referencesM. Uzair, L. Li, J. G. Zhu, and M. Eskandari, “A protection scheme for AC microgrids based on multi-agent system combined with machine learning,” 2019 29th Australasian Universities Power Engineering Conference, AUPEC 2019, pp. 17–22, 2019, doi: 10.1109/AUPEC48547.2019.211845.es_CO
    dc.relation.referencesN. El Ghouch, M. Kouissi, and E. M. En-Naimi, “Multi-agent adaptive learning system based on incremental hybrid case-based reasoning (IHCBR),” ACM International Conference Proceeding Series, 2019, doi: 10.1145/3368756.3369030.es_CO
    dc.relation.referencesJ. Ma and F. Wu, “Feudal multi-agent deep reinforcement learning for traffic signal control,” Proceedings of the International Joint Conference on Autonomous Agents and Multiagent Systems, AAMAS, vol. 2020-May, pp. 816–824, 2020.es_CO
    dc.relation.referencesY. Li, Y. Zheng, and Q. Yang, “Cooperative Multi-Agent Reinforcement Learning in Express System,” International Conference on Information and Knowledge Management, Proceedings, pp. 805–814, 2020, doi: 10.1145/3340531.3411871.es_CO
    dc.relation.referencesH. Mao, Z. Zhang, Z. Xiao, Z. Gong, and Y. Ni, Learning multi-agent communication with double attentional deep reinforcement learning, vol. 34, no. 1. Springer US, 2020. doi: 10.1007/s10458-020-09455-w.es_CO
    dc.relation.referencesC. Hu, “A confrontation decision-making method with deep reinforcement learning and knowledge transfer for multi-agent system,” Symmetry (Basel), vol. 12, no. 4, pp. 1–24, 2020, doi: 10.3390/SYM12040631.es_CO
    dc.relation.referencesO. Batata, V. Augusto, and X. Xie, “Mixed Machine learning and Agent-based Simulation for Respite Care Evaluation,” in Proceedings of the 2018 Winter Simulation Conference, 2016, pp. 1–23.es_CO
    dc.relation.referencesD. Dašić, M. Vučetić, M. Perić, M. Beko, and M. Stanković, “Cooperative Multi-Agent Reinforcement Learning for Spectrum Management in IoT Cognitive Networks,” ACM International Conference Proceeding Series, vol. Part F1625, no. Cm, pp. 238–247, 2020, doi: 10.1145/3405962.3405996.es_CO
    dc.relation.referencesJ. Yang, I. Borovikov, and H. Zha, “Hierarchical cooperative multi-agent reinforcement learning with skill discovery,” Proceedings of the International Joint Conference on Autonomous Agents and Multiagent Systems, AAMAS, vol. 2020-May, pp. 1566–1574, 2020.es_CO
    dc.relation.referencesS. Gupta, R. Hazra, and A. Dukkipati, “Networked multi-agent reinforcement learning with emergent communication,” Proceedings of the International Joint Conference on Autonomous Agents and Multiagent Systems, AAMAS, vol. 2020-May, no. i, pp. 1858–1860, 2020.es_CO
    dc.relation.referencesD. E. Hostallero, D. Kim, S. Moon, K. Son, W. J. Kang, and Y. Yi, “Inducing cooperation through reward reshaping based on peer evaluations in deep multi-agent reinforcement learning,” Proceedings of the International Joint Conference on Autonomous Agents and Multiagent Systems, AAMAS, vol. 2020-May, pp. 520–528, 2020.es_CO
    dc.relation.referencesZ. Zhang, J. Yang, and H. Zha, “Integrating independent and centralized multi-agent reinforcement learning for traffic signal network optimization,” Proceedings of the International Joint Conference on Autonomous Agents and Multiagent Systems, AAMAS, vol. 2020-May, pp. 2083–2085, 2020.es_CO
    dc.relation.referencesD. Zelasko, P. Plawiak, and J. Kolodziej, “Machine learning techniques for transmission parameters classification in multi-agent managed network,” Proceedings - 20th IEEE/ACM International Symposium on Cluster, Cloud and Internet Computing, CCGRID 2020, pp. 699–707, 2020, doi: 10.1109/CCGrid49817.2020.00-20.es_CO
    dc.rights.accessrightshttp://purl.org/coar/access_right/c_abf2es_CO
    dc.type.coarversionhttp://purl.org/coar/resource_type/c_2df8fbb1es_CO
    Aparece en las colecciones: Revista Colombiana de Tecnologias de Avanzada (RCTA)

    Ficheros en este ítem:
    Fichero Descripción Tamaño Formato  
    Art05_V1_N45_2025_esp.pdfArt05_V1_N45_2025_esp685,65 kBAdobe PDFVisualizar/Abrir


    Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.